QuantumVisionConfig

Struct QuantumVisionConfig 

Source
pub struct QuantumVisionConfig {
    pub num_qubits: usize,
    pub encoding_method: ImageEncodingMethod,
    pub backbone: VisionBackbone,
    pub task_config: VisionTaskConfig,
    pub preprocessing: PreprocessingConfig,
    pub quantum_enhancement: QuantumEnhancement,
}
Expand description

Quantum computer vision pipeline configuration

Fields§

§num_qubits: usize

Number of qubits for encoding

§encoding_method: ImageEncodingMethod

Image encoding method

§backbone: VisionBackbone

Vision backbone type

§task_config: VisionTaskConfig

Task-specific configuration

§preprocessing: PreprocessingConfig

Preprocessing configuration

§quantum_enhancement: QuantumEnhancement

Quantum enhancement level

Implementations§

Source§

impl QuantumVisionConfig

Source

pub fn default() -> Self

Create default configuration

Examples found in repository?
examples/computer_vision.rs (line 266)
262fn classification_demo() -> Result<()> {
263    println!("   Quantum image classification demo...");
264
265    // Create classification pipeline
266    let config = QuantumVisionConfig::default();
267    let mut pipeline = QuantumVisionPipeline::new(config)?;
268
269    // Create synthetic dataset
270    let num_classes = 10;
271    let num_samples = 20;
272    let (train_data, val_data) = create_classification_dataset(num_samples, num_classes)?;
273
274    println!(
275        "   Dataset: {} training, {} validation samples",
276        train_data.len(),
277        val_data.len()
278    );
279
280    // Train the model (simplified)
281    println!("\n   Training quantum classifier...");
282    let history = pipeline.train(
283        &train_data,
284        &val_data,
285        5, // epochs
286        OptimizationMethod::Adam,
287    )?;
288
289    // Display training results
290    println!("\n   Training results:");
291    for (epoch, train_loss, val_loss) in history
292        .epochs
293        .iter()
294        .zip(history.train_losses.iter())
295        .zip(history.val_losses.iter())
296        .map(|((e, t), v)| (e, t, v))
297    {
298        println!(
299            "   Epoch {}: train_loss={:.4}, val_loss={:.4}",
300            epoch + 1,
301            train_loss,
302            val_loss
303        );
304    }
305
306    // Test on new images
307    println!("\n   Testing on new images...");
308    let test_images = create_test_image(5, 3, 224, 224)?;
309    let predictions = pipeline.forward(&test_images)?;
310
311    match predictions {
312        TaskOutput::Classification { probabilities, .. } => {
313            for (i, prob_row) in probabilities.outer_iter().enumerate() {
314                let (predicted_class, confidence) = prob_row
315                    .iter()
316                    .enumerate()
317                    .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
318                    .map(|(idx, &prob)| (idx, prob))
319                    .unwrap_or((0, 0.0));
320
321                println!(
322                    "   Image {}: Class {} (confidence: {:.2}%)",
323                    i + 1,
324                    predicted_class,
325                    confidence * 100.0
326                );
327            }
328        }
329        _ => {}
330    }
331
332    // Analyze quantum advantage
333    let quantum_advantage = analyze_classification_quantum_advantage(&pipeline)?;
334    println!("\n   Quantum advantage analysis:");
335    println!(
336        "   - Parameter efficiency: {:.2}x classical",
337        quantum_advantage.param_efficiency
338    );
339    println!(
340        "   - Feature expressiveness: {:.2}x",
341        quantum_advantage.expressiveness
342    );
343    println!(
344        "   - Training speedup: {:.2}x",
345        quantum_advantage.training_speedup
346    );
347
348    Ok(())
349}
Source

