Expand description
Enhanced variational parameter optimization using SciRS2
This module provides advanced optimization techniques for variational quantum algorithms leveraging SciRS2’s optimization capabilities including:
- Gradient-based methods (BFGS, L-BFGS, Conjugate Gradient)
- Gradient-free methods (Nelder-Mead, Powell, COBYLA)
- Stochastic optimization (SPSA, Adam, RMSprop)
- Natural gradient descent for quantum circuits
Structs§
- Constrained
Variational Optimizer - Constrained optimization for variational circuits
- Constraint
- Constraint for optimization
- Hyperparameter
Optimizer - Hyperparameter optimization for variational circuits
- Hyperparameter
Result - Hyperparameter optimization result
- Hyperparameter
Trial - Single hyperparameter trial
- Optimization
Config - Configuration for optimization
- Optimization
History - Optimization history tracking
- Optimization
Result - Optimization result
- Variational
Quantum Optimizer - Advanced optimizer for variational quantum circuits
Enums§
- Constraint
Type - Constraint type
- Optimization
Method - Optimization methods available
Functions§
- create_
natural_ gradient_ optimizer - Create natural gradient optimizer
- create_
qaoa_ optimizer - Create optimized QAOA optimizer
- create_
spsa_ optimizer - Create SPSA optimizer for noisy quantum devices
- create_
vqe_ optimizer - Create optimized VQE optimizer