quantrs2_core/batch/
optimization.rs

1//! Batch optimization for parameterized quantum circuits using SciRS2
2
3use super::execution::{BatchCircuit, BatchCircuitExecutor};
4use super::BatchStateVector;
5use crate::error::{QuantRS2Error, QuantRS2Result};
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::Complex64;
8// use scirs2_core::parallel_ops::*;
9use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
10use crate::parallel_ops_stubs::*;
11// use scirs2_core::optimization::{minimize, Method, OptimizeResult, Options};
12use std::sync::Arc;
13
14// Import SciRS2 optimization
15// extern crate scirs2_optimize;
16// use scirs2_optimize::unconstrained::{minimize, Method, OptimizeResult, Options};
17
18/// Batch optimizer for parameterized quantum circuits
19pub struct BatchParameterOptimizer {
20    /// Circuit executor
21    executor: BatchCircuitExecutor,
22    /// Optimization configuration
23    config: OptimizationConfig,
24    /// Cache for gradient computations
25    gradient_cache: Option<GradientCache>,
26}
27
28/// Optimization configuration
29#[derive(Debug, Clone)]
30pub struct OptimizationConfig {
31    /// Maximum iterations
32    pub max_iterations: usize,
33    /// Convergence tolerance
34    pub tolerance: f64,
35    /// Learning rate
36    pub learning_rate: f64,
37    /// Use parallel gradient computation
38    pub parallel_gradients: bool,
39    /// Optimization method
40    pub method: Method,
41    /// Enable gradient caching
42    pub enable_cache: bool,
43}
44
45impl Default for OptimizationConfig {
46    fn default() -> Self {
47        Self {
48            max_iterations: 100,
49            tolerance: 1e-6,
50            learning_rate: 0.1,
51            parallel_gradients: true,
52            method: Method::BFGS,
53            enable_cache: true,
54        }
55    }
56}
57
58/// Gradient cache for repeated computations
59#[derive(Debug, Clone)]
60struct GradientCache {
61    /// Cached gradients
62    gradients: Vec<Array1<f64>>,
63    /// Parameter values for cached gradients
64    parameters: Vec<Vec<f64>>,
65    /// Maximum cache size
66    max_size: usize,
67}
68
69impl BatchParameterOptimizer {
70    /// Create a new batch parameter optimizer
71    pub fn new(executor: BatchCircuitExecutor, config: OptimizationConfig) -> Self {
72        let gradient_cache = if config.enable_cache {
73            Some(GradientCache {
74                gradients: Vec::new(),
75                parameters: Vec::new(),
76                max_size: 100,
77            })
78        } else {
79            None
80        };
81
82        Self {
83            executor,
84            config,
85            gradient_cache,
86        }
87    }
88
89    /// Optimize parameters for a batch of circuits
90    pub fn optimize_batch(
91        &mut self,
92        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
93        initial_params: &[f64],
94        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
95        initial_states: &BatchStateVector,
96    ) -> QuantRS2Result<OptimizeResult<f64>> {
97        let _num_params = initial_params.len();
98
99        // Define objective function
100        let executor = Arc::new(self.executor.clone());
101        let states = Arc::new(initial_states.clone());
102        let circuit_fn = Arc::new(circuit_fn);
103        let cost_fn = Arc::new(cost_fn);
104
105        let objective = {
106            let executor = executor.clone();
107            let states = states.clone();
108            let circuit_fn = circuit_fn.clone();
109            let cost_fn = cost_fn.clone();
110
111            move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
112                let params_slice = params.as_slice().unwrap();
113                let circuit = match (*circuit_fn)(params_slice) {
114                    Ok(c) => c,
115                    Err(_) => return f64::INFINITY,
116                };
117
118                let mut batch_copy = (*states).clone();
119                match executor.execute_batch(&circuit, &mut batch_copy) {
120                    Ok(_) => (*cost_fn)(&batch_copy),
121                    Err(_) => f64::INFINITY,
122                }
123            }
124        };
125
126        // Create options
127        let options = Options {
128            max_iter: self.config.max_iterations,
129            ftol: self.config.tolerance,
130            gtol: self.config.tolerance,
131            ..Default::default()
132        };
133
134        // Run optimization using SciRS2
135        let initial_array = Array1::from_vec(initial_params.to_vec());
136        let result = minimize(objective, &initial_array, self.config.method, Some(options));
137
138        match result {
139            Ok(opt_result) => Ok(opt_result),
