Expand description
Advanced noise modeling using SciRS2’s statistical and machine learning capabilities
This module provides sophisticated noise modeling techniques leveraging SciRS2’s comprehensive statistical analysis, signal processing, and machine learning tools.
The module is organized into focused sub-modules for better maintainability:
config: Configuration structures and enumstypes: Data type definitions and structuresstatistical: Statistical analysis and distribution modelingspectral: Spectral analysis and frequency domain methodstemporal: Temporal correlation and time series analysisspatial: Spatial correlation and geographical analysisml_integration: Machine learning model integrationvalidation: Model validation and testing frameworksutils: Utility functions and helpers
Re-exports§
pub use config::*;pub use spectral::*;pub use statistical::*;pub use temporal::*;
Modules§
- config
- Configuration structures and enums for SciRS2 noise modeling
- spectral
- Spectral noise analysis using SciRS2
- statistical
- Statistical noise analysis using SciRS2
- temporal
- Temporal correlation noise modeling using SciRS2
Structs§
- Correlation
Analysis - Correlation analysis between noise sources
- Noise
Statistics - Individual noise source statistics
- SciR
S2Noise Modeler - Main SciRS2 noise modeling coordinator
- Statistical
Noise Analysis - Statistical noise analysis results
- Temporal
Analysis - Temporal analysis of noise (placeholder for future implementation)