Expand description
Quantum Machine Learning Accelerators
This module provides quantum machine learning acceleration capabilities, integrating variational quantum algorithms, quantum neural networks, and hybrid quantum-classical optimization routines.
Re-exports§
pub use classical_integration::*;pub use gradients::*;pub use hardware_acceleration::*;pub use inference::*;pub use optimization::*;pub use quantum_neural_networks::*;pub use training::*;pub use variational_algorithms::*;
Modules§
- classical_
integration - Classical-Quantum Integration for ML
- gradients
- Quantum Gradient Computation
- hardware_
acceleration - Hardware Acceleration for Quantum ML
- inference
- Quantum Machine Learning Inference Engine
- optimization
- Quantum Machine Learning Optimization
- quantum_
neural_ networks - Quantum Neural Networks
- training
- Quantum Machine Learning Training
- variational_
algorithms - Variational Quantum Algorithms for Machine Learning
Structs§
- Circuit
Structure - Circuit structure representation
- Inference
Data - Inference data structure
- Inference
Result - Inference result
- Model
Registry - Model registry for managing trained models
- QMLAccelerator
- Quantum Machine Learning Accelerator
- QMLConfig
- Configuration for QML accelerator
- QMLDiagnostics
- QML diagnostics
- QMLModel
- QML model representation
- Training
Epoch - Training epoch information
- Training
Statistics - Training statistics
Enums§
- Gradient
Method - Gradient computation methods
- Model
Export Format - Model export formats
- Noise
Resilience Level - Noise resilience levels
- Optimizer
Type - Types of optimizers for QML
- QMLModel
Type - QML model types
Functions§
- create_
qaoa_ accelerator - Create a QAOA accelerator
- create_
vqc_ accelerator - Create a VQC (Variational Quantum Classifier) accelerator