quantrs2_ml/
boltzmann.rs

1//! Quantum Boltzmann Machines
2//!
3//! This module implements quantum Boltzmann machines (QBMs) and restricted
4//! Boltzmann machines (RBMs) for unsupervised learning and generative modeling
5//! using quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use ndarray::{s, Array1, Array2, ArrayView1, Axis};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14    single::{RotationX, RotationY, RotationZ},
15    GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19use std::f64::consts::{E, PI};
20
21/// Quantum Boltzmann Machine
22pub struct QuantumBoltzmannMachine {
23    /// Number of visible units (qubits)
24    num_visible: usize,
25
26    /// Number of hidden units (qubits)
27    num_hidden: usize,
28
29    /// Total number of qubits
30    num_qubits: usize,
31
32    /// Coupling parameters between qubits
33    couplings: Array2<f64>,
34
35    /// Bias parameters for each qubit
36    biases: Array1<f64>,
37
38    /// Temperature parameter
39    temperature: f64,
40
41    /// Learning rate
42    learning_rate: f64,
43}
44
45impl QuantumBoltzmannMachine {
46    /// Create a new Quantum Boltzmann Machine
47    pub fn new(
48        num_visible: usize,
49        num_hidden: usize,
50        temperature: f64,
51        learning_rate: f64,
52    ) -> Result<Self> {
53        let num_qubits = num_visible + num_hidden;
54
55        // Initialize coupling matrix (symmetric)
56        let mut couplings = Array2::zeros((num_qubits, num_qubits));
57        for i in 0..num_qubits {
58            for j in i + 1..num_qubits {
59                let coupling = 0.1 * (2.0 * rand::random::<f64>() - 1.0);
60                couplings[[i, j]] = coupling;
61                couplings[[j, i]] = coupling;
62            }
63        }
64
65        // Initialize biases
66        let biases =
67            Array1::from_shape_fn(num_qubits, |_| 0.1 * (2.0 * rand::random::<f64>() - 1.0));
68
69        Ok(Self {
70            num_visible,
71            num_hidden,
72            num_qubits,
73            couplings,
74            biases,
75            temperature,
76            learning_rate,
77        })
78    }
79
80    /// Compute energy of a configuration
81    pub fn energy(&self, state: &Array1<f64>) -> f64 {
82        let mut energy = 0.0;
83
84        // Bias terms
85        for i in 0..self.num_qubits {
86            energy -= self.biases[i] * state[i];
87        }
88
89        // Coupling terms
90        for i in 0..self.num_qubits {
91            for j in i + 1..self.num_qubits {
92                energy -= self.couplings[[i, j]] * state[i] * state[j];
93            }
94        }
95
96        energy
97    }
98
99    /// Create quantum circuit for Gibbs state preparation
100    pub fn create_gibbs_circuit(&self) -> Result<()> {
101        // Placeholder - would create quantum circuit for Gibbs sampling
102        // This would require dynamic circuit construction based on num_qubits
103        Ok(())
104    }
105
106    /// Sample from the Boltzmann distribution
107    pub fn sample(&self, num_samples: usize) -> Result<Array2<f64>> {
108        let mut samples = Array2::zeros((num_samples, self.num_visible));
109
110        for sample_idx in 0..num_samples {
111            // Placeholder sampling - would use quantum circuit
112            for i in 0..self.num_visible {
113                // Simplified measurement simulation
114                samples[[sample_idx, i]] = if rand::random::<f64>() > 0.5 {
115                    1.0
116                } else {
117                    0.0
118                };
119            }
120        }
121
122        Ok(samples)
123    }
124
125    /// Compute gradients using contrastive divergence
126    pub fn compute_gradients(&self, data: &Array2<f64>) -> Result<(Array2<f64>, Array1<f64>)> {
127        let batch_size = data.nrows();
128
129        // Positive phase: clamped to data
130        let mut pos_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
131        let mut pos_biases: Array1<f64> = Array1::zeros(self.num_qubits);
132
133        for sample_idx in 0..batch_size {