140            Err(e) => Err(QuantRS2Error::InvalidInput(format!(
141                "Optimization failed: {:?}",
142                e
143            ))),
144        }
145    }
146
147    /// Compute gradients using parameter shift rule
148    pub fn compute_gradients_batch(
149        &mut self,
150        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send,
151        params: &[f64],
152        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send,
153        initial_states: &BatchStateVector,
154        shift: f64,
155    ) -> QuantRS2Result<Vec<f64>> {
156        // Check cache
157        if let Some(cache) = &self.gradient_cache {
158            for (i, cached_params) in cache.parameters.iter().enumerate() {
159                if params
160                    .iter()
161                    .zip(cached_params)
162                    .all(|(a, b)| (a - b).abs() < 1e-10)
163                {
164                    return Ok(cache.gradients[i].to_vec());
165                }
166            }
167        }
168
169        let num_params = params.len();
170
171        if self.config.parallel_gradients {
172            // Compute gradients in parallel
173            // Clone executor for parallel use
174            let executor = self.executor.clone();
175            let gradients: Vec<f64> = (0..num_params)
176                .into_par_iter()
177                .map(|i| {
178                    compute_single_gradient_static(
179                        &executor,
180                        &circuit_fn,
181                        params,
182                        i,
183                        &cost_fn,
184                        initial_states,
185                        shift,
186                    )
187                    .unwrap_or(0.0)
188                })
189                .collect();
190
191            // Update cache
192            if let Some(cache) = &mut self.gradient_cache {
193                if cache.gradients.len() >= cache.max_size {
194                    cache.gradients.remove(0);
195                    cache.parameters.remove(0);
196                }
197                cache.gradients.push(Array1::from_vec(gradients.clone()));
198                cache.parameters.push(params.to_vec());
199            }
200
201            Ok(gradients)
202        } else {
203            // Sequential gradient computation
204            let mut gradients = vec![0.0; num_params];
205
206            for i in 0..num_params {
207                gradients[i] = self.compute_single_gradient(
208                    &circuit_fn,
209                    params,
210                    i,
211                    &cost_fn,
212                    initial_states,
213                    shift,
214                )?;
215            }
216
217            Ok(gradients)
218        }
219    }
220
221    /// Compute gradient for a single parameter
222    fn compute_single_gradient(
223        &mut self,
224        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
225        params: &[f64],
226        param_idx: usize,
227        cost_fn: impl Fn(&BatchStateVector) -> f64,
228        initial_states: &BatchStateVector,
229        shift: f64,
230    ) -> QuantRS2Result<f64> {
231        compute_single_gradient_static(
232            &self.executor,
233            &circuit_fn,
234            params,
235            param_idx,
236            &cost_fn,
237            initial_states,
238            shift,
239        )
240    }
241
242    /// Optimize multiple parameter sets in parallel
243    pub fn optimize_parallel_batch(
244        &mut self,
245        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
246        initial_param_sets: &[Vec<f64>],
247        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
248        initial_states: &BatchStateVector,
249    ) -> QuantRS2Result<Vec<OptimizeResult<f64>>> {
250        let results: Vec<_> = initial_param_sets
251            .par_iter()
252            .map(|params| {
253                let mut optimizer = self.clone();
254                optimizer.optimize_batch(
255                    circuit_fn.clone(),
256                    params,
257                    cost_fn.clone(),
258                    initial_states,
259                )
260            })
261            .collect::<QuantRS2Result<Vec<_>>>()?;
262
263        Ok(results)
264    }
265}
266
267impl Clone for BatchParameterOptimizer {
268    fn clone(&self) -> Self {
269        Self {
270            executor: self.executor.clone(),
271            config: self.config.clone(),
272            gradient_cache: self.gradient_cache.clone(),
273        }
274    }
275}
276
277impl Clone for BatchCircuitExecutor {
278    fn clone(&self) -> Self {
