quantrs2_core/batch/
optimization.rs

1//! Batch optimization for parameterized quantum circuits using SciRS2
2
3use super::execution::{BatchCircuit, BatchCircuitExecutor};
4use super::BatchStateVector;
5use crate::error::{QuantRS2Error, QuantRS2Result};
6use ndarray::{Array1, Array2};
7use num_complex::Complex64;
8use rayon::prelude::*;
9use std::sync::Arc;
10
11// Import SciRS2 optimization
12extern crate scirs2_optimize;
13use scirs2_optimize::unconstrained::{minimize, Method, OptimizeResult, Options};
14
15/// Batch optimizer for parameterized quantum circuits
16pub struct BatchParameterOptimizer {
17    /// Circuit executor
18    executor: BatchCircuitExecutor,
19    /// Optimization configuration
20    config: OptimizationConfig,
21    /// Cache for gradient computations
22    gradient_cache: Option<GradientCache>,
23}
24
25/// Optimization configuration
26#[derive(Debug, Clone)]
27pub struct OptimizationConfig {
28    /// Maximum iterations
29    pub max_iterations: usize,
30    /// Convergence tolerance
31    pub tolerance: f64,
32    /// Learning rate
33    pub learning_rate: f64,
34    /// Use parallel gradient computation
35    pub parallel_gradients: bool,
36    /// Optimization method
37    pub method: Method,
38    /// Enable gradient caching
39    pub enable_cache: bool,
40}
41
42impl Default for OptimizationConfig {
43    fn default() -> Self {
44        Self {
45            max_iterations: 100,
46            tolerance: 1e-6,
47            learning_rate: 0.1,
48            parallel_gradients: true,
49            method: Method::BFGS,
50            enable_cache: true,
51        }
52    }
53}
54
55/// Gradient cache for repeated computations
56#[derive(Debug, Clone)]
57struct GradientCache {
58    /// Cached gradients
59    gradients: Vec<Array1<f64>>,
60    /// Parameter values for cached gradients
61    parameters: Vec<Vec<f64>>,
62    /// Maximum cache size
63    max_size: usize,
64}
65
66impl BatchParameterOptimizer {
67    /// Create a new batch parameter optimizer
68    pub fn new(executor: BatchCircuitExecutor, config: OptimizationConfig) -> Self {
69        let gradient_cache = if config.enable_cache {
70            Some(GradientCache {
71                gradients: Vec::new(),
72                parameters: Vec::new(),
73                max_size: 100,
74            })
75        } else {
76            None
77        };
78
79        Self {
80            executor,
81            config,
82            gradient_cache,
83        }
84    }
85
86    /// Optimize parameters for a batch of circuits
87    pub fn optimize_batch(
88        &mut self,
89        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
90        initial_params: &[f64],
91        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
92        initial_states: &BatchStateVector,
93    ) -> QuantRS2Result<OptimizeResult<f64>> {
94        let _num_params = initial_params.len();
95
96        // Define objective function
97        let executor = Arc::new(self.executor.clone());
98        let states = Arc::new(initial_states.clone());
99        let circuit_fn = Arc::new(circuit_fn);
100        let cost_fn = Arc::new(cost_fn);
101
102        let objective = {
103            let executor = executor.clone();
104            let states = states.clone();
105            let circuit_fn = circuit_fn.clone();
106            let cost_fn = cost_fn.clone();
107
108            move |params: &ndarray::ArrayView1<f64>| -> f64 {
109                let params_slice = params.as_slice().unwrap();
110                let circuit = match (*circuit_fn)(params_slice) {
111                    Ok(c) => c,
112                    Err(_) => return f64::INFINITY,
113                };
114
115                let mut batch_copy = (*states).clone();
116                match executor.execute_batch(&circuit, &mut batch_copy) {
117                    Ok(_) => (*cost_fn)(&batch_copy),
118                    Err(_) => f64::INFINITY,
119                }
120            }
121        };
122
123        // Create options
124        let options = Options {
125            max_iter: self.config.max_iterations,
126            ftol: self.config.tolerance,
127            gtol: self.config.tolerance,
128            ..Default::default()
129        };
130
131        // Run optimization using SciRS2
132        let result = minimize(objective, initial_params, self.config.method, Some(options));
133
134        match result {
135            Ok(opt_result) => Ok(opt_result),
136            Err(e) => Err(QuantRS2Error::InvalidInput(format!(
137                "Optimization failed: {:?}",
138                e
139            ))),
140        }
141    }
142
