1use super::execution::{BatchCircuit, BatchCircuitExecutor};
4use super::BatchStateVector;
5use crate::error::{QuantRS2Error, QuantRS2Result};
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::Complex64;
8use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
10use crate::parallel_ops_stubs::*;
11use std::sync::Arc;
13
14pub struct BatchParameterOptimizer {
20 executor: BatchCircuitExecutor,
22 config: OptimizationConfig,
24 gradient_cache: Option<GradientCache>,
26}
27
28#[derive(Debug, Clone)]
30pub struct OptimizationConfig {
31 pub max_iterations: usize,
33 pub tolerance: f64,
35 pub learning_rate: f64,
37 pub parallel_gradients: bool,
39 pub method: Method,
41 pub enable_cache: bool,
43}
44
45impl Default for OptimizationConfig {
46 fn default() -> Self {
47 Self {
48 max_iterations: 100,
49 tolerance: 1e-6,
50 learning_rate: 0.1,
51 parallel_gradients: true,
52 method: Method::BFGS,
53 enable_cache: true,
54 }
55 }
56}
57
58#[derive(Debug, Clone)]
60struct GradientCache {
61 gradients: Vec<Array1<f64>>,
63 parameters: Vec<Vec<f64>>,
65 max_size: usize,
67}
68
69impl BatchParameterOptimizer {
70 pub fn new(executor: BatchCircuitExecutor, config: OptimizationConfig) -> Self {
72 let gradient_cache = if config.enable_cache {
73 Some(GradientCache {
74 gradients: Vec::new(),
75 parameters: Vec::new(),
76 max_size: 100,
77 })
78 } else {
79 None
80 };
81
82 Self {
83 executor,
84 config,
85 gradient_cache,
86 }
87 }
88
89 pub fn optimize_batch(
91 &mut self,
92 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
93 initial_params: &[f64],
94 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
95 initial_states: &BatchStateVector,
96 ) -> QuantRS2Result<OptimizeResult<f64>> {
97 let _num_params = initial_params.len();
98
99 let executor = Arc::new(self.executor.clone());
101 let states = Arc::new(initial_states.clone());
102 let circuit_fn = Arc::new(circuit_fn);
103 let cost_fn = Arc::new(cost_fn);
104
105 let objective = {
106 let executor = executor.clone();
107 let states = states.clone();
108 let circuit_fn = circuit_fn.clone();
109 let cost_fn = cost_fn.clone();
110
111 move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
112 let params_slice = params.as_slice().unwrap();
113 let circuit = match (*circuit_fn)(params_slice) {
114 Ok(c) => c,
115 Err(_) => return f64::INFINITY,
116 };
117
118 let mut batch_copy = (*states).clone();
119 match executor.execute_batch(&circuit, &mut batch_copy) {
120 Ok(_) => (*cost_fn)(&batch_copy),
121 Err(_) => f64::INFINITY,
122 }
123 }
124 };
125
126 let options = Options {
128 max_iter: self.config.max_iterations,
129 ftol: self.config.tolerance,
130 gtol: self.config.tolerance,
131 ..Default::default()
132 };
133
134 let initial_array = Array1::from_vec(initial_params.to_vec());
136 let result = minimize(objective, &initial_array, self.config.method, Some(options));
137
138 match result {
139 Ok(opt_result) => Ok(opt_result),
140 Err(e) => Err(QuantRS2Error::InvalidInput(format!(
141 "Optimization failed: {:?}",
142 e
143 ))),
144 }
145 }
146
147 pub fn compute_gradients_batch(
149 &mut self,
150 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send,
151 params: &[f64],
152 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send,
153 initial_states: &BatchStateVector,
154 shift: f64,
155 ) -> QuantRS2Result<Vec<f64>> {
156 if let Some(cache) = &self.gradient_cache {
158 for (i, cached_params) in cache.parameters.iter().enumerate() {
159 if params
160 .iter()
161 .zip(cached_params)
162 .all(|(a, b)| (a - b).abs() < 1e-10)
163 {
164 return Ok(cache.gradients[i].to_vec());
165 }
166 }
167 }
168
169 let num_params = params.len();
170
171 if self.config.parallel_gradients {
172 let executor = self.executor.clone();
175 let gradients: Vec<f64> = (0..num_params)
176 .into_par_iter()
177 .map(|i| {
178 compute_single_gradient_static(
179 &executor,
180 &circuit_fn,
181 params,
182 i,
183 &cost_fn,
184 initial_states,
185 shift,
186 )
187 .unwrap_or(0.0)
188 })
189 .collect();
190
191 if let Some(cache) = &mut self.gradient_cache {
193 if cache.gradients.len() >= cache.max_size {