pub fn object_detection(num_classes: usize) -> Self

Create configuration for object detection

Examples found in repository?
examples/computer_vision.rs (line 356)
352fn object_detection_demo() -> Result<()> {
353    println!("   Quantum object detection demo...");
354
355    // Create detection pipeline
356    let config = QuantumVisionConfig::object_detection(80); // 80 classes (COCO-like)
357    let mut pipeline = QuantumVisionPipeline::new(config)?;
358
359    // Test image
360    let test_images = create_test_image(2, 3, 416, 416)?;
361
362    println!(
363        "   Processing {} images for object detection...",
364        test_images.dim().0
365    );
366
367    // Run detection
368    let detections = pipeline.forward(&test_images)?;
369
370    match detections {
371        TaskOutput::Detection {
372            boxes,
373            scores,
374            classes,
375        } => {
376            println!("   Detection results:");
377
378            for batch_idx in 0..boxes.dim().0 {
379                println!("\n   Image {}:", batch_idx + 1);
380
381                // Filter detections by score threshold
382                let threshold = 0.5;
383                let mut num_detections = 0;
384
385                for det_idx in 0..boxes.dim().1 {
386                    let score = scores[[batch_idx, det_idx]];
387
388                    if score > threshold {
389                        let class_id = classes[[batch_idx, det_idx]];
390                        let bbox = boxes.slice(ndarray::s![batch_idx, det_idx, ..]);
391
392                        println!("   - Object {}: Class {}, Score {:.3}, Box [{:.1}, {:.1}, {:.1}, {:.1}]",
393                            num_detections + 1, class_id, score,
394                            bbox[0], bbox[1], bbox[2], bbox[3]);
395
396                        num_detections += 1;
397                    }
398                }
399
400                if num_detections == 0 {
401                    println!("   - No objects detected above threshold");
402                } else {
403                    println!("   Total objects detected: {}", num_detections);
404                }
405            }
406        }
407        _ => {}
408    }
409
410    // Analyze detection performance
411    println!("\n   Detection performance analysis:");
412    println!("   - Quantum anchor generation improves localization");
413    println!("   - Entangled features enhance multi-scale detection");
414    println!("   - Quantum NMS reduces redundant detections");
415
416    Ok(())
417}
Source

pub fn segmentation(num_classes: usize) -> Self

Create configuration for segmentation

Examples found in repository?
examples/computer_vision.rs (line 424)
420fn segmentation_demo() -> Result<()> {
421    println!("   Quantum semantic segmentation demo...");
422
423    // Create segmentation pipeline
424    let config = QuantumVisionConfig::segmentation(21); // 21 classes (Pascal VOC-like)
425    let mut pipeline = QuantumVisionPipeline::new(config)?;
426
427    // Test images
428    let test_images = create_test_image(1, 3, 512, 512)?;
429
430    println!("   Processing image for semantic segmentation...");
431
432    // Run segmentation
433    let segmentation = pipeline.forward(&test_images)?;
434
435    match segmentation {
436        TaskOutput::Segmentation {
437            masks,
438            class_scores,
439        } => {
440            println!("   Segmentation results:");
441            println!("   - Mask shape: {:?}", masks.dim());
442            println!("   - Class scores shape: {:?}", class_scores.dim());
443
444            // Analyze segmentation quality
445            let seg_metrics = analyze_segmentation_quality(&masks, &class_scores)?;
446            println!("\n   Segmentation metrics:");
447            println!("   - Mean IoU: {:.3}", seg_metrics.mean_iou);
448            println!(
449                "   - Pixel accuracy: {:.1}%",
450                seg_metrics.pixel_accuracy * 100.0
451            );
452            println!(
453                "   - Boundary precision: {:.3}",
454                seg_metrics.boundary_precision
455            );
456
457            // Class distribution
458            println!("\n   Predicted class distribution:");
459            let class_counts = compute_class_distribution(&masks)?;
460            for (class_id, count) in class_counts.iter().take(5) {
461                let percentage = *count as f64 / (512.0 * 512.0) * 100.0;
462                println!("   - Class {}: {:.1}% of pixels", class_id, percentage);
463            }
464        }
465        _ => {}
466    }
467
468    // Quantum advantages for segmentation
469    println!("\n   Quantum segmentation advantages:");
470    println!("   - Quantum attention captures long-range dependencies");
471    println!("   - Hierarchical encoding preserves multi-scale features");
472    println!("   - Entanglement enables pixel-to-pixel correlations");
473
474    Ok(())
475}

Trait Implementations§

Source§

impl Clone for QuantumVisionConfig

Source§

fn clone(&self) -> QuantumVisionConfig

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumVisionConfig

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,