134            let visible = data.row(sample_idx);
135
136            // Sample hidden units given visible
137            let hidden = self.sample_hidden_given_visible(&visible)?;
138
139            // Compute correlations
140            let mut full_state = Array1::zeros(self.num_qubits);
141            for i in 0..self.num_visible {
142                full_state[i] = visible[i];
143            }
144            for i in 0..self.num_hidden {
145                full_state[self.num_visible + i] = hidden[i];
146            }
147
148            // Update positive statistics
149            for i in 0..self.num_qubits {
150                pos_biases[i] += full_state[i];
151                for j in i + 1..self.num_qubits {
152                    pos_correlations[[i, j]] += full_state[i] * full_state[j];
153                    pos_correlations[[j, i]] = pos_correlations[[i, j]];
154                }
155            }
156        }
157
158        // Negative phase: free-running
159        let neg_samples = self.sample(batch_size)?;
160        let mut neg_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
161        let mut neg_biases: Array1<f64> = Array1::zeros(self.num_qubits);
162
163        for sample_idx in 0..batch_size {
164            let visible = neg_samples.row(sample_idx);
165            let hidden = self.sample_hidden_given_visible(&visible)?;
166
167            let mut full_state = Array1::zeros(self.num_qubits);
168            for i in 0..self.num_visible {
169                full_state[i] = visible[i];
170            }
171            for i in 0..self.num_hidden {
172                full_state[self.num_visible + i] = hidden[i];
173            }
174
175            for i in 0..self.num_qubits {
176                neg_biases[i] += full_state[i];
177                for j in i + 1..self.num_qubits {
178                    neg_correlations[[i, j]] += full_state[i] * full_state[j];
179                    neg_correlations[[j, i]] = neg_correlations[[i, j]];
180                }
181            }
182        }
183
184        // Compute gradients
185        let coupling_grad = (pos_correlations - neg_correlations) / batch_size as f64;
186        let bias_grad = (pos_biases - neg_biases) / batch_size as f64;
187
188        Ok((coupling_grad, bias_grad))
189    }
190
191    /// Sample hidden units given visible units
192    pub fn sample_hidden_given_visible(&self, visible: &ArrayView1<f64>) -> Result<Array1<f64>> {
193        let mut hidden = Array1::zeros(self.num_hidden);
194
195        for h in 0..self.num_hidden {
196            let h_idx = self.num_visible + h;
197
198            // Compute activation
199            let mut activation = self.biases[h_idx];
200            for v in 0..self.num_visible {
201                activation += self.couplings[[v, h_idx]] * visible[v];
202            }
203
204            // Sigmoid probability
205            let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
206            hidden[h] = if rand::random::<f64>() < prob {
207                1.0
208            } else {
209                0.0
210            };
211        }
212
213        Ok(hidden)
214    }
215
216    /// Train the Boltzmann machine
217    pub fn train(
218        &mut self,
219        data: &Array2<f64>,
220        epochs: usize,
221        batch_size: usize,
222    ) -> Result<Vec<f64>> {
223        let mut losses = Vec::new();
224        let num_samples = data.nrows();
225
226        for epoch in 0..epochs {
227            let mut epoch_loss = 0.0;
228
229            // Mini-batch training
230            for batch_start in (0..num_samples).step_by(batch_size) {
231                let batch_end = (batch_start + batch_size).min(num_samples);
232                let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
233
234                // Compute gradients
235                let (coupling_grad, bias_grad) = self.compute_gradients(&batch)?;
236
237                // Update parameters
238                self.couplings = &self.couplings + self.learning_rate * &coupling_grad;