194 cache.gradients.remove(0);
195 cache.parameters.remove(0);
196 }
197 cache.gradients.push(Array1::from_vec(gradients.clone()));
198 cache.parameters.push(params.to_vec());
199 }
200
201 Ok(gradients)
202 } else {
203 let mut gradients = vec![0.0; num_params];
205
206 for i in 0..num_params {
207 gradients[i] = self.compute_single_gradient(
208 &circuit_fn,
209 params,
210 i,
211 &cost_fn,
212 initial_states,
213 shift,
214 )?;
215 }
216
217 Ok(gradients)
218 }
219 }
220
221 fn compute_single_gradient(
223 &mut self,
224 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
225 params: &[f64],
226 param_idx: usize,
227 cost_fn: impl Fn(&BatchStateVector) -> f64,
228 initial_states: &BatchStateVector,
229 shift: f64,
230 ) -> QuantRS2Result<f64> {
231 compute_single_gradient_static(
232 &self.executor,
233 &circuit_fn,
234 params,
235 param_idx,
236 &cost_fn,
237 initial_states,
238 shift,
239 )
240 }
241
242 pub fn optimize_parallel_batch(
244 &mut self,
245 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
246 initial_param_sets: &[Vec<f64>],
247 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
248 initial_states: &BatchStateVector,
249 ) -> QuantRS2Result<Vec<OptimizeResult<f64>>> {
250 let results: Vec<_> = initial_param_sets
251 .par_iter()
252 .map(|params| {
253 let mut optimizer = self.clone();
254 optimizer.optimize_batch(
255 circuit_fn.clone(),
256 params,
257 cost_fn.clone(),
258 initial_states,
259 )
260 })
261 .collect::<QuantRS2Result<Vec<_>>>()?;
262
263 Ok(results)
264 }
265}
266
267impl Clone for BatchParameterOptimizer {
268 fn clone(&self) -> Self {
269 Self {
270 executor: self.executor.clone(),
271 config: self.config.clone(),
272 gradient_cache: self.gradient_cache.clone(),
273 }
274 }
275}
276
277impl Clone for BatchCircuitExecutor {
278 fn clone(&self) -> Self {
279 Self {
280 config: self.config.clone(),
281 gpu_backend: self.gpu_backend.clone(),
282 }
284 }
285}
286
287fn compute_single_gradient_static(
289 executor: &BatchCircuitExecutor,
290 circuit_fn: &impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
291 params: &[f64],
292 param_idx: usize,
293 cost_fn: &impl Fn(&BatchStateVector) -> f64,
294 initial_states: &BatchStateVector,
295 shift: f64,
296) -> QuantRS2Result<f64> {
297 let mut params_plus = params.to_vec();
299 let mut params_minus = params.to_vec();
300
301 params_plus[param_idx] += shift;
302 params_minus[param_idx] -= shift;
303
304 let circuit_plus = circuit_fn(¶ms_plus)?;
306 let circuit_minus = circuit_fn(¶ms_minus)?;
307
308 let mut states_plus = initial_states.clone();
309 let mut states_minus = initial_states.clone();
310
311 let result_plus = executor.execute_batch(&circuit_plus, &mut states_plus);
312 let result_minus = executor.execute_batch(&circuit_minus, &mut states_minus);
313
314 result_plus?;
315 result_minus?;
316
317 let cost_plus = cost_fn(&states_plus);
318 let cost_minus = cost_fn(&states_minus);
319
320 Ok((cost_plus - cost_minus) / (2.0 * shift))
321}
322
323pub struct BatchVQE {
325 optimizer: BatchParameterOptimizer,
327 hamiltonian: Array2<Complex64>,
329}
330
331impl BatchVQE {
332 pub fn new(
334 executor: BatchCircuitExecutor,
335 hamiltonian: Array2<Complex64>,
336 config: OptimizationConfig,
337 ) -> Self {
338 Self {
339 optimizer: BatchParameterOptimizer::new(executor, config),
340 hamiltonian,
341 }
342 }
343
344 pub fn optimize(
346 &mut self,
347 ansatz_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
348 initial_params: &[f64],
349 num_samples: usize,
350 n_qubits: usize,
351 ) -> QuantRS2Result<VQEResult> {
352 let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
354
355 let hamiltonian = self.hamiltonian.clone();
357 let cost_fn = move |states: &BatchStateVector| -> f64 {
358 let mut total_energy = 0.0;
359
360 for i in 0..states.batch_size() {
361 if let Ok(state) = states.get_state(i) {
362 let energy = compute_energy(&state, &hamiltonian);
363 total_energy += energy;
364 }
365 }
366
367 total_energy / states.batch_size() as f64
368 };
369
370 let result = self
372 .optimizer
