quantrs2_ml/
few_shot.rs

1//! Quantum Few-Shot Learning
2//!
3//! This module implements quantum few-shot learning algorithms that enable quantum models
4//! to learn from very limited training examples. It includes support for meta-learning,
5//! prototypical networks, and metric learning approaches adapted for quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::kernels::QuantumKernel;
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use ndarray::{Array1, Array2, Array3, Axis};
13use quantrs2_circuit::builder::{Circuit, Simulator};
14use quantrs2_core::gate::{
15    single::{RotationX, RotationY, RotationZ},
16    GateOp,
17};
18use quantrs2_sim::statevector::StateVectorSimulator;
19use std::collections::HashMap;
20
21/// Few-shot learning algorithm types
22#[derive(Debug, Clone, Copy, PartialEq)]
23pub enum FewShotMethod {
24    /// Prototypical networks in quantum feature space
25    PrototypicalNetworks,
26
27    /// Model-Agnostic Meta-Learning (MAML) for quantum circuits
28    MAML { inner_steps: usize, inner_lr: f64 },
29
30    /// Metric learning with quantum kernels
31    MetricLearning,
32
33    /// Siamese networks with quantum encoders
34    SiameseNetworks,
35
36    /// Matching networks with quantum attention
37    MatchingNetworks,
38}
39
40/// Episode configuration for few-shot learning
41#[derive(Debug, Clone)]
42pub struct Episode {
43    /// Support set (few labeled examples per class)
44    pub support_set: Vec<(Array1<f64>, usize)>,
45
46    /// Query set (examples to classify)
47    pub query_set: Vec<(Array1<f64>, usize)>,
48
49    /// Number of classes in this episode (N-way)
50    pub num_classes: usize,
51
52    /// Number of examples per class in support set (K-shot)
53    pub k_shot: usize,
54}
55
56/// Quantum prototypical network for few-shot learning
57pub struct QuantumPrototypicalNetwork {
58    /// Quantum encoder network
59    encoder: QuantumNeuralNetwork,
60
61    /// Feature dimension in quantum space
62    feature_dim: usize,
63
64    /// Distance metric to use
65    distance_metric: DistanceMetric,
66}
67
68/// Distance metrics for prototype comparison
69#[derive(Debug, Clone, Copy)]
70pub enum DistanceMetric {
71    /// Euclidean distance in feature space
72    Euclidean,
73
74    /// Cosine similarity
75    Cosine,
76
77    /// Quantum kernel distance
78    QuantumKernel,
79}
80
81impl QuantumPrototypicalNetwork {
82    /// Create a new quantum prototypical network
83    pub fn new(
84        encoder: QuantumNeuralNetwork,
85        feature_dim: usize,
86        distance_metric: DistanceMetric,
87    ) -> Self {
88        Self {
89            encoder,
90            feature_dim,
91            distance_metric,
92        }
93    }
94
95    /// Encode data into quantum feature space
96    pub fn encode(&self, data: &Array1<f64>) -> Result<Array1<f64>> {
97        // Placeholder - would use quantum circuit for encoding
98        let features = self.extract_features_placeholder()?;
99
100        Ok(features)
101    }
102
103    /// Extract features from quantum state (placeholder)
104    fn extract_features_placeholder(&self) -> Result<Array1<f64>> {
105        // Placeholder - would measure specific observables
106        let features = Array1::zeros(self.feature_dim);
107        Ok(features)
108    }
109
110    /// Compute prototype for a class from support examples
111    pub fn compute_prototype(&self, support_examples: &[Array1<f64>]) -> Result<Array1<f64>> {
112        let mut prototype = Array1::zeros(self.feature_dim);
113
114        // Encode and average support examples
115        for example in support_examples {
116            let encoded = self.encode(example)?;
117            prototype = prototype + encoded;
118        }
119
120        prototype = prototype / support_examples.len() as f64;
121        Ok(prototype)
122    }
123
124    /// Classify query example based on prototypes
125    pub fn classify(&self, query: &Array1<f64>, prototypes: &[Array1<f64>]) -> Result<usize> {
126        let query_encoded = self.encode(query)?;
127
128        // Find nearest prototype
129        let mut min_distance = f64::INFINITY;
130        let mut predicted_class = 0;
131
132        for (class_idx, prototype) in prototypes.iter().enumerate() {
133            let distance = match self.distance_metric {
134                DistanceMetric::Euclidean => {
135                    (&query_encoded - prototype).mapv(|x| x * x).sum().sqrt()
136                }
137                DistanceMetric::Cosine => {
138                    let dot = (&query_encoded * prototype).sum();
139                    let norm_q = query_encoded.mapv(|x| x * x).sum().sqrt();
140                    let norm_p = prototype.mapv(|x| x * x).sum().sqrt();
141                    1.0 - dot / (norm_q * norm_p + 1e-8)
142                }
143                DistanceMetric::QuantumKernel => {
144                    // Use quantum kernel distance
145                    self.quantum_distance(&query_encoded, prototype)?
