1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::kernels::QuantumKernel;
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use ndarray::{Array1, Array2, Array3, Axis};
13use quantrs2_circuit::builder::{Circuit, Simulator};
14use quantrs2_core::gate::{
15 single::{RotationX, RotationY, RotationZ},
16 GateOp,
17};
18use quantrs2_sim::statevector::StateVectorSimulator;
19use std::collections::HashMap;
20
21#[derive(Debug, Clone, Copy, PartialEq)]
23pub enum FewShotMethod {
24 PrototypicalNetworks,
26
27 MAML { inner_steps: usize, inner_lr: f64 },
29
30 MetricLearning,
32
33 SiameseNetworks,
35
36 MatchingNetworks,
38}
39
40#[derive(Debug, Clone)]
42pub struct Episode {
43 pub support_set: Vec<(Array1<f64>, usize)>,
45
46 pub query_set: Vec<(Array1<f64>, usize)>,
48
49 pub num_classes: usize,
51
52 pub k_shot: usize,
54}
55
56pub struct QuantumPrototypicalNetwork {
58 encoder: QuantumNeuralNetwork,
60
61 feature_dim: usize,
63
64 distance_metric: DistanceMetric,
66}
67
68#[derive(Debug, Clone, Copy)]
70pub enum DistanceMetric {
71 Euclidean,
73
74 Cosine,
76
77 QuantumKernel,
79}
80
81impl QuantumPrototypicalNetwork {
82 pub fn new(
84 encoder: QuantumNeuralNetwork,
85 feature_dim: usize,
86 distance_metric: DistanceMetric,
87 ) -> Self {
88 Self {
89 encoder,
90 feature_dim,
91 distance_metric,
92 }
93 }
94
95 pub fn encode(&self, data: &Array1<f64>) -> Result<Array1<f64>> {
97 let features = self.extract_features_placeholder()?;
99
100 Ok(features)
101 }
102
103 fn extract_features_placeholder(&self) -> Result<Array1<f64>> {
105 let features = Array1::zeros(self.feature_dim);
107 Ok(features)
108 }
109
110 pub fn compute_prototype(&self, support_examples: &[Array1<f64>]) -> Result<Array1<f64>> {
112 let mut prototype = Array1::zeros(self.feature_dim);
113
114 for example in support_examples {
116 let encoded = self.encode(example)?;
117 prototype = prototype + encoded;
118 }
119
120 prototype = prototype / support_examples.len() as f64;
121 Ok(prototype)
122 }
123
124 pub fn classify(&self, query: &Array1<f64>, prototypes: &[Array1<f64>]) -> Result<usize> {
126 let query_encoded = self.encode(query)?;
127
128 let mut min_distance = f64::INFINITY;
130 let mut predicted_class = 0;
131
132 for (class_idx, prototype) in prototypes.iter().enumerate() {
133 let distance = match self.distance_metric {
134 DistanceMetric::Euclidean => {
135 (&query_encoded - prototype).mapv(|x| x * x).sum().sqrt()
136 }
137 DistanceMetric::Cosine => {
138 let dot = (&query_encoded * prototype).sum();
139 let norm_q = query_encoded.mapv(|x| x * x).sum().sqrt();
140 let norm_p = prototype.mapv(|x| x * x).sum().sqrt();
141 1.0 - dot / (norm_q * norm_p + 1e-8)
142 }
143 DistanceMetric::QuantumKernel => {
144 self.quantum_distance(&query_encoded, prototype)?