373 .optimize_batch(ansatz_fn, initial_params, cost_fn, &batch)?;
374
375 Ok(VQEResult {
376 optimal_params: result.x.to_vec(),
377 ground_state_energy: result.fun,
378 iterations: result.iterations,
379 converged: result.success,
380 })
381 }
382}
383
384#[derive(Debug, Clone)]
386pub struct VQEResult {
387 pub optimal_params: Vec<f64>,
389 pub ground_state_energy: f64,
391 pub iterations: usize,
393 pub converged: bool,
395}
396
397fn compute_energy(state: &Array1<Complex64>, hamiltonian: &Array2<Complex64>) -> f64 {
399 let temp = hamiltonian.dot(state);
400 let energy = state
401 .iter()
402 .zip(temp.iter())
403 .map(|(a, b)| a.conj() * b)
404 .sum::<Complex64>();
405
406 energy.re
407}
408
409pub struct BatchQAOA {
411 optimizer: BatchParameterOptimizer,
413 cost_hamiltonian: Array2<Complex64>,
415 mixer_hamiltonian: Array2<Complex64>,
417 p: usize,
419}
420
421impl BatchQAOA {
422 pub fn new(
424 executor: BatchCircuitExecutor,
425 cost_hamiltonian: Array2<Complex64>,
426 mixer_hamiltonian: Array2<Complex64>,
427 p: usize,
428 config: OptimizationConfig,
429 ) -> Self {
430 Self {
431 optimizer: BatchParameterOptimizer::new(executor, config),
432 cost_hamiltonian,
433 mixer_hamiltonian,
434 p,
435 }
436 }
437
438 pub fn optimize(
440 &mut self,
441 initial_params: &[f64],
442 num_samples: usize,
443 n_qubits: usize,
444 ) -> QuantRS2Result<QAOAResult> {
445 if initial_params.len() != 2 * self.p {
446 return Err(QuantRS2Error::InvalidInput(format!(
447 "Expected {} parameters, got {}",
448 2 * self.p,
449 initial_params.len()
450 )));
451 }
452
453 let _p = self.p;
455 let _cost_ham = self.cost_hamiltonian.clone();
456 let _mixer_ham = self.mixer_hamiltonian.clone();
457
458 let qaoa_circuit = move |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
459 let circuit = BatchCircuit::new(n_qubits);
461 Ok(circuit)
463 };
464
465 let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
467 let cost_hamiltonian = self.cost_hamiltonian.clone();
471 let cost_fn = move |states: &BatchStateVector| -> f64 {
472 let mut total_cost = 0.0;
473
474 for i in 0..states.batch_size() {
475 if let Ok(state) = states.get_state(i) {
476 let cost = compute_energy(&state, &cost_hamiltonian);
477 total_cost += cost;
478 }
479 }
480
481 total_cost / states.batch_size() as f64
482 };
483
484 let result =
486 self.optimizer
487 .optimize_batch(qaoa_circuit, initial_params, cost_fn, &batch)?;
488
489 Ok(QAOAResult {
490 optimal_params: result.x.to_vec(),
491 optimal_cost: result.fun,
492 iterations: result.iterations,
493 converged: result.success,
494 })
495 }
496}
497
498#[derive(Debug, Clone)]
500pub struct QAOAResult {
501 pub optimal_params: Vec<f64>,
503 pub optimal_cost: f64,
505 pub iterations: usize,
507 pub converged: bool,
509}
510
511#[cfg(test)]
512mod tests {
513 use super::*;
514 use crate::gate::single::Hadamard;
515 use crate::qubit::QubitId;
516 use scirs2_core::ndarray::array;
517
518 #[test]
519 fn test_gradient_computation() {
520 let config = Default::default();
521 let executor = BatchCircuitExecutor::new(config).unwrap();
522 let mut optimizer = BatchParameterOptimizer::new(executor, Default::default());
523
524 let circuit_fn = |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
526 let mut circuit = BatchCircuit::new(1);
527 circuit.add_gate(Box::new(Hadamard { target: QubitId(0) }))?;
529 Ok(circuit)
530 };
531
532 let cost_fn = |_states: &BatchStateVector| -> f64 { 1.0 };
534
535 let batch = BatchStateVector::new(1, 1, Default::default()).unwrap();
536 let params = vec![0.5];
537
538 let gradients = optimizer
539 .compute_gradients_batch(circuit_fn, ¶ms, cost_fn, &batch, 0.01)
540 .unwrap();
541
542 assert_eq!(gradients.len(), 1);
543 }
544
545 #[test]
546 fn test_vqe_setup() {
547 let executor = BatchCircuitExecutor::new(Default::default()).unwrap();
548
549 let hamiltonian = array![
551 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
552 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
553 ];
554
555 let vqe = BatchVQE::new(executor, hamiltonian, Default::default());
556
557 assert_eq!(vqe.hamiltonian.shape(), &[2, 2]);
559 }
560}