143    /// Compute gradients using parameter shift rule
144    pub fn compute_gradients_batch(
145        &mut self,
146        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send,
147        params: &[f64],
148        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send,
149        initial_states: &BatchStateVector,
150        shift: f64,
151    ) -> QuantRS2Result<Vec<f64>> {
152        // Check cache
153        if let Some(cache) = &self.gradient_cache {
154            for (i, cached_params) in cache.parameters.iter().enumerate() {
155                if params
156                    .iter()
157                    .zip(cached_params)
158                    .all(|(a, b)| (a - b).abs() < 1e-10)
159                {
160                    return Ok(cache.gradients[i].to_vec());
161                }
162            }
163        }
164
165        let num_params = params.len();
166
167        if self.config.parallel_gradients {
168            // Compute gradients in parallel
169            // Clone executor for parallel use
170            let executor = self.executor.clone();
171            let gradients: Vec<f64> = (0..num_params)
172                .into_par_iter()
173                .map(|i| {
174                    compute_single_gradient_static(
175                        &executor,
176                        &circuit_fn,
177                        params,
178                        i,
179                        &cost_fn,
180                        initial_states,
181                        shift,
182                    )
183                    .unwrap_or(0.0)
184                })
185                .collect();
186
187            // Update cache
188            if let Some(cache) = &mut self.gradient_cache {
189                if cache.gradients.len() >= cache.max_size {
190                    cache.gradients.remove(0);
191                    cache.parameters.remove(0);
192                }
193                cache.gradients.push(Array1::from_vec(gradients.clone()));
194                cache.parameters.push(params.to_vec());
195            }
196
197            Ok(gradients)
198        } else {
199            // Sequential gradient computation
200            let mut gradients = vec![0.0; num_params];
201
202            for i in 0..num_params {
203                gradients[i] = self.compute_single_gradient(
204                    &circuit_fn,
205                    params,
206                    i,
207                    &cost_fn,
208                    initial_states,
209                    shift,
210                )?;
211            }
212
213            Ok(gradients)
214        }
215    }
216
217    /// Compute gradient for a single parameter
218    fn compute_single_gradient(
219        &mut self,
220        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
221        params: &[f64],
222        param_idx: usize,
223        cost_fn: impl Fn(&BatchStateVector) -> f64,
224        initial_states: &BatchStateVector,
225        shift: f64,
226    ) -> QuantRS2Result<f64> {
227        compute_single_gradient_static(
228            &self.executor,
229            &circuit_fn,
230            params,
231            param_idx,
232            &cost_fn,
233            initial_states,
234            shift,
235        )
236    }
237
238    /// Optimize multiple parameter sets in parallel
239    pub fn optimize_parallel_batch(
240        &mut self,
241        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
242        initial_param_sets: &[Vec<f64>],
243        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
244        initial_states: &BatchStateVector,
245    ) -> QuantRS2Result<Vec<OptimizeResult<f64>>> {
246        let results: Vec<_> = initial_param_sets
247            .par_iter()
248            .map(|params| {
249                let mut optimizer = self.clone();
250                optimizer.optimize_batch(
251                    circuit_fn.clone(),
252                    params,
253                    cost_fn.clone(),
254                    initial_states,
255                )
256            })
257            .collect::<QuantRS2Result<Vec<_>>>()?;
258
259        Ok(results)
260    }
261}
262
263impl Clone for BatchParameterOptimizer {
264    fn clone(&self) -> Self {
265        Self {
266            executor: self.executor.clone(),
267            config: self.config.clone(),
268            gradient_cache: self.gradient_cache.clone(),
269        }
270    }
271}
272
273impl Clone for BatchCircuitExecutor {
274    fn clone(&self) -> Self {
275        Self {
276            config: self.config.clone(),
277            gpu_backend: self.gpu_backend.clone(),