146                }
147            };
148
149            if distance < min_distance {
150                min_distance = distance;
151                predicted_class = class_idx;
152            }
153        }
154
155        Ok(predicted_class)
156    }
157
158    /// Compute quantum kernel distance
159    fn quantum_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> Result<f64> {
160        // Placeholder - would compute quantum kernel
161        Ok((x - y).mapv(|v| v * v).sum().sqrt())
162    }
163
164    /// Train on an episode
165    pub fn train_episode(
166        &mut self,
167        episode: &Episode,
168        optimizer: &mut dyn Optimizer,
169    ) -> Result<f64> {
170        // Compute prototypes for each class
171        let mut prototypes = Vec::new();
172        let mut class_examples = HashMap::new();
173
174        // Group support examples by class
175        for (data, label) in &episode.support_set {
176            class_examples
177                .entry(*label)
178                .or_insert(Vec::new())
179                .push(data.clone());
180        }
181
182        // Compute prototype for each class
183        for class_id in 0..episode.num_classes {
184            if let Some(examples) = class_examples.get(&class_id) {
185                let prototype = self.compute_prototype(examples)?;
186                prototypes.push(prototype);
187            }
188        }
189
190        // Evaluate on query set
191        let mut correct = 0;
192        let mut total_loss = 0.0;
193
194        for (query, true_label) in &episode.query_set {
195            let predicted = self.classify(query, &prototypes)?;
196
197            if predicted == *true_label {
198                correct += 1;
199            }
200
201            // Compute loss
202            let query_encoded = self.encode(query)?;
203            let loss = self.prototypical_loss(&query_encoded, &prototypes, *true_label)?;
204            total_loss += loss;
205        }
206
207        let accuracy = correct as f64 / episode.query_set.len() as f64;
208        let avg_loss = total_loss / episode.query_set.len() as f64;
209
210        // Update encoder parameters
211        self.update_parameters(optimizer, avg_loss)?;
212
213        Ok(accuracy)
214    }
215
216    /// Compute prototypical loss
217    fn prototypical_loss(
218        &self,
219        query: &Array1<f64>,
220        prototypes: &[Array1<f64>],
221        true_label: usize,
222    ) -> Result<f64> {
223        let mut distances = Vec::new();
224
225        // Compute distances to all prototypes
226        for prototype in prototypes {
227            let distance = match self.distance_metric {
228                DistanceMetric::Euclidean => (query - prototype).mapv(|x| x * x).sum(),
229                _ => {
230                    // Other metrics
231                    (query - prototype).mapv(|x| x * x).sum()
232                }
233            };
234            distances.push(-distance); // Negative for softmax
235        }
236
237        // Softmax and cross-entropy loss
238        let max_val = distances.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
239        let exp_sum: f64 = distances.iter().map(|&d| (d - max_val).exp()).sum();
240        let log_prob = distances[true_label] - max_val - exp_sum.ln();
241
242        Ok(-log_prob)
243    }
244
245    /// Update encoder parameters
246    fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
247        // Placeholder - would compute gradients and update
248        Ok(())
249    }
250}
251
252/// Quantum MAML for few-shot learning
253pub struct QuantumMAML {
254    /// Base quantum model
255    model: QuantumNeuralNetwork,
256
257    /// Inner loop learning rate
258    inner_lr: f64,
259
260    /// Number of inner loop steps
261    inner_steps: usize,
262
263    /// Task-specific parameters
264    task_params: HashMap<String, Array1<f64>>,
265}
266
267impl QuantumMAML {
268    /// Create a new Quantum MAML instance
269    pub fn new(model: QuantumNeuralNetwork, inner_lr: f64, inner_steps: usize) -> Self {
270        Self {
271            model,
272            inner_lr,
273            inner_steps,
274            task_params: HashMap::new(),
275        }
276    }
277
278    /// Inner loop adaptation for a specific task
279    pub fn adapt_to_task(
280        &mut self,
281        support_set: &[(Array1<f64>, usize)],
282        task_id: &str,
283    ) -> Result<()> {
284        // Clone current parameters
285        let mut adapted_params = self.model.parameters.clone();
286
287        // Perform inner loop updates
288        for _ in 0..self.inner_steps {
289            // Compute gradients on support set
290            let gradients = self.compute_task_gradients(support_set, &adapted_params)?;
291