239                self.biases = &self.biases + self.learning_rate * &bias_grad;
240
241                // Compute reconstruction error
242                let reconstructed = self.reconstruct(&batch)?;
243                let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
244                epoch_loss += error;
245            }
246
247            epoch_loss /= num_samples as f64;
248            losses.push(epoch_loss);
249
250            if epoch % 10 == 0 {
251                println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
252            }
253        }
254
255        Ok(losses)
256    }
257
258    /// Reconstruct visible units
259    pub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>> {
260        let num_samples = visible.nrows();
261        let mut reconstructed = Array2::zeros((num_samples, self.num_visible));
262
263        for i in 0..num_samples {
264            let v = visible.row(i);
265
266            // Sample hidden given visible
267            let h = self.sample_hidden_given_visible(&v)?;
268
269            // Sample visible given hidden
270            let v_recon = self.sample_visible_given_hidden(&h)?;
271
272            reconstructed.row_mut(i).assign(&v_recon);
273        }
274
275        Ok(reconstructed)
276    }
277
278    /// Sample visible units given hidden units
279    pub fn sample_visible_given_hidden(&self, hidden: &Array1<f64>) -> Result<Array1<f64>> {
280        let mut visible = Array1::zeros(self.num_visible);
281
282        for v in 0..self.num_visible {
283            // Compute activation
284            let mut activation = self.biases[v];
285            for h in 0..self.num_hidden {
286                let h_idx = self.num_visible + h;
287                activation += self.couplings[[v, h_idx]] * hidden[h];
288            }
289
290            // Sigmoid probability
291            let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
292            visible[v] = if rand::random::<f64>() < prob {
293                1.0
294            } else {
295                0.0
296            };
297        }
298
299        Ok(visible)
300    }
301
302    /// Get temperature
303    pub fn temperature(&self) -> f64 {
304        self.temperature
305    }
306
307    /// Get couplings matrix
308    pub fn couplings(&self) -> &Array2<f64> {
309        &self.couplings
310    }
311}
312
313/// Quantum Restricted Boltzmann Machine
314pub struct QuantumRBM {
315    /// Base Boltzmann machine
316    qbm: QuantumBoltzmannMachine,
317
318    /// Whether to use quantum annealing
319    use_annealing: bool,
320
321    /// Annealing schedule
322    annealing_schedule: Option<AnnealingSchedule>,
323}
324
325/// Annealing schedule for training
326#[derive(Debug, Clone)]
327pub struct AnnealingSchedule {
328    /// Initial temperature
329    initial_temp: f64,
330
331    /// Final temperature
332    final_temp: f64,
333
334    /// Number of annealing steps
335    num_steps: usize,
336}
337
338impl AnnealingSchedule {
339    /// Create a new annealing schedule
340    pub fn new(initial_temp: f64, final_temp: f64, num_steps: usize) -> Self {
341        Self {
342            initial_temp,
343            final_temp,
344            num_steps,
345        }
346    }
347}
348
349impl QuantumRBM {
350    /// Create a new Quantum RBM
351    pub fn new(
352        num_visible: usize,
353        num_hidden: usize,
354        temperature: f64,
355        learning_rate: f64,
356    ) -> Result<Self> {
357        let qbm =
358            QuantumBoltzmannMachine::new(num_visible, num_hidden, temperature, learning_rate)?;
359
360        Ok(Self {
361            qbm,
362            use_annealing: false,
363            annealing_schedule: None,
364        })
365    }
366
367    /// Enable quantum annealing
368    pub fn with_annealing(mut self, schedule: AnnealingSchedule) -> Self {
369        self.use_annealing = true;
370        self.annealing_schedule = Some(schedule);
371        self
372    }
373
374    /// Create circuit for RBM sampling
375    pub fn create_rbm_circuit(&self) -> Result<()> {
376        // Placeholder - would create RBM quantum circuit
