quantrs2_device/noise_modeling_scirs2/
mod.rs

1//! Advanced noise modeling using SciRS2's statistical and machine learning capabilities
2//!
3//! This module provides sophisticated noise modeling techniques leveraging SciRS2's
4//! comprehensive statistical analysis, signal processing, and machine learning tools.
5//!
6//! The module is organized into focused sub-modules for better maintainability:
7//! - `config`: Configuration structures and enums
8//! - `types`: Data type definitions and structures
9//! - `statistical`: Statistical analysis and distribution modeling
10//! - `spectral`: Spectral analysis and frequency domain methods
11//! - `temporal`: Temporal correlation and time series analysis
12//! - `spatial`: Spatial correlation and geographical analysis
13//! - `ml_integration`: Machine learning model integration
14//! - `validation`: Model validation and testing frameworks
15//! - `utils`: Utility functions and helpers
16
17pub mod config;
18pub mod spectral;
19pub mod statistical;
20pub mod temporal;
21
22// Re-export all types for backward compatibility
23pub use config::*;
24pub use spectral::*;
25pub use statistical::*;
26pub use temporal::*;
27
28use crate::{
29    calibration::DeviceCalibration,
30    noise_model::{CalibrationNoiseModel, CrosstalkNoise},
31    DeviceError, DeviceResult,
32};
33use scirs2_core::ndarray::{Array1, Array2};
34use quantrs2_core::{error::QuantRS2Result, qubit::QubitId};
35use std::collections::HashMap;
36
37/// Statistical noise analysis results
38#[derive(Debug, Clone)]
39pub struct StatisticalNoiseAnalysis {
40    pub noise_statistics: HashMap<String, NoiseStatistics>,
41    pub correlation_analysis: CorrelationAnalysis,
42    pub temporal_analysis: Option<TemporalAnalysis>,
43}
44
45/// Individual noise source statistics
46#[derive(Debug, Clone)]
47pub struct NoiseStatistics {
48    pub mean: f64,
49    pub std_dev: f64,
50    pub variance: f64,
51    pub distribution_type: DistributionType,
52    pub parameters: Vec<f64>,
53}
54
55/// Correlation analysis between noise sources
56#[derive(Debug, Clone)]
57pub struct CorrelationAnalysis {
58    pub correlationmatrix: Array2<f64>,
59    pub correlation_strength: f64,
60}
61
62/// Temporal analysis of noise (placeholder for future implementation)
63#[derive(Debug, Clone)]
64pub struct TemporalAnalysis {
65    pub autocorrelation: Array1<f64>,
66    pub power_spectrum: Array1<f64>,
67}
68
69/// Main SciRS2 noise modeling coordinator
70///
71/// This struct provides the primary interface for advanced noise modeling
72/// using SciRS2's comprehensive statistical and machine learning capabilities.
73#[derive(Debug, Clone)]
74pub struct SciRS2NoiseModeler {
75    config: SciRS2NoiseConfig,
76    device_id: String,
77}
78
79impl SciRS2NoiseModeler {
80    /// Create a new noise modeler with default configuration
81    pub fn new(device_id: String) -> Self {
82        Self {
83            config: SciRS2NoiseConfig::default(),
84            device_id,
85        }
86    }
87
88    /// Create a new noise modeler with custom configuration
89    pub fn with_config(device_id: String, config: SciRS2NoiseConfig) -> Self {
90        Self { config, device_id }
91    }
92
93    /// Perform comprehensive noise modeling
94    pub fn model_noise(
95        &self,
96        calibration: &DeviceCalibration,
97    ) -> DeviceResult<CalibrationNoiseModel> {
98        use crate::noise_model::{GateNoiseParams, QubitNoiseParams, ReadoutNoiseParams};
99        use scirs2_core::ndarray::Array1;
100        use std::collections::HashMap;
101
102        // Step 1: Extract noise data from calibration
103        let noise_data = self.extract_noise_data(calibration)?;
104
105        // Step 2: Perform statistical analysis
106        let statistical_model = if self.config.enable_ml_modeling {
107            self.perform_statistical_analysis(&noise_data)?
108        } else {
109            self.simple_noise_analysis(&noise_data)?