279        Self {
280            config: self.config.clone(),
281            gpu_backend: self.gpu_backend.clone(),
282            // thread_pool: None, // Don't clone thread pool - removed per CORE_USAGE_POLICY
283        }
284    }
285}
286
287/// Static function to compute gradient for a single parameter
288fn compute_single_gradient_static(
289    executor: &BatchCircuitExecutor,
290    circuit_fn: &impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
291    params: &[f64],
292    param_idx: usize,
293    cost_fn: &impl Fn(&BatchStateVector) -> f64,
294    initial_states: &BatchStateVector,
295    shift: f64,
296) -> QuantRS2Result<f64> {
297    // Parameter shift rule: df/dθ = (f(θ+π/2) - f(θ-π/2)) / 2
298    let mut params_plus = params.to_vec();
299    let mut params_minus = params.to_vec();
300
301    params_plus[param_idx] += shift;
302    params_minus[param_idx] -= shift;
303
304    // Evaluate at shifted parameters
305    let circuit_plus = circuit_fn(&params_plus)?;
306    let circuit_minus = circuit_fn(&params_minus)?;
307
308    let mut states_plus = initial_states.clone();
309    let mut states_minus = initial_states.clone();
310
311    let result_plus = executor.execute_batch(&circuit_plus, &mut states_plus);
312    let result_minus = executor.execute_batch(&circuit_minus, &mut states_minus);
313
314    result_plus?;
315    result_minus?;
316
317    let cost_plus = cost_fn(&states_plus);
318    let cost_minus = cost_fn(&states_minus);
319
320    Ok((cost_plus - cost_minus) / (2.0 * shift))
321}
322
323/// Batch VQE (Variational Quantum Eigensolver) optimization
324pub struct BatchVQE {
325    /// Parameter optimizer
326    optimizer: BatchParameterOptimizer,
327    /// Hamiltonian to minimize
328    hamiltonian: Array2<Complex64>,
329}
330
331impl BatchVQE {
332    /// Create a new batch VQE optimizer
333    pub fn new(
334        executor: BatchCircuitExecutor,
335        hamiltonian: Array2<Complex64>,
336        config: OptimizationConfig,
337    ) -> Self {
338        Self {
339            optimizer: BatchParameterOptimizer::new(executor, config),
340            hamiltonian,
341        }
342    }
343
344    /// Run VQE optimization
345    pub fn optimize(
346        &mut self,
347        ansatz_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
348        initial_params: &[f64],
349        num_samples: usize,
350        n_qubits: usize,
351    ) -> QuantRS2Result<VQEResult> {
352        // Create batch of initial states
353        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
354
355        // Define cost function (energy expectation)
356        let hamiltonian = self.hamiltonian.clone();
357        let cost_fn = move |states: &BatchStateVector| -> f64 {
358            let mut total_energy = 0.0;
359
360            for i in 0..states.batch_size() {
361                if let Ok(state) = states.get_state(i) {
362                    let energy = compute_energy(&state, &hamiltonian);
363                    total_energy += energy;
364                }
365            }
366
367            total_energy / states.batch_size() as f64
368        };
369
370        // Run optimization
371        let result = self
372            .optimizer
373            .optimize_batch(ansatz_fn, initial_params, cost_fn, &batch)?;
374
375        Ok(VQEResult {
376            optimal_params: result.x.to_vec(),
377            ground_state_energy: result.fun,
378            iterations: result.iterations,
379            converged: result.success,
380        })
381    }
382}
383
384/// VQE optimization result
385#[derive(Debug, Clone)]
386pub struct VQEResult {
387    /// Optimal parameters
388    pub optimal_params: Vec<f64>,
389    /// Ground state energy
390    pub ground_state_energy: f64,
391    /// Number of iterations
392    pub iterations: usize,
393    /// Whether optimization converged
394    pub converged: bool,
395}
396
397/// Compute energy expectation value
398fn compute_energy(state: &Array1<Complex64>, hamiltonian: &Array2<Complex64>) -> f64 {
399    let temp = hamiltonian.dot(state);
400    let energy = state
401        .iter()
402        .zip(temp.iter())
403        .map(|(a, b)| a.conj() * b)
404        .sum::<Complex64>();
405
406    energy.re
407}
408
409/// Batch QAOA (Quantum Approximate Optimization Algorithm)
410pub struct BatchQAOA {
411    /// Parameter optimizer
412    optimizer: BatchParameterOptimizer,
413    /// Problem Hamiltonian
414    cost_hamiltonian: Array2<Complex64>,
415    /// Mixer Hamiltonian
416    mixer_hamiltonian: Array2<Complex64>,
417    /// Number of QAOA layers
418    p: usize,
419}
420
421impl BatchQAOA {
422    /// Create a new batch QAOA optimizer
423    pub fn new(
424        executor: BatchCircuitExecutor,