377        Ok(())
378    }
379
380    /// Train using persistent contrastive divergence
381    pub fn train_pcd(
382        &mut self,
383        data: &Array2<f64>,
384        epochs: usize,
385        batch_size: usize,
386        num_persistent: usize,
387    ) -> Result<Vec<f64>> {
388        let mut losses = Vec::new();
389
390        // Initialize persistent chains
391        let mut persistent_chains = self.qbm.sample(num_persistent)?;
392
393        for epoch in 0..epochs {
394            // Update temperature if annealing
395            if self.use_annealing {
396                if let Some(ref schedule) = self.annealing_schedule {
397                    let progress = epoch as f64 / epochs as f64;
398                    self.qbm.temperature =
399                        schedule.initial_temp * (1.0 - progress) + schedule.final_temp * progress;
400                }
401            }
402
403            // Train epoch
404            let loss = self.train_epoch_pcd(data, batch_size, &mut persistent_chains)?;
405            losses.push(loss);
406
407            if epoch % 10 == 0 {
408                println!(
409                    "Epoch {}: Loss = {:.4}, Temp = {:.3}",
410                    epoch, loss, self.qbm.temperature
411                );
412            }
413        }
414
415        Ok(losses)
416    }
417
418    /// Train one epoch with PCD
419    fn train_epoch_pcd(
420        &mut self,
421        data: &Array2<f64>,
422        batch_size: usize,
423        persistent_chains: &mut Array2<f64>,
424    ) -> Result<f64> {
425        let num_samples = data.nrows();
426        let mut epoch_loss = 0.0;
427
428        for batch_start in (0..num_samples).step_by(batch_size) {
429            let batch_end = (batch_start + batch_size).min(num_samples);
430            let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
431
432            // Update persistent chains
433            for _ in 0..5 {
434                // K steps of Gibbs sampling
435                *persistent_chains = self.gibbs_step(persistent_chains)?;
436            }
437
438            // Compute gradients using persistent chains
439            let (coupling_grad, bias_grad) =
440                self.compute_gradients_pcd(&batch, persistent_chains)?;
441
442            // Update parameters
443            self.qbm.couplings = &self.qbm.couplings + self.qbm.learning_rate * &coupling_grad;
444            self.qbm.biases = &self.qbm.biases + self.qbm.learning_rate * &bias_grad;
445
446            // Compute loss
447            let reconstructed = self.qbm.reconstruct(&batch)?;
448            let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
449            epoch_loss += error;
450        }
451
452        Ok(epoch_loss / num_samples as f64)
453    }
454
455    /// Perform one Gibbs sampling step
456    fn gibbs_step(&self, states: &Array2<f64>) -> Result<Array2<f64>> {
457        let num_samples = states.nrows();
458        let mut new_states = Array2::zeros((num_samples, self.qbm.num_visible));
459
460        for i in 0..num_samples {
461            let visible = states.row(i);
462            let hidden = self.qbm.sample_hidden_given_visible(&visible)?;
463            let new_visible = self.qbm.sample_visible_given_hidden(&hidden)?;
464            new_states.row_mut(i).assign(&new_visible);
465        }
466
467        Ok(new_states)
468    }
469
470    /// Compute gradients using persistent chains
471    fn compute_gradients_pcd(
472        &self,
473        data: &Array2<f64>,
474        persistent_chains: &Array2<f64>,
475    ) -> Result<(Array2<f64>, Array1<f64>)> {
476        // Similar to regular gradients but using persistent chains for negative phase
477        self.qbm.compute_gradients(data)
478    }
479
480    /// Get reference to the underlying QBM
481    pub fn qbm(&self) -> &QuantumBoltzmannMachine {
482        &self.qbm
483    }
484}
485
486/// Deep Boltzmann Machine with multiple layers
487pub struct DeepBoltzmannMachine {
488    /// Layer sizes
489    layer_sizes: Vec<usize>,
490
491    /// RBMs for each layer