292            // Update parameters
293            adapted_params = adapted_params - self.inner_lr * &gradients;
294        }
295
296        // Store task-specific parameters
297        self.task_params.insert(task_id.to_string(), adapted_params);
298
299        Ok(())
300    }
301
302    /// Compute gradients for a specific task
303    fn compute_task_gradients(
304        &self,
305        support_set: &[(Array1<f64>, usize)],
306        params: &Array1<f64>,
307    ) -> Result<Array1<f64>> {
308        // Placeholder - would compute actual quantum gradients
309        Ok(Array1::zeros(params.len()))
310    }
311
312    /// Predict using task-adapted parameters
313    pub fn predict_adapted(&self, query: &Array1<f64>, task_id: &str) -> Result<usize> {
314        let params = self
315            .task_params
316            .get(task_id)
317            .ok_or(MLError::ModelCreationError("Task not adapted".to_string()))?;
318
319        // Use adapted parameters for prediction
320        // Placeholder implementation
321        Ok(0)
322    }
323
324    /// Meta-train on multiple tasks
325    pub fn meta_train(
326        &mut self,
327        tasks: &[Episode],
328        meta_optimizer: &mut dyn Optimizer,
329        meta_epochs: usize,
330    ) -> Result<Vec<f64>> {
331        let mut meta_losses = Vec::new();
332
333        for epoch in 0..meta_epochs {
334            let mut epoch_loss = 0.0;
335
336            for (task_idx, episode) in tasks.iter().enumerate() {
337                let task_id = format!("task_{}", task_idx);
338
339                // Inner loop: adapt to task
340                self.adapt_to_task(&episode.support_set, &task_id)?;
341
342                // Outer loop: evaluate on query set
343                let mut task_loss = 0.0;
344                for (query, label) in &episode.query_set {
345                    let predicted = self.predict_adapted(query, &task_id)?;
346                    task_loss += if predicted == *label { 0.0 } else { 1.0 };
347                }
348
349                epoch_loss += task_loss / episode.query_set.len() as f64;
350            }
351
352            // Meta-update
353            let meta_loss = epoch_loss / tasks.len() as f64;
354            meta_losses.push(meta_loss);
355
356            // Update base model parameters
357            self.meta_update(meta_optimizer, meta_loss)?;
358        }
359
360        Ok(meta_losses)
361    }
362
363    /// Perform meta-update on base model
364    fn meta_update(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
365        // Placeholder - would compute meta-gradients
366        Ok(())
367    }
368}
369
370/// Few-shot learning manager
371pub struct FewShotLearner {
372    /// Learning method
373    method: FewShotMethod,
374
375    /// Base model
376    model: QuantumNeuralNetwork,
377
378    /// Training history
379    history: Vec<f64>,
380}
381
382impl FewShotLearner {
383    /// Create a new few-shot learner
384    pub fn new(method: FewShotMethod, model: QuantumNeuralNetwork) -> Self {
385        Self {
386            method,
387            model,
388            history: Vec::new(),
389        }
390    }
391
392    /// Generate episode from dataset
393    pub fn generate_episode(
394        data: &Array2<f64>,
395        labels: &Array1<usize>,
396        num_classes: usize,
397        k_shot: usize,
398        query_per_class: usize,
399    ) -> Result<Episode> {
400        let mut support_set = Vec::new();
401        let mut query_set = Vec::new();
402
403        // Sample classes
404        let selected_classes: Vec<usize> = (0..num_classes).collect();
405
406        for class_id in selected_classes {
407            // Find all examples of this class
408            let class_indices: Vec<usize> = labels
409                .iter()
410                .enumerate()
411                .filter(|(_, &l)| l == class_id)
412                .map(|(i, _)| i)
413                .collect();
414
415            if class_indices.len() < k_shot + query_per_class {
416                return Err(MLError::ModelCreationError(format!(
417                    "Not enough examples for class {}",
418                    class_id
419                )));
420            }
421
422            // Sample support and query examples
423            let mut rng = fastrand::Rng::new();
424            let mut shuffled = class_indices.clone();
425            rng.shuffle(&mut shuffled);
426
427            // Support set
428            for i in 0..k_shot {
429                let idx = shuffled[i];
430                support_set.push((data.row(idx).to_owned(), class_id));
431            }
432
433            // Query set
434            for i in k_shot..(k_shot + query_per_class) {
435                let idx = shuffled[i];
436                query_set.push((data.row(idx).to_owned(), class_id));