278            thread_pool: None, // Don't clone thread pool
279        }
280    }
281}
282
283/// Static function to compute gradient for a single parameter
284fn compute_single_gradient_static(
285    executor: &BatchCircuitExecutor,
286    circuit_fn: &impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
287    params: &[f64],
288    param_idx: usize,
289    cost_fn: &impl Fn(&BatchStateVector) -> f64,
290    initial_states: &BatchStateVector,
291    shift: f64,
292) -> QuantRS2Result<f64> {
293    // Parameter shift rule: df/dθ = (f(θ+π/2) - f(θ-π/2)) / 2
294    let mut params_plus = params.to_vec();
295    let mut params_minus = params.to_vec();
296
297    params_plus[param_idx] += shift;
298    params_minus[param_idx] -= shift;
299
300    // Evaluate at shifted parameters
301    let circuit_plus = circuit_fn(&params_plus)?;
302    let circuit_minus = circuit_fn(&params_minus)?;
303
304    let mut states_plus = initial_states.clone();
305    let mut states_minus = initial_states.clone();
306
307    let result_plus = executor.execute_batch(&circuit_plus, &mut states_plus);
308    let result_minus = executor.execute_batch(&circuit_minus, &mut states_minus);
309
310    result_plus?;
311    result_minus?;
312
313    let cost_plus = cost_fn(&states_plus);
314    let cost_minus = cost_fn(&states_minus);
315
316    Ok((cost_plus - cost_minus) / (2.0 * shift))
317}
318
319/// Batch VQE (Variational Quantum Eigensolver) optimization
320pub struct BatchVQE {
321    /// Parameter optimizer
322    optimizer: BatchParameterOptimizer,
323    /// Hamiltonian to minimize
324    hamiltonian: Array2<Complex64>,
325}
326
327impl BatchVQE {
328    /// Create a new batch VQE optimizer
329    pub fn new(
330        executor: BatchCircuitExecutor,
331        hamiltonian: Array2<Complex64>,
332        config: OptimizationConfig,
333    ) -> Self {
334        Self {
335            optimizer: BatchParameterOptimizer::new(executor, config),
336            hamiltonian,
337        }
338    }
339
340    /// Run VQE optimization
341    pub fn optimize(
342        &mut self,
343        ansatz_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
344        initial_params: &[f64],
345        num_samples: usize,
346        n_qubits: usize,
347    ) -> QuantRS2Result<VQEResult> {
348        // Create batch of initial states
349        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
350
351        // Define cost function (energy expectation)
352        let hamiltonian = self.hamiltonian.clone();
353        let cost_fn = move |states: &BatchStateVector| -> f64 {
354            let mut total_energy = 0.0;
355
356            for i in 0..states.batch_size() {
357                if let Ok(state) = states.get_state(i) {
358                    let energy = compute_energy(&state, &hamiltonian);
359                    total_energy += energy;
360                }
361            }
362
363            total_energy / states.batch_size() as f64
364        };
365
366        // Run optimization
367        let result = self
368            .optimizer
369            .optimize_batch(ansatz_fn, initial_params, cost_fn, &batch)?;
370
371        Ok(VQEResult {
372            optimal_params: result.x.to_vec(),
373            ground_state_energy: result.fun,
374            iterations: result.iterations,
375            converged: result.success,
376        })
377    }
378}
379
380/// VQE optimization result
381#[derive(Debug, Clone)]
382pub struct VQEResult {
383    /// Optimal parameters
384    pub optimal_params: Vec<f64>,
385    /// Ground state energy
386    pub ground_state_energy: f64,
387    /// Number of iterations
388    pub iterations: usize,
389    /// Whether optimization converged
390    pub converged: bool,
391}
392
393/// Compute energy expectation value
394fn compute_energy(state: &Array1<Complex64>, hamiltonian: &Array2<Complex64>) -> f64 {
395    let temp = hamiltonian.dot(state);
396    let energy = state
397        .iter()
398        .zip(temp.iter())
399        .map(|(a, b)| a.conj() * b)
400        .sum::<Complex64>();
401
402    energy.re
403}
404
405/// Batch QAOA (Quantum Approximate Optimization Algorithm)
406pub struct BatchQAOA {
407    /// Parameter optimizer
408    optimizer: BatchParameterOptimizer,
409    /// Problem Hamiltonian
410    cost_hamiltonian: Array2<Complex64>,
411    /// Mixer Hamiltonian
412    mixer_hamiltonian: Array2<Complex64>,
413    /// Number of QAOA layers
414    p: usize,
415}
416
417impl BatchQAOA {
418    /// Create a new batch QAOA optimizer
419    pub fn new(
420        executor: BatchCircuitExecutor,
421        cost_hamiltonian: Array2<Complex64>,
