1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use ndarray::{s, Array1, Array2, ArrayView1, Axis};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14 single::{RotationX, RotationY, RotationZ},
15 GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19use std::f64::consts::{E, PI};
20
21pub struct QuantumBoltzmannMachine {
23 num_visible: usize,
25
26 num_hidden: usize,
28
29 num_qubits: usize,
31
32 couplings: Array2<f64>,
34
35 biases: Array1<f64>,
37
38 temperature: f64,
40
41 learning_rate: f64,
43}
44
45impl QuantumBoltzmannMachine {
46 pub fn new(
48 num_visible: usize,
49 num_hidden: usize,
50 temperature: f64,
51 learning_rate: f64,
52 ) -> Result<Self> {
53 let num_qubits = num_visible + num_hidden;
54
55 let mut couplings = Array2::zeros((num_qubits, num_qubits));
57 for i in 0..num_qubits {
58 for j in i + 1..num_qubits {
59 let coupling = 0.1 * (2.0 * rand::random::<f64>() - 1.0);
60 couplings[[i, j]] = coupling;
61 couplings[[j, i]] = coupling;
62 }
63 }
64
65 let biases =
67 Array1::from_shape_fn(num_qubits, |_| 0.1 * (2.0 * rand::random::<f64>() - 1.0));
68
69 Ok(Self {
70 num_visible,
71 num_hidden,
72 num_qubits,
73 couplings,
74 biases,
75 temperature,
76 learning_rate,
77 })
78 }
79
80 pub fn energy(&self, state: &Array1<f64>) -> f64 {
82 let mut energy = 0.0;
83
84 for i in 0..self.num_qubits {
86 energy -= self.biases[i] * state[i];
87 }
88
89 for i in 0..self.num_qubits {
91 for j in i + 1..self.num_qubits {
92 energy -= self.couplings[[i, j]] * state[i] * state[j];
93 }
94 }
95
96 energy
97 }
98
99 pub fn create_gibbs_circuit(&self) -> Result<()> {
101 Ok(())
104 }
105
106 pub fn sample(&self, num_samples: usize) -> Result<Array2<f64>> {
108 let mut samples = Array2::zeros((num_samples, self.num_visible));
109
110 for sample_idx in 0..num_samples {
111 for i in 0..self.num_visible {
113 samples[[sample_idx, i]] = if rand::random::<f64>() > 0.5 {
115 1.0
116 } else {
117 0.0
118 };
119 }
120 }
121
122 Ok(samples)
123 }
124
125 pub fn compute_gradients(&self, data: &Array2<f64>) -> Result<(Array2<f64>, Array1<f64>)> {
127 let batch_size = data.nrows();
128
129 let mut pos_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
131 let mut pos_biases: Array1<f64> = Array1::zeros(self.num_qubits);
132
133 for sample_idx in 0..batch_size {
134 let visible = data.row(sample_idx);
135
136 let hidden = self.sample_hidden_given_visible(&visible)?;
138
139 let mut full_state = Array1::zeros(self.num_qubits);
141 for i in 0..self.num_visible {
142 full_state[i] = visible[i];
143 }
144 for i in 0..self.num_hidden {
145 full_state[self.num_visible + i] = hidden[i];
146 }
147
148 for i in 0..self.num_qubits {
150 pos_biases[i] += full_state[i];
151 for j in i + 1..self.num_qubits {
152 pos_correlations[[i, j]] += full_state[i] * full_state[j];
153 pos_correlations[[j, i]] = pos_correlations[[i, j]];
154 }
155 }
156 }
157
158 let neg_samples = self.sample(batch_size)?;
160 let mut neg_correlations: Array2<f64> = Array2::zeros((self.num_qubits, self.num_qubits));
161 let mut neg_biases: Array1<f64> = Array1::zeros(self.num_qubits);
162
163 for sample_idx in 0..batch_size {
164 let visible = neg_samples.row(sample_idx);
165 let hidden = self.sample_hidden_given_visible(&visible)?;
166
167 let mut full_state = Array1::zeros(self.num_qubits);
168 for i in 0..self.num_visible {
169 full_state[i] = visible[i];
