quantrs2_core/
variational_optimization.rs

1//! Enhanced variational parameter optimization using SciRS2
2//!
3//! This module provides advanced optimization techniques for variational quantum algorithms
4//! leveraging SciRS2's optimization capabilities including:
5//! - Gradient-based methods (BFGS, L-BFGS, Conjugate Gradient)
6//! - Gradient-free methods (Nelder-Mead, Powell, COBYLA)
7//! - Stochastic optimization (SPSA, Adam, RMSprop)
8//! - Natural gradient descent for quantum circuits
9
10use crate::{
11    error::{QuantRS2Error, QuantRS2Result},
12    variational::VariationalCircuit,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15// use scirs2_core::parallel_ops::*;
16use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
17use crate::parallel_ops_stubs::*;
18// use scirs2_core::optimization::{minimize, Method, OptimizeResult, Options};
19use rustc_hash::FxHashMap;
20use std::sync::{Arc, Mutex};
21
22// Import SciRS2 optimization
23// extern crate scirs2_optimize;
24// use scirs2_optimize::unconstrained::{minimize, Method, Options};
25
26// Import SciRS2 linear algebra for natural gradient
27// extern crate scirs2_linalg;
28
29/// Advanced optimizer for variational quantum circuits
30pub struct VariationalQuantumOptimizer {
31    /// Optimization method
32    method: OptimizationMethod,
33    /// Configuration
34    config: OptimizationConfig,
35    /// History of optimization
36    history: OptimizationHistory,
37    /// Fisher information matrix cache
38    fisher_cache: Option<FisherCache>,
39}
40
41/// Optimization methods available
42#[derive(Debug, Clone)]
43pub enum OptimizationMethod {
44    /// Standard gradient descent
45    GradientDescent { learning_rate: f64 },
46    /// Momentum-based gradient descent
47    Momentum { learning_rate: f64, momentum: f64 },
48    /// Adam optimizer
49    Adam {
50        learning_rate: f64,
51        beta1: f64,
52        beta2: f64,
53        epsilon: f64,
54    },
55    /// RMSprop optimizer
56    RMSprop {
57        learning_rate: f64,
58        decay_rate: f64,
59        epsilon: f64,
60    },
61    /// Natural gradient descent
62    NaturalGradient {
63        learning_rate: f64,
64        regularization: f64,
65    },
66    /// SciRS2 BFGS method
67    BFGS,
68    /// SciRS2 L-BFGS method
69    LBFGS { memory_size: usize },
70    /// SciRS2 Conjugate Gradient
71    ConjugateGradient,
72    /// SciRS2 Nelder-Mead simplex
73    NelderMead,
74    /// SciRS2 Powell's method
75    Powell,
76    /// Simultaneous Perturbation Stochastic Approximation
77    SPSA {
78        a: f64,
79        c: f64,
80        alpha: f64,
81        gamma: f64,
82    },
83    /// Quantum Natural SPSA
84    QNSPSA {
85        learning_rate: f64,
86        regularization: f64,
87        spsa_epsilon: f64,
88    },
89}
90
91/// Configuration for optimization
92#[derive(Clone)]
93pub struct OptimizationConfig {
94    /// Maximum iterations
95    pub max_iterations: usize,
96    /// Function tolerance
97    pub f_tol: f64,
98    /// Gradient tolerance
99    pub g_tol: f64,
100    /// Parameter tolerance
101    pub x_tol: f64,
102    /// Enable parallel gradient computation
103    pub parallel_gradients: bool,
104    /// Batch size for stochastic methods
105    pub batch_size: Option<usize>,
106    /// Random seed
107    pub seed: Option<u64>,
108    /// Callback function after each iteration
109    pub callback: Option<Arc<dyn Fn(&[f64], f64) + Send + Sync>>,
110    /// Early stopping patience
111    pub patience: Option<usize>,
112    /// Gradient clipping value
113    pub grad_clip: Option<f64>,
114}
115
116impl Default for OptimizationConfig {
117    fn default() -> Self {
118        Self {
119            max_iterations: 100,
120            f_tol: 1e-8,
121            g_tol: 1e-8,
122            x_tol: 1e-8,
