Expand description
Variational Quantum Algorithms for Machine Learning
This module implements various variational quantum algorithms including VQE, QAOA, and VQC with hardware-optimized circuits and gradient computation.
Structs§
- Adam
Optimizer - Adam optimizer implementation
- Hamiltonian
- Hamiltonian representation for VQE
- Hardware
Efficient Ansatz - Hardware-efficient ansatz
- Molecular
Hamiltonian - Molecular Hamiltonian representation
- Parameterized
Quantum Circuit - Placeholder for parameterized quantum circuit
- Pauli
Term - Pauli term in Hamiltonian
- QAOA
- Quantum Approximate Optimization Algorithm (QAOA)
- QAOA
Config - QAOA configuration
- QAOA
Problem - QAOA problem representation
- QAOA
Result - QAOA optimization result
- QAOA
Solution - QAOA solution representation
- Quantum
State - Quantum state representation
- VQE
- Variational Quantum Eigensolver (VQE) implementation
- VQEConfig
- VQE configuration
- VQEResult
- VQE optimization result
Enums§
- Entangling
Gate Type - Pauli
Operator - Pauli operators
- Quantum
Gate
Traits§
- Variational
Ansatz - Variational ansatz trait
- Variational
Optimizer - Trait for variational optimizers
Functions§
- create_
molecular_ vqe - Create a VQE instance for molecular simulation