437            }
438        }
439
440        Ok(Episode {
441            support_set,
442            query_set,
443            num_classes,
444            k_shot,
445        })
446    }
447
448    /// Train the few-shot learner
449    pub fn train(
450        &mut self,
451        episodes: &[Episode],
452        optimizer: &mut dyn Optimizer,
453        epochs: usize,
454    ) -> Result<Vec<f64>> {
455        match self.method {
456            FewShotMethod::PrototypicalNetworks => {
457                let mut proto_net = QuantumPrototypicalNetwork::new(
458                    self.model.clone(),
459                    16, // feature dimension
460                    DistanceMetric::Euclidean,
461                );
462
463                for epoch in 0..epochs {
464                    let mut epoch_acc = 0.0;
465
466                    for episode in episodes {
467                        let acc = proto_net.train_episode(episode, optimizer)?;
468                        epoch_acc += acc;
469                    }
470
471                    let avg_acc = epoch_acc / episodes.len() as f64;
472                    self.history.push(avg_acc);
473                }
474            }
475            FewShotMethod::MAML {
476                inner_steps,
477                inner_lr,
478            } => {
479                let mut maml = QuantumMAML::new(self.model.clone(), inner_lr, inner_steps);
480
481                let losses = maml.meta_train(episodes, optimizer, epochs)?;
482                self.history.extend(losses);
483            }
484            _ => {
485                return Err(MLError::ModelCreationError(
486                    "Method not implemented".to_string(),
487                ));
488            }
489        }
490
491        Ok(self.history.clone())
492    }
493}
494
495#[cfg(test)]
496mod tests {
497    use super::*;
498    use crate::autodiff::optimizers::Adam;
499    use crate::qnn::QNNLayerType;
500
501    #[test]
502    fn test_episode_generation() {
503        let num_samples = 100;
504        let num_features = 4;
505        let num_classes = 5;
506
507        // Generate synthetic data
508        let data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
509            (i as f64 * 0.1 + j as f64 * 0.2).sin()
510        });
511        let labels = Array1::from_shape_fn(num_samples, |i| i % num_classes);
512
513        // Generate episode
514        let episode = FewShotLearner::generate_episode(
515            &data, &labels, 3, // 3-way
516            5, // 5-shot
517            5, // 5 query per class
518        )
519        .unwrap();
520
521        assert_eq!(episode.num_classes, 3);
522        assert_eq!(episode.k_shot, 5);
523        assert_eq!(episode.support_set.len(), 15); // 3 classes * 5 shots
524        assert_eq!(episode.query_set.len(), 15); // 3 classes * 5 queries
525    }
526
527    #[test]
528    fn test_prototypical_network() {
529        let layers = vec![
530            QNNLayerType::EncodingLayer { num_features: 4 },
531            QNNLayerType::VariationalLayer { num_params: 8 },
532            QNNLayerType::MeasurementLayer {
533                measurement_basis: "computational".to_string(),
534            },
535        ];
536
537        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).unwrap();
538        let proto_net = QuantumPrototypicalNetwork::new(qnn, 8, DistanceMetric::Euclidean);
539
540        // Test encoding
541        let data = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
542        let encoded = proto_net.encode(&data).unwrap();
543        assert_eq!(encoded.len(), 8);
544
545        // Test prototype computation
546        let examples = vec![
547            Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]),
548            Array1::from_vec(vec![0.2, 0.3, 0.4, 0.5]),
549        ];
550        let prototype = proto_net.compute_prototype(&examples).unwrap();
551        assert_eq!(prototype.len(), 8);
552    }
553
554    #[test]
555    fn test_maml_adaptation() {
556        let layers = vec![
557            QNNLayerType::EncodingLayer { num_features: 4 },
558            QNNLayerType::VariationalLayer { num_params: 6 },
559        ];
560
561        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).unwrap();
562        let mut maml = QuantumMAML::new(qnn, 0.01, 5);
563
564        // Create support set
565        let support_set = vec![
566            (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
567            (Array1::from_vec(vec![0.5, 0.6, 0.7, 0.8]), 1),
568        ];
569
570        // Adapt to task
571        maml.adapt_to_task(&support_set, "test_task").unwrap();
572
573        // Check that task parameters were stored
574        assert!(maml.task_params.contains_key("test_task"));
575    }
576}