170 }
171 for i in 0..self.num_hidden {
172 full_state[self.num_visible + i] = hidden[i];
173 }
174
175 for i in 0..self.num_qubits {
176 neg_biases[i] += full_state[i];
177 for j in i + 1..self.num_qubits {
178 neg_correlations[[i, j]] += full_state[i] * full_state[j];
179 neg_correlations[[j, i]] = neg_correlations[[i, j]];
180 }
181 }
182 }
183
184 let coupling_grad = (pos_correlations - neg_correlations) / batch_size as f64;
186 let bias_grad = (pos_biases - neg_biases) / batch_size as f64;
187
188 Ok((coupling_grad, bias_grad))
189 }
190
191 pub fn sample_hidden_given_visible(&self, visible: &ArrayView1<f64>) -> Result<Array1<f64>> {
193 let mut hidden = Array1::zeros(self.num_hidden);
194
195 for h in 0..self.num_hidden {
196 let h_idx = self.num_visible + h;
197
198 let mut activation = self.biases[h_idx];
200 for v in 0..self.num_visible {
201 activation += self.couplings[[v, h_idx]] * visible[v];
202 }
203
204 let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
206 hidden[h] = if rand::random::<f64>() < prob {
207 1.0
208 } else {
209 0.0
210 };
211 }
212
213 Ok(hidden)
214 }
215
216 pub fn train(
218 &mut self,
219 data: &Array2<f64>,
220 epochs: usize,
221 batch_size: usize,
222 ) -> Result<Vec<f64>> {
223 let mut losses = Vec::new();
224 let num_samples = data.nrows();
225
226 for epoch in 0..epochs {
227 let mut epoch_loss = 0.0;
228
229 for batch_start in (0..num_samples).step_by(batch_size) {
231 let batch_end = (batch_start + batch_size).min(num_samples);
232 let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
233
234 let (coupling_grad, bias_grad) = self.compute_gradients(&batch)?;
236
237 self.couplings = &self.couplings + self.learning_rate * &coupling_grad;
239 self.biases = &self.biases + self.learning_rate * &bias_grad;
240
241 let reconstructed = self.reconstruct(&batch)?;
243 let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
244 epoch_loss += error;
245 }
246
247 epoch_loss /= num_samples as f64;
248 losses.push(epoch_loss);
249
250 if epoch % 10 == 0 {
251 println!("Epoch {}: Loss = {:.4}", epoch, epoch_loss);
252 }
253 }
254
255 Ok(losses)
256 }
257
258 pub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>> {
260 let num_samples = visible.nrows();
261 let mut reconstructed = Array2::zeros((num_samples, self.num_visible));
262
263 for i in 0..num_samples {
264 let v = visible.row(i);
265
266 let h = self.sample_hidden_given_visible(&v)?;
268
269 let v_recon = self.sample_visible_given_hidden(&h)?;
271
272 reconstructed.row_mut(i).assign(&v_recon);
273 }
274
275 Ok(reconstructed)
276 }
277
278 pub fn sample_visible_given_hidden(&self, hidden: &Array1<f64>) -> Result<Array1<f64>> {
280 let mut visible = Array1::zeros(self.num_visible);
281
282 for v in 0..self.num_visible {
283 let mut activation = self.biases[v];
285 for h in 0..self.num_hidden {
286 let h_idx = self.num_visible + h;
287 activation += self.couplings[[v, h_idx]] * hidden[h];
288 }
289
290 let prob = 1.0 / (1.0 + (-activation / self.temperature).exp());
292 visible[v] = if rand::random::<f64>() < prob {
293 1.0
294 } else {
295 0.0
296 };
297 }
298
299 Ok(visible)
300 }
301
302 pub fn temperature(&self) -> f64 {
304 self.temperature
305 }
306
307 pub fn couplings(&self) -> &Array2<f64> {
309 &self.couplings
310 }
311}
312
313pub struct QuantumRBM {
315 qbm: QuantumBoltzmannMachine,