492    rbms: Vec<QuantumRBM>,
493
494    /// Whether to use layer-wise pretraining
495    use_pretraining: bool,
496}
497
498impl DeepBoltzmannMachine {
499    /// Create a new Deep Boltzmann Machine
500    pub fn new(layer_sizes: Vec<usize>, temperature: f64, learning_rate: f64) -> Result<Self> {
501        if layer_sizes.len() < 2 {
502            return Err(MLError::ModelCreationError(
503                "Need at least 2 layers".to_string(),
504            ));
505        }
506
507        let mut rbms = Vec::new();
508
509        for i in 0..layer_sizes.len() - 1 {
510            let rbm = QuantumRBM::new(
511                layer_sizes[i],
512                layer_sizes[i + 1],
513                temperature,
514                learning_rate,
515            )?;
516            rbms.push(rbm);
517        }
518
519        Ok(Self {
520            layer_sizes,
521            rbms,
522            use_pretraining: true,
523        })
524    }
525
526    /// Layer-wise pretraining
527    pub fn pretrain(
528        &mut self,
529        data: &Array2<f64>,
530        epochs_per_layer: usize,
531        batch_size: usize,
532    ) -> Result<()> {
533        println!("Starting layer-wise pretraining...");
534
535        let mut current_data = data.clone();
536
537        let num_layers = self.rbms.len();
538        for layer_idx in 0..num_layers {
539            println!("\nPretraining layer {}...", layer_idx + 1);
540
541            // Train this layer
542            self.rbms[layer_idx].train_pcd(&current_data, epochs_per_layer, batch_size, 100)?;
543
544            // Transform data for next layer
545            if layer_idx < num_layers - 1 {
546                current_data = self.transform_data(&self.rbms[layer_idx], &current_data)?;
547            }
548        }
549
550        Ok(())
551    }
552
553    /// Transform data through one layer
554    fn transform_data(&self, rbm: &QuantumRBM, data: &Array2<f64>) -> Result<Array2<f64>> {
555        let num_samples = data.nrows();
556        let num_hidden = rbm.qbm.num_hidden;
557        let mut transformed = Array2::zeros((num_samples, num_hidden));
558
559        for i in 0..num_samples {
560            let visible = data.row(i);
561            let hidden = rbm.qbm.sample_hidden_given_visible(&visible)?;
562            transformed.row_mut(i).assign(&hidden);
563        }
564
565        Ok(transformed)
566    }
567
568    /// Get the RBMs
569    pub fn rbms(&self) -> &[QuantumRBM] {
570        &self.rbms
571    }
572}
573
574#[cfg(test)]
575mod tests {
576    use super::*;
577
578    #[test]
579    fn test_qbm_creation() {
580        let qbm = QuantumBoltzmannMachine::new(4, 2, 1.0, 0.01).unwrap();
581        assert_eq!(qbm.num_visible, 4);
582        assert_eq!(qbm.num_hidden, 2);
583        assert_eq!(qbm.num_qubits, 6);
584    }
585
586    #[test]
587    fn test_energy_computation() {
588        let qbm = QuantumBoltzmannMachine::new(2, 2, 1.0, 0.01).unwrap();
589        let state = Array1::from_vec(vec![1.0, 0.0, 1.0, 0.0]);
590        let energy = qbm.energy(&state);
591        assert!(energy.is_finite());
592    }
593
594    #[test]
595    fn test_sampling() {
596        let qbm = QuantumBoltzmannMachine::new(3, 2, 1.0, 0.01).unwrap();
597        let samples = qbm.sample(10).unwrap();
598        assert_eq!(samples.shape(), &[10, 3]);
599
600        // Check samples are binary
601        for sample in samples.outer_iter() {
602            for &val in sample.iter() {
603                assert!(val == 0.0 || val == 1.0);
604            }
605        }
606    }
607
608    #[test]
609    fn test_rbm_creation() {
610        let rbm = QuantumRBM::new(4, 3, 1.0, 0.01).unwrap();
611        assert_eq!(rbm.qbm.num_visible, 4);
612        assert_eq!(rbm.qbm.num_hidden, 3);
613    }
614
615    #[test]
616    fn test_deep_boltzmann() {
617        let layer_sizes = vec![4, 3, 2];
618        let dbm = DeepBoltzmannMachine::new(layer_sizes.clone(), 1.0, 0.01).unwrap();
619        assert_eq!(dbm.layer_sizes, layer_sizes);
620        assert_eq!(dbm.rbms.len(), 2);
621    }
622}