422        mixer_hamiltonian: Array2<Complex64>,
423        p: usize,
424        config: OptimizationConfig,
425    ) -> Self {
426        Self {
427            optimizer: BatchParameterOptimizer::new(executor, config),
428            cost_hamiltonian,
429            mixer_hamiltonian,
430            p,
431        }
432    }
433
434    /// Run QAOA optimization
435    pub fn optimize(
436        &mut self,
437        initial_params: &[f64],
438        num_samples: usize,
439        n_qubits: usize,
440    ) -> QuantRS2Result<QAOAResult> {
441        if initial_params.len() != 2 * self.p {
442            return Err(QuantRS2Error::InvalidInput(format!(
443                "Expected {} parameters, got {}",
444                2 * self.p,
445                initial_params.len()
446            )));
447        }
448
449        // Create QAOA circuit constructor
450        let _p = self.p;
451        let _cost_ham = self.cost_hamiltonian.clone();
452        let _mixer_ham = self.mixer_hamiltonian.clone();
453
454        let qaoa_circuit = move |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
455            // This is a placeholder - actual QAOA circuit construction would go here
456            let circuit = BatchCircuit::new(n_qubits);
457            // Add QAOA layers based on params, cost_ham, mixer_ham
458            Ok(circuit)
459        };
460
461        // Create batch of superposition initial states
462        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
463        // Initialize to uniform superposition (would apply Hadamards)
464
465        // Define cost function
466        let cost_hamiltonian = self.cost_hamiltonian.clone();
467        let cost_fn = move |states: &BatchStateVector| -> f64 {
468            let mut total_cost = 0.0;
469
470            for i in 0..states.batch_size() {
471                if let Ok(state) = states.get_state(i) {
472                    let cost = compute_energy(&state, &cost_hamiltonian);
473                    total_cost += cost;
474                }
475            }
476
477            total_cost / states.batch_size() as f64
478        };
479
480        // Run optimization
481        let result =
482            self.optimizer
483                .optimize_batch(qaoa_circuit, initial_params, cost_fn, &batch)?;
484
485        Ok(QAOAResult {
486            optimal_params: result.x.to_vec(),
487            optimal_cost: result.fun,
488            iterations: result.iterations,
489            converged: result.success,
490        })
491    }
492}
493
494/// QAOA optimization result
495#[derive(Debug, Clone)]
496pub struct QAOAResult {
497    /// Optimal parameters (beta and gamma values)
498    pub optimal_params: Vec<f64>,
499    /// Optimal cost value
500    pub optimal_cost: f64,
501    /// Number of iterations
502    pub iterations: usize,
503    /// Whether optimization converged
504    pub converged: bool,
505}
506
507#[cfg(test)]
508mod tests {
509    use super::*;
510    use crate::gate::single::Hadamard;
511    use crate::qubit::QubitId;
512    use ndarray::array;
513
514    #[test]
515    fn test_gradient_computation() {
516        let config = Default::default();
517        let executor = BatchCircuitExecutor::new(config).unwrap();
518        let mut optimizer = BatchParameterOptimizer::new(executor, Default::default());
519
520        // Simple circuit function
521        let circuit_fn = |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
522            let mut circuit = BatchCircuit::new(1);
523            // Add parameterized rotation based on params[0]
524            circuit.add_gate(Box::new(Hadamard { target: QubitId(0) }))?;
525            Ok(circuit)
526        };
527
528        // Simple cost function
529        let cost_fn = |_states: &BatchStateVector| -> f64 { 1.0 };
530
531        let batch = BatchStateVector::new(1, 1, Default::default()).unwrap();
532        let params = vec![0.5];
533
534        let gradients = optimizer
535            .compute_gradients_batch(circuit_fn, &params, cost_fn, &batch, 0.01)
536            .unwrap();
537
538        assert_eq!(gradients.len(), 1);
539    }
540
541    #[test]
542    fn test_vqe_setup() {
543        let executor = BatchCircuitExecutor::new(Default::default()).unwrap();
544
545        // Simple 2x2 Hamiltonian
546        let hamiltonian = array![
547            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
548            [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
549        ];
550
551        let vqe = BatchVQE::new(executor, hamiltonian, Default::default());
552
553        // Just test creation
554        assert_eq!(vqe.hamiltonian.shape(), &[2, 2]);
555    }
556}