317
318 use_annealing: bool,
320
321 annealing_schedule: Option<AnnealingSchedule>,
323}
324
325#[derive(Debug, Clone)]
327pub struct AnnealingSchedule {
328 initial_temp: f64,
330
331 final_temp: f64,
333
334 num_steps: usize,
336}
337
338impl AnnealingSchedule {
339 pub fn new(initial_temp: f64, final_temp: f64, num_steps: usize) -> Self {
341 Self {
342 initial_temp,
343 final_temp,
344 num_steps,
345 }
346 }
347}
348
349impl QuantumRBM {
350 pub fn new(
352 num_visible: usize,
353 num_hidden: usize,
354 temperature: f64,
355 learning_rate: f64,
356 ) -> Result<Self> {
357 let qbm =
358 QuantumBoltzmannMachine::new(num_visible, num_hidden, temperature, learning_rate)?;
359
360 Ok(Self {
361 qbm,
362 use_annealing: false,
363 annealing_schedule: None,
364 })
365 }
366
367 pub fn with_annealing(mut self, schedule: AnnealingSchedule) -> Self {
369 self.use_annealing = true;
370 self.annealing_schedule = Some(schedule);
371 self
372 }
373
374 pub fn create_rbm_circuit(&self) -> Result<()> {
376 Ok(())
378 }
379
380 pub fn train_pcd(
382 &mut self,
383 data: &Array2<f64>,
384 epochs: usize,
385 batch_size: usize,
386 num_persistent: usize,
387 ) -> Result<Vec<f64>> {
388 let mut losses = Vec::new();
389
390 let mut persistent_chains = self.qbm.sample(num_persistent)?;
392
393 for epoch in 0..epochs {
394 if self.use_annealing {
396 if let Some(ref schedule) = self.annealing_schedule {
397 let progress = epoch as f64 / epochs as f64;
398 self.qbm.temperature =
399 schedule.initial_temp * (1.0 - progress) + schedule.final_temp * progress;
400 }
401 }
402
403 let loss = self.train_epoch_pcd(data, batch_size, &mut persistent_chains)?;
405 losses.push(loss);
406
407 if epoch % 10 == 0 {
408 println!(
409 "Epoch {}: Loss = {:.4}, Temp = {:.3}",
410 epoch, loss, self.qbm.temperature
411 );
412 }
413 }
414
415 Ok(losses)
416 }
417
418 fn train_epoch_pcd(
420 &mut self,
421 data: &Array2<f64>,
422 batch_size: usize,
423 persistent_chains: &mut Array2<f64>,
424 ) -> Result<f64> {
425 let num_samples = data.nrows();
426 let mut epoch_loss = 0.0;
427
428 for batch_start in (0..num_samples).step_by(batch_size) {
429 let batch_end = (batch_start + batch_size).min(num_samples);
430 let batch = data.slice(s![batch_start..batch_end, ..]).to_owned();
431
432 for _ in 0..5 {
434 *persistent_chains = self.gibbs_step(persistent_chains)?;
436 }
437
438 let (coupling_grad, bias_grad) =
440 self.compute_gradients_pcd(&batch, persistent_chains)?;
441
442 self.qbm.couplings = &self.qbm.couplings + self.qbm.learning_rate * &coupling_grad;
444 self.qbm.biases = &self.qbm.biases + self.qbm.learning_rate * &bias_grad;
445
446 let reconstructed = self.qbm.reconstruct(&batch)?;
448 let error = (&batch - &reconstructed).mapv(|x| x * x).sum();
449 epoch_loss += error;
450 }
451
452 Ok(epoch_loss / num_samples as f64)
453 }
454
455 fn gibbs_step(&self, states: &Array2<f64>) -> Result<Array2<f64>> {
457 let num_samples = states.nrows();
458 let mut new_states = Array2::zeros((num_samples, self.qbm.num_visible));
459
460 for i in 0..num_samples {
461 let visible = states.row(i);
462 let hidden = self.qbm.sample_hidden_given_visible(&visible)?;
463 let new_visible = self.qbm.sample_visible_given_hidden(&hidden)?;
464 new_states.row_mut(i).assign(&new_visible);
465 }
466
467 Ok(new_states)
468 }
469
470 fn compute_gradients_pcd(
472 &self,
