Module quantum_ml

Module quantum_ml 

Source
Expand description

Quantum Machine Learning Accelerators

This module provides quantum machine learning acceleration capabilities, integrating variational quantum algorithms, quantum neural networks, and hybrid quantum-classical optimization routines.

Re-exports§

pub use classical_integration::*;
pub use gradients::*;
pub use hardware_acceleration::*;
pub use inference::*;
pub use optimization::*;
pub use quantum_neural_networks::*;
pub use training::*;
pub use variational_algorithms::*;

Modules§

classical_integration
Classical-Quantum Integration for ML
gradients
Quantum Gradient Computation
hardware_acceleration
Hardware Acceleration for Quantum ML
inference
Quantum Machine Learning Inference Engine
optimization
Quantum Machine Learning Optimization
quantum_neural_networks
Quantum Neural Networks
training
Quantum Machine Learning Training
variational_algorithms
Variational Quantum Algorithms for Machine Learning

Structs§

CircuitStructure
Circuit structure representation
InferenceData
Inference data structure
InferenceResult
Inference result
ModelRegistry
Model registry for managing trained models
QMLAccelerator
Quantum Machine Learning Accelerator
QMLConfig
Configuration for QML accelerator
QMLDiagnostics
QML diagnostics
QMLModel
QML model representation
TrainingEpoch
Training epoch information
TrainingStatistics
Training statistics

Enums§

GradientMethod
Gradient computation methods
ModelExportFormat
Model export formats
NoiseResilienceLevel
Noise resilience levels
OptimizerType
Types of optimizers for QML
QMLModelType
QML model types

Functions§

create_qaoa_accelerator
Create a QAOA accelerator
create_vqc_accelerator
Create a VQC (Variational Quantum Classifier) accelerator