110        };
111
112        // Step 3: Build CalibrationNoiseModel from analysis
113        self.build_calibration_noise_model(calibration, &statistical_model)
114    }
115
116    /// Extract noise data from device calibration
117    fn extract_noise_data(
118        &self,
119        calibration: &DeviceCalibration,
120    ) -> DeviceResult<HashMap<String, Array1<f64>>> {
121        use scirs2_core::ndarray::Array1;
122        let mut noise_data = HashMap::new();
123
124        // Extract single-qubit gate noise
125        for (gate_name, gate_cal) in &calibration.single_qubit_gates {
126            for (qubit, qubit_data) in &gate_cal.qubit_data {
127                let key = format!("single_qubit_{}_{}", gate_name, qubit.0);
128                let error_data = vec![qubit_data.error_rate, 1.0 - qubit_data.fidelity];
129                noise_data.insert(key, Array1::from_vec(error_data));
130            }
131        }
132
133        // Extract two-qubit gate noise
134        for (qubit_pair, gate_cal) in &calibration.two_qubit_gates {
135            let key = format!("two_qubit_{}_{}", qubit_pair.0 .0, qubit_pair.1 .0);
136            let error_data = vec![gate_cal.error_rate, 1.0 - gate_cal.fidelity];
137            noise_data.insert(key, Array1::from_vec(error_data));
138        }
139
140        // Extract readout noise
141        for (qubit, readout_cal) in &calibration.readout_calibration.qubit_readout {
142            let key = format!("readout_{}", qubit.0);
143            let error_data = vec![1.0 - readout_cal.p0_given_0, 1.0 - readout_cal.p1_given_1];
144            noise_data.insert(key, Array1::from_vec(error_data));
145        }
146
147        Ok(noise_data)
148    }
149
150    /// Perform statistical analysis using SciRS2
151    fn perform_statistical_analysis(
152        &self,
153        noise_data: &HashMap<String, Array1<f64>>,
154    ) -> DeviceResult<StatisticalNoiseAnalysis> {
155        use scirs2_stats::{mean, std, var};
156
157        let mut analysis_results = HashMap::new();
158
159        for (noise_type, data) in noise_data {
160            let data_view = data.view();
161
162            let mean_val = mean(&data_view).map_err(|e| {
163                DeviceError::APIError(format!("Statistical analysis error: {:?}", e))
164            })?;
165
166            let std_val = std(&data_view, 1, None).map_err(|e| {
167                DeviceError::APIError(format!("Statistical analysis error: {:?}", e))
168            })?;
169
170            let var_val = var(&data_view, 1, None).map_err(|e| {
171                DeviceError::APIError(format!("Statistical analysis error: {:?}", e))
172            })?;
173
174            let noise_stats = NoiseStatistics {
175                mean: mean_val,
176                std_dev: std_val,
177                variance: var_val,
178                distribution_type: DistributionType::Normal, // Simplified
179                parameters: vec![mean_val, std_val],
180            };
181
182            analysis_results.insert(noise_type.clone(), noise_stats);
183        }
184
185        Ok(StatisticalNoiseAnalysis {
186            noise_statistics: analysis_results,
187            correlation_analysis: self.perform_correlation_analysis(noise_data)?,
188            temporal_analysis: None, // Would implement if temporal data available
189        })
190    }
191
192    /// Simple noise analysis fallback
193    fn simple_noise_analysis(
194        &self,
195        noise_data: &HashMap<String, Array1<f64>>,
196    ) -> DeviceResult<StatisticalNoiseAnalysis> {
197        let mut analysis_results = HashMap::new();
198
199        for (noise_type, data) in noise_data {
200            let mean_val = data.mean().unwrap_or(0.01);
201            let std_val = data.std(1.0).max(0.001);
202
203            let noise_stats = NoiseStatistics {
204                mean: mean_val,
205                std_dev: std_val,
206                variance: std_val * std_val,
207                distribution_type: DistributionType::Normal,
208                parameters: vec![mean_val, std_val],
209            };
210
211            analysis_results.insert(noise_type.clone(), noise_stats);
212        }
213
214        Ok(StatisticalNoiseAnalysis {
215            noise_statistics: analysis_results,
216            correlation_analysis: CorrelationAnalysis {
217                correlationmatrix: scirs2_core::ndarray::Array2::eye(noise_data.len()),
218                correlation_strength: 0.1,
219            },
220            temporal_analysis: None,
221        })
222    }
223
224    /// Perform correlation analysis between noise sources
225    fn perform_correlation_analysis(
226        &self,