473 data: &Array2<f64>,
474 persistent_chains: &Array2<f64>,
475 ) -> Result<(Array2<f64>, Array1<f64>)> {
476 self.qbm.compute_gradients(data)
478 }
479
480 pub fn qbm(&self) -> &QuantumBoltzmannMachine {
482 &self.qbm
483 }
484}
485
486pub struct DeepBoltzmannMachine {
488 layer_sizes: Vec<usize>,
490
491 rbms: Vec<QuantumRBM>,
493
494 use_pretraining: bool,
496}
497
498impl DeepBoltzmannMachine {
499 pub fn new(layer_sizes: Vec<usize>, temperature: f64, learning_rate: f64) -> Result<Self> {
501 if layer_sizes.len() < 2 {
502 return Err(MLError::ModelCreationError(
503 "Need at least 2 layers".to_string(),
504 ));
505 }
506
507 let mut rbms = Vec::new();
508
509 for i in 0..layer_sizes.len() - 1 {
510 let rbm = QuantumRBM::new(
511 layer_sizes[i],
512 layer_sizes[i + 1],
513 temperature,
514 learning_rate,
515 )?;
516 rbms.push(rbm);
517 }
518
519 Ok(Self {
520 layer_sizes,
521 rbms,
522 use_pretraining: true,
523 })
524 }
525
526 pub fn pretrain(
528 &mut self,
529 data: &Array2<f64>,
530 epochs_per_layer: usize,
531 batch_size: usize,
532 ) -> Result<()> {
533 println!("Starting layer-wise pretraining...");
534
535 let mut current_data = data.clone();
536
537 let num_layers = self.rbms.len();
538 for layer_idx in 0..num_layers {
539 println!("\nPretraining layer {}...", layer_idx + 1);
540
541 self.rbms[layer_idx].train_pcd(¤t_data, epochs_per_layer, batch_size, 100)?;
543
544 if layer_idx < num_layers - 1 {
546 current_data = self.transform_data(&self.rbms[layer_idx], ¤t_data)?;
547 }
548 }
549
550 Ok(())
551 }
552
553 fn transform_data(&self, rbm: &QuantumRBM, data: &Array2<f64>) -> Result<Array2<f64>> {
555 let num_samples = data.nrows();
556 let num_hidden = rbm.qbm.num_hidden;
557 let mut transformed = Array2::zeros((num_samples, num_hidden));
558
559 for i in 0..num_samples {
560 let visible = data.row(i);
561 let hidden = rbm.qbm.sample_hidden_given_visible(&visible)?;
562 transformed.row_mut(i).assign(&hidden);
563 }
564
565 Ok(transformed)
566 }
567
568 pub fn rbms(&self) -> &[QuantumRBM] {
570 &self.rbms
571 }
572}
573
574#[cfg(test)]
575mod tests {
576 use super::*;
577
578 #[test]
579 fn test_qbm_creation() {
580 let qbm = QuantumBoltzmannMachine::new(4, 2, 1.0, 0.01).unwrap();
581 assert_eq!(qbm.num_visible, 4);
582 assert_eq!(qbm.num_hidden, 2);
583 assert_eq!(qbm.num_qubits, 6);
584 }
585
586 #[test]
587 fn test_energy_computation() {
588 let qbm = QuantumBoltzmannMachine::new(2, 2, 1.0, 0.01).unwrap();
589 let state = Array1::from_vec(vec![1.0, 0.0, 1.0, 0.0]);
590 let energy = qbm.energy(&state);
591 assert!(energy.is_finite());
592 }
593
594 #[test]
595 fn test_sampling() {
596 let qbm = QuantumBoltzmannMachine::new(3, 2, 1.0, 0.01).unwrap();
597 let samples = qbm.sample(10).unwrap();
598 assert_eq!(samples.shape(), &[10, 3]);
599
600 for sample in samples.outer_iter() {
602 for &val in sample.iter() {
603 assert!(val == 0.0 || val == 1.0);
604 }
605 }
606 }
607
608 #[test]
609 fn test_rbm_creation() {
610 let rbm = QuantumRBM::new(4, 3, 1.0, 0.01).unwrap();
611 assert_eq!(rbm.qbm.num_visible, 4);
612 assert_eq!(rbm.qbm.num_hidden, 3);
613 }
614
615 #[test]
616 fn test_deep_boltzmann() {
617 let layer_sizes = vec![4, 3, 2];
618 let dbm = DeepBoltzmannMachine::new(layer_sizes.clone(), 1.0, 0.01).unwrap();
619 assert_eq!(dbm.layer_sizes, layer_sizes);
620 assert_eq!(dbm.rbms.len(), 2);
621 }
622}