425        cost_hamiltonian: Array2<Complex64>,
426        mixer_hamiltonian: Array2<Complex64>,
427        p: usize,
428        config: OptimizationConfig,
429    ) -> Self {
430        Self {
431            optimizer: BatchParameterOptimizer::new(executor, config),
432            cost_hamiltonian,
433            mixer_hamiltonian,
434            p,
435        }
436    }
437
438    /// Run QAOA optimization
439    pub fn optimize(
440        &mut self,
441        initial_params: &[f64],
442        num_samples: usize,
443        n_qubits: usize,
444    ) -> QuantRS2Result<QAOAResult> {
445        if initial_params.len() != 2 * self.p {
446            return Err(QuantRS2Error::InvalidInput(format!(
447                "Expected {} parameters, got {}",
448                2 * self.p,
449                initial_params.len()
450            )));
451        }
452
453        // Create QAOA circuit constructor
454        let _p = self.p;
455        let _cost_ham = self.cost_hamiltonian.clone();
456        let _mixer_ham = self.mixer_hamiltonian.clone();
457
458        let qaoa_circuit = move |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
459            // This is a placeholder - actual QAOA circuit construction would go here
460            let circuit = BatchCircuit::new(n_qubits);
461            // Add QAOA layers based on params, cost_ham, mixer_ham
462            Ok(circuit)
463        };
464
465        // Create batch of superposition initial states
466        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
467        // Initialize to uniform superposition (would apply Hadamards)
468
469        // Define cost function
470        let cost_hamiltonian = self.cost_hamiltonian.clone();
471        let cost_fn = move |states: &BatchStateVector| -> f64 {
472            let mut total_cost = 0.0;
473
474            for i in 0..states.batch_size() {
475                if let Ok(state) = states.get_state(i) {
476                    let cost = compute_energy(&state, &cost_hamiltonian);
477                    total_cost += cost;
478                }
479            }
480
481            total_cost / states.batch_size() as f64
482        };
483
484        // Run optimization
485        let result =
486            self.optimizer
487                .optimize_batch(qaoa_circuit, initial_params, cost_fn, &batch)?;
488
489        Ok(QAOAResult {
490            optimal_params: result.x.to_vec(),
491            optimal_cost: result.fun,
492            iterations: result.iterations,
493            converged: result.success,
494        })
495    }
496}
497
498/// QAOA optimization result
499#[derive(Debug, Clone)]
500pub struct QAOAResult {
501    /// Optimal parameters (beta and gamma values)
502    pub optimal_params: Vec<f64>,
503    /// Optimal cost value
504    pub optimal_cost: f64,
505    /// Number of iterations
506    pub iterations: usize,
507    /// Whether optimization converged
508    pub converged: bool,
509}
510
511#[cfg(test)]
512mod tests {
513    use super::*;
514    use crate::gate::single::Hadamard;
515    use crate::qubit::QubitId;
516    use scirs2_core::ndarray::array;
517
518    #[test]
519    fn test_gradient_computation() {
520        let config = Default::default();
521        let executor = BatchCircuitExecutor::new(config).unwrap();
522        let mut optimizer = BatchParameterOptimizer::new(executor, Default::default());
523
524        // Simple circuit function
525        let circuit_fn = |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
526            let mut circuit = BatchCircuit::new(1);
527            // Add parameterized rotation based on params[0]
528            circuit.add_gate(Box::new(Hadamard { target: QubitId(0) }))?;
529            Ok(circuit)
530        };
531
532        // Simple cost function
533        let cost_fn = |_states: &BatchStateVector| -> f64 { 1.0 };
534
535        let batch = BatchStateVector::new(1, 1, Default::default()).unwrap();
536        let params = vec![0.5];
537
538        let gradients = optimizer
539            .compute_gradients_batch(circuit_fn, &params, cost_fn, &batch, 0.01)
540            .unwrap();
541
542        assert_eq!(gradients.len(), 1);
543    }
544
545    #[test]
546    fn test_vqe_setup() {
547        let executor = BatchCircuitExecutor::new(Default::default()).unwrap();
548
549        // Simple 2x2 Hamiltonian
550        let hamiltonian = array![
551            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
552            [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
553        ];
554
555        let vqe = BatchVQE::new(executor, hamiltonian, Default::default());
556
557        // Just test creation
558        assert_eq!(vqe.hamiltonian.shape(), &[2, 2]);
559    }
560}