146 }
147 };
148
149 if distance < min_distance {
150 min_distance = distance;
151 predicted_class = class_idx;
152 }
153 }
154
155 Ok(predicted_class)
156 }
157
158 fn quantum_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> Result<f64> {
160 Ok((x - y).mapv(|v| v * v).sum().sqrt())
162 }
163
164 pub fn train_episode(
166 &mut self,
167 episode: &Episode,
168 optimizer: &mut dyn Optimizer,
169 ) -> Result<f64> {
170 let mut prototypes = Vec::new();
172 let mut class_examples = HashMap::new();
173
174 for (data, label) in &episode.support_set {
176 class_examples
177 .entry(*label)
178 .or_insert(Vec::new())
179 .push(data.clone());
180 }
181
182 for class_id in 0..episode.num_classes {
184 if let Some(examples) = class_examples.get(&class_id) {
185 let prototype = self.compute_prototype(examples)?;
186 prototypes.push(prototype);
187 }
188 }
189
190 let mut correct = 0;
192 let mut total_loss = 0.0;
193
194 for (query, true_label) in &episode.query_set {
195 let predicted = self.classify(query, &prototypes)?;
196
197 if predicted == *true_label {
198 correct += 1;
199 }
200
201 let query_encoded = self.encode(query)?;
203 let loss = self.prototypical_loss(&query_encoded, &prototypes, *true_label)?;
204 total_loss += loss;
205 }
206
207 let accuracy = correct as f64 / episode.query_set.len() as f64;
208 let avg_loss = total_loss / episode.query_set.len() as f64;
209
210 self.update_parameters(optimizer, avg_loss)?;
212
213 Ok(accuracy)
214 }
215
216 fn prototypical_loss(
218 &self,
219 query: &Array1<f64>,
220 prototypes: &[Array1<f64>],
221 true_label: usize,
222 ) -> Result<f64> {
223 let mut distances = Vec::new();
224
225 for prototype in prototypes {
227 let distance = match self.distance_metric {
228 DistanceMetric::Euclidean => (query - prototype).mapv(|x| x * x).sum(),
229 _ => {
230 (query - prototype).mapv(|x| x * x).sum()
232 }
233 };
234 distances.push(-distance); }
236
237 let max_val = distances.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
239 let exp_sum: f64 = distances.iter().map(|&d| (d - max_val).exp()).sum();
240 let log_prob = distances[true_label] - max_val - exp_sum.ln();
241
242 Ok(-log_prob)
243 }
244
245 fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
247 Ok(())
249 }
250}
251
252pub struct QuantumMAML {
254 model: QuantumNeuralNetwork,
256
257 inner_lr: f64,
259
260 inner_steps: usize,
262
263 task_params: HashMap<String, Array1<f64>>,
265}
266
267impl QuantumMAML {
268 pub fn new(model: QuantumNeuralNetwork, inner_lr: f64, inner_steps: usize) -> Self {
270 Self {
271 model,
272 inner_lr,
273 inner_steps,
274 task_params: HashMap::new(),
275 }
276 }
277
278 pub fn adapt_to_task(
280 &mut self,
281 support_set: &[(Array1<f64>, usize)],
282 task_id: &str,
283 ) -> Result<()> {
284 let mut adapted_params = self.model.parameters.clone();
286
287 for _ in 0..self.inner_steps {
289 let gradients = self.compute_task_gradients(support_set, &adapted_params)?;
291
292 adapted_params = adapted_params - self.inner_lr * &gradients;
294 }
295
296 self.task_params.insert(task_id.to_string(), adapted_params);
298
299 Ok(())
300 }
301
302 fn compute_task_gradients(
304 &self,
305 support_set: &[(Array1<f64>, usize)],
306 params: &Array1<f64>,
307 ) -> Result<Array1<f64>> {
308 Ok(Array1::zeros(params.len()))
310 }
311
312 pub fn predict_adapted(&self, query: &Array1<f64>, task_id: &str) -> Result<usize> {
314 let params = self
315 .task_params
316 .get(task_id)
317 .ok_or(MLError::ModelCreationError("Task not adapted".to_string()))?;
318
319 Ok(0)
322 }
323
324 pub fn meta_train(
326 &mut self,
327 tasks: &[Episode],
328 meta_optimizer: &mut dyn Optimizer,
329 meta_epochs: usize,
330 ) -> Result<Vec<f64>> {
331 let mut meta_losses = Vec::new();
332
333 for epoch in 0..meta_epochs {
334 let mut epoch_loss = 0.0;
335
336 for (task_idx, episode) in tasks.iter().enumerate() {
337 let task_id = format!("task_{}", task_idx);
338
339 self.adapt_to_task(&episode.support_set, &task_id)?;
341
342 let mut task_loss = 0.0;
344 for (query, label) in &episode.query_set {
345 let predicted = self.predict_adapted(query, &task_id)?;
346 task_loss += if predicted == *label { 0.0 } else { 1.0 };
347 }
348
349 epoch_loss += task_loss / episode.query_set.len() as f64;
350 }
351
352 let meta_loss = epoch_loss / tasks.len() as f64;
354 meta_losses.push(meta_loss);
355
356 self.meta_update(meta_optimizer, meta_loss)?;
358 }
359
360 Ok(meta_losses)
361 }
362
363 fn meta_update(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
365 Ok(())
367 }
368}
369
370pub struct FewShotLearner {
372 method: FewShotMethod,
374
375 model: QuantumNeuralNetwork,