227        noise_data: &HashMap<String, Array1<f64>>,
228    ) -> DeviceResult<CorrelationAnalysis> {
229        use scirs2_core::ndarray::Array2;
230
231        let n_sources = noise_data.len();
232        let mut correlationmatrix = Array2::eye(n_sources);
233
234        // Calculate pairwise correlations
235        let sources: Vec<_> = noise_data.keys().collect();
236
237        for (i, source1) in sources.iter().enumerate() {
238            for (j, source2) in sources.iter().enumerate() {
239                if i != j {
240                    let data1 = &noise_data[*source1];
241                    let data2 = &noise_data[*source2];
242
243                    // Simple correlation calculation
244                    let corr = if data1.len() == data2.len() && data1.len() > 1 {
245                        let mean1 = data1.mean().unwrap_or(0.0);
246                        let mean2 = data2.mean().unwrap_or(0.0);
247
248                        let cov = data1
249                            .iter()
250                            .zip(data2.iter())
251                            .map(|(x, y)| (x - mean1) * (y - mean2))
252                            .sum::<f64>()
253                            / (data1.len() - 1) as f64;
254
255                        let std1 = data1.std(1.0).max(1e-10);
256                        let std2 = data2.std(1.0).max(1e-10);
257
258                        cov / (std1 * std2)
259                    } else {
260                        0.0
261                    };
262
263                    correlationmatrix[[i, j]] = corr;
264                }
265            }
266        }
267
268        let avg_correlation = correlationmatrix.iter()
269            .filter(|&&x| x != 1.0)  // Exclude diagonal
270            .map(|&x| x.abs())
271            .sum::<f64>()
272            / ((n_sources * n_sources - n_sources) as f64).max(1.0);
273
274        Ok(CorrelationAnalysis {
275            correlationmatrix,
276            correlation_strength: avg_correlation,
277        })
278    }
279
280    /// Build CalibrationNoiseModel from statistical analysis
281    fn build_calibration_noise_model(
282        &self,
283        calibration: &DeviceCalibration,
284        analysis: &StatisticalNoiseAnalysis,
285    ) -> DeviceResult<CalibrationNoiseModel> {
286        use crate::noise_model::{GateNoiseParams, QubitNoiseParams, ReadoutNoiseParams};
287        use std::collections::HashMap;
288
289        // Build qubit noise parameters
290        let mut qubit_noise = HashMap::new();
291        for i in 0..calibration.topology.num_qubits {
292            let qubit_id = QubitId(i as u32);
293
294            // Get noise statistics for this qubit
295            let t1_key = format!("t1_{}", i);
296            let t2_key = format!("t2_{}", i);
297
298            let t1_stats = analysis.noise_statistics.get(&t1_key);
299            let t2_stats = analysis.noise_statistics.get(&t2_key);
300
301            let qubit_params = QubitNoiseParams {
302                gamma_1: t1_stats.map(|s| 1.0 / s.mean).unwrap_or(1.0 / 50000.0), // 1/T1
303                gamma_phi: t2_stats.map(|s| 1.0 / s.mean).unwrap_or(1.0 / 25000.0), // 1/T2
304                thermal_population: 0.01,
305                frequency_drift: 0.001,
306                flicker_noise: 0.0005,
307            };
308
309            qubit_noise.insert(qubit_id, qubit_params);
310        }
311
312        // Build gate noise parameters
313        let mut gate_noise = HashMap::new();
314        for (gate_name, _) in &calibration.single_qubit_gates {
315            let noise_stats = analysis.noise_statistics.values().next();
316
317            let gate_params = GateNoiseParams {
318                depolarizing_rate: noise_stats.map(|s| s.mean).unwrap_or(0.001),
319                incoherent_error: noise_stats.map(|s| s.std_dev).unwrap_or(0.0005),
320                amplitude_noise: 0.0001,
321                coherent_error: 0.0002,
322                duration: 100.0, // 100ns default
323                phase_noise: 0.0001,
324            };
325
326            gate_noise.insert(gate_name.clone(), gate_params);
327        }
328
329        // Build readout noise parameters
330        let mut readout_noise = HashMap::new();
331        for i in 0..calibration.topology.num_qubits {
332            let qubit_id = QubitId(i as u32);
333            let readout_key = format!("readout_{}", i);
334
335            let readout_stats = analysis.noise_statistics.get(&readout_key);
336
337            let error_01 = readout_stats.map(|s| s.mean).unwrap_or(0.02);
338            let error_10 = readout_stats.map(|s| s.std_dev).unwrap_or(0.02);
339            let readout_params = ReadoutNoiseParams {
340                assignment_matrix: [[1.0 - error_01, error_01], [error_10, 1.0 - error_10]],
341                readout_excitation: 0.001,
342                readout_relaxation: 0.001,
343            };
344
345            readout_noise.insert(qubit_id, readout_params);
346        }
347
348        Ok(CalibrationNoiseModel {
349            device_id: self.device_id.clone(),
350            qubit_noise,
351            gate_noise,
352            two_qubit_noise: HashMap::new(),
353            readout_noise,
354            crosstalk: CrosstalkNoise {
355                crosstalk_matrix: {
356                    let matrix = &analysis.correlation_analysis.correlationmatrix;
357                    let rows = matrix.nrows();
358                    let cols = matrix.ncols();
359                    let mut vec_matrix = Vec::with_capacity(rows);
360                    for i in 0..rows {
361                        let mut row = Vec::with_capacity(cols);
362                        for j in 0..cols {
363                            row.push(matrix[[i, j]]);
364                        }
365                        vec_matrix.push(row);
366                    }
367                    vec_matrix
368                },
369                threshold: 0.1,
370                single_qubit_crosstalk: 0.001,
371                two_qubit_crosstalk: 0.005,
372            },
373            temperature: 15.0, // mK
374        })
375    }
376
377    /// Update configuration
378    pub fn update_config(&mut self, config: SciRS2NoiseConfig) {
379        self.config = config;
380    }
381
382    /// Get current configuration
383    pub fn config(&self) -> &SciRS2NoiseConfig {
384        &self.config
385    }
386}
387
388#[cfg(test)]
389mod tests {
390    use super::*;
391    use crate::calibration::create_ideal_calibration;
392
393    #[test]
394    fn test_noise_modeler_creation() {
395        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
396        assert_eq!(modeler.device_id, "test_device");
397        assert!(modeler.config.enable_ml_modeling);
398    }
399
400    #[test]
401    fn test_noise_data_extraction() {
402        let calibration = create_ideal_calibration("test".to_string(), 4);
403        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
404
405        let noise_data = modeler.extract_noise_data(&calibration).unwrap();
406        assert!(!noise_data.is_empty());
407
408        // Should have readout noise data for all qubits
409        for i in 0..4 {
410            let key = format!("readout_{}", i);
411            assert!(noise_data.contains_key(&key));
412        }
413    }
414
415    #[test]
416    fn test_simple_noise_analysis() {
417        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
418        let mut noise_data = HashMap::new();
419
420        // Add test data
421        noise_data.insert(
422            "test_noise".to_string(),
423            Array1::from_vec(vec![0.01, 0.02, 0.015]),
424        );
425
426        let analysis = modeler.simple_noise_analysis(&noise_data).unwrap();
427        assert!(analysis.noise_statistics.contains_key("test_noise"));
428        assert!(analysis.correlation_analysis.correlation_strength >= 0.0);
429    }
430
431    #[test]
432    fn test_full_noise_modeling() {
433        let calibration = create_ideal_calibration("test".to_string(), 2);
434        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
435
436        let noise_model = modeler.model_noise(&calibration).unwrap();
437        assert_eq!(noise_model.device_id, "test_device");
438        assert_eq!(noise_model.qubit_noise.len(), 2);
439        assert!(!noise_model.gate_noise.is_empty());
440        assert_eq!(noise_model.readout_noise.len(), 2);
441    }
442
443    #[test]
444    fn test_correlation_analysis() {
445        let modeler = SciRS2NoiseModeler::new("test_device".to_string());
446        let mut noise_data = HashMap::new();
447
448        // Add correlated test data
449        noise_data.insert(
450            "noise1".to_string(),
451            Array1::from_vec(vec![0.01, 0.02, 0.03]),
452        );
453        noise_data.insert(
454            "noise2".to_string(),
455            Array1::from_vec(vec![0.02, 0.04, 0.06]),
456        );
457
458        let correlation = modeler.perform_correlation_analysis(&noise_data).unwrap();
459        assert_eq!(correlation.correlationmatrix.shape(), [2, 2]);
460        assert_eq!(correlation.correlationmatrix[[0, 0]], 1.0);
461        assert_eq!(correlation.correlationmatrix[[1, 1]], 1.0);
462
463        // Off-diagonal should show correlation
464        assert!(correlation.correlationmatrix[[0, 1]].abs() > 0.5);
465    }
466}