377
378 history: Vec<f64>,
380}
381
382impl FewShotLearner {
383 pub fn new(method: FewShotMethod, model: QuantumNeuralNetwork) -> Self {
385 Self {
386 method,
387 model,
388 history: Vec::new(),
389 }
390 }
391
392 pub fn generate_episode(
394 data: &Array2<f64>,
395 labels: &Array1<usize>,
396 num_classes: usize,
397 k_shot: usize,
398 query_per_class: usize,
399 ) -> Result<Episode> {
400 let mut support_set = Vec::new();
401 let mut query_set = Vec::new();
402
403 let selected_classes: Vec<usize> = (0..num_classes).collect();
405
406 for class_id in selected_classes {
407 let class_indices: Vec<usize> = labels
409 .iter()
410 .enumerate()
411 .filter(|(_, &l)| l == class_id)
412 .map(|(i, _)| i)
413 .collect();
414
415 if class_indices.len() < k_shot + query_per_class {
416 return Err(MLError::ModelCreationError(format!(
417 "Not enough examples for class {}",
418 class_id
419 )));
420 }
421
422 let mut rng = fastrand::Rng::new();
424 let mut shuffled = class_indices.clone();
425 rng.shuffle(&mut shuffled);
426
427 for i in 0..k_shot {
429 let idx = shuffled[i];
430 support_set.push((data.row(idx).to_owned(), class_id));
431 }
432
433 for i in k_shot..(k_shot + query_per_class) {
435 let idx = shuffled[i];
436 query_set.push((data.row(idx).to_owned(), class_id));
437 }
438 }
439
440 Ok(Episode {
441 support_set,
442 query_set,
443 num_classes,
444 k_shot,
445 })
446 }
447
448 pub fn train(
450 &mut self,
451 episodes: &[Episode],
452 optimizer: &mut dyn Optimizer,
453 epochs: usize,
454 ) -> Result<Vec<f64>> {
455 match self.method {
456 FewShotMethod::PrototypicalNetworks => {
457 let mut proto_net = QuantumPrototypicalNetwork::new(
458 self.model.clone(),
459 16, DistanceMetric::Euclidean,
461 );
462
463 for epoch in 0..epochs {
464 let mut epoch_acc = 0.0;
465
466 for episode in episodes {
467 let acc = proto_net.train_episode(episode, optimizer)?;
468 epoch_acc += acc;
469 }
470
471 let avg_acc = epoch_acc / episodes.len() as f64;
472 self.history.push(avg_acc);
473 }
474 }
475 FewShotMethod::MAML {
476 inner_steps,
477 inner_lr,
478 } => {
479 let mut maml = QuantumMAML::new(self.model.clone(), inner_lr, inner_steps);
480
481 let losses = maml.meta_train(episodes, optimizer, epochs)?;
482 self.history.extend(losses);
483 }
484 _ => {
485 return Err(MLError::ModelCreationError(
486 "Method not implemented".to_string(),
487 ));
488 }
489 }
490
491 Ok(self.history.clone())
492 }
493}
494
495#[cfg(test)]
496mod tests {
497 use super::*;
498 use crate::autodiff::optimizers::Adam;
499 use crate::qnn::QNNLayerType;
500
501 #[test]
502 fn test_episode_generation() {
503 let num_samples = 100;
504 let num_features = 4;
505 let num_classes = 5;
506
507 let data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
509 (i as f64 * 0.1 + j as f64 * 0.2).sin()
510 });
511 let labels = Array1::from_shape_fn(num_samples, |i| i % num_classes);
512
513 let episode = FewShotLearner::generate_episode(
515 &data, &labels, 3, 5, 5, )
519 .unwrap();
520
521 assert_eq!(episode.num_classes, 3);
522 assert_eq!(episode.k_shot, 5);
523 assert_eq!(episode.support_set.len(), 15); assert_eq!(episode.query_set.len(), 15); }
526
527 #[test]
528 fn test_prototypical_network() {
529 let layers = vec![
530 QNNLayerType::EncodingLayer { num_features: 4 },
531 QNNLayerType::VariationalLayer { num_params: 8 },
532 QNNLayerType::MeasurementLayer {
533 measurement_basis: "computational".to_string(),
534 },
535 ];
536
537 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).unwrap();
538 let proto_net = QuantumPrototypicalNetwork::new(qnn, 8, DistanceMetric::Euclidean);
539
540 let data = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
542 let encoded = proto_net.encode(&data).unwrap();
543 assert_eq!(encoded.len(), 8);
544
545 let examples = vec![
547 Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]),
548 Array1::from_vec(vec![0.2, 0.3, 0.4, 0.5]),
549 ];
550 let prototype = proto_net.compute_prototype(&examples).unwrap();
551 assert_eq!(prototype.len(), 8);
552 }
553
554 #[test]
555 fn test_maml_adaptation() {
556 let layers = vec![
557 QNNLayerType::EncodingLayer { num_features: 4 },
558 QNNLayerType::VariationalLayer { num_params: 6 },
559 ];
560
561 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).unwrap();
562 let mut maml = QuantumMAML::new(qnn, 0.01, 5);
563
564 let support_set = vec![
566 (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
567 (Array1::from_vec(vec![0.5, 0.6, 0.7, 0.8]), 1),
568 ];
569
570 maml.adapt_to_task(&support_set, "test_task").unwrap();
572
573 assert!(maml.task_params.contains_key("test_task"));
575 }
576}