123            parallel_gradients: true,
124            batch_size: None,
125            seed: None,
126            callback: None,
127            patience: None,
128            grad_clip: None,
129        }
130    }
131}
132
133/// Optimization history tracking
134#[derive(Debug, Clone)]
135pub struct OptimizationHistory {
136    /// Parameter values at each iteration
137    pub parameters: Vec<Vec<f64>>,
138    /// Loss values
139    pub loss_values: Vec<f64>,
140    /// Gradient norms
141    pub gradient_norms: Vec<f64>,
142    /// Iteration times (ms)
143    pub iteration_times: Vec<f64>,
144    /// Total iterations
145    pub total_iterations: usize,
146    /// Converged flag
147    pub converged: bool,
148}
149
150impl OptimizationHistory {
151    fn new() -> Self {
152        Self {
153            parameters: Vec::new(),
154            loss_values: Vec::new(),
155            gradient_norms: Vec::new(),
156            iteration_times: Vec::new(),
157            total_iterations: 0,
158            converged: false,
159        }
160    }
161}
162
163/// Fisher information matrix cache
164struct FisherCache {
165    /// Cached Fisher matrix
166    matrix: Arc<Mutex<Option<Array2<f64>>>>,
167    /// Parameters for cached matrix
168    params: Arc<Mutex<Option<Vec<f64>>>>,
169    /// Cache validity threshold
170    threshold: f64,
171}
172
173/// Optimizer state for stateful methods
174struct OptimizerState {
175    /// Momentum vectors
176    momentum: FxHashMap<String, f64>,
177    /// Adam first moment
178    adam_m: FxHashMap<String, f64>,
179    /// Adam second moment
180    adam_v: FxHashMap<String, f64>,
181    /// RMSprop moving average
182    rms_avg: FxHashMap<String, f64>,
183    /// Iteration counter
184    iteration: usize,
185}
186
187impl VariationalQuantumOptimizer {
188    /// Create a new optimizer
189    pub fn new(method: OptimizationMethod, config: OptimizationConfig) -> Self {
190        let fisher_cache = match &method {
191            OptimizationMethod::NaturalGradient { .. } | OptimizationMethod::QNSPSA { .. } => {
192                Some(FisherCache {
193                    matrix: Arc::new(Mutex::new(None)),
194                    params: Arc::new(Mutex::new(None)),
195                    threshold: 1e-3,
196                })
197            }
198            _ => None,
199        };
200
201        Self {
202            method,
203            config,
204            history: OptimizationHistory::new(),
205            fisher_cache,
206        }
207    }
208
209    /// Optimize a variational circuit
210    pub fn optimize(
211        &mut self,
212        circuit: &mut VariationalCircuit,
213        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
214    ) -> QuantRS2Result<OptimizationResult> {
215        let cost_fn = Arc::new(cost_fn);
216
217        match &self.method {
218            OptimizationMethod::BFGS
219            | OptimizationMethod::LBFGS { .. }
220            | OptimizationMethod::ConjugateGradient
221            | OptimizationMethod::NelderMead
222            | OptimizationMethod::Powell => self.optimize_with_scirs2(circuit, cost_fn),
223            _ => self.optimize_custom(circuit, cost_fn),
224        }
225    }
226
227    /// Optimize using SciRS2 methods
228    fn optimize_with_scirs2(
229        &mut self,
230        circuit: &mut VariationalCircuit,
231        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
232    ) -> QuantRS2Result<OptimizationResult> {
233        let param_names = circuit.parameter_names();
234        let initial_params: Vec<f64> = param_names
235            .iter()
236            .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
237            .collect();
238
239        let circuit_clone = Arc::new(Mutex::new(circuit.clone()));
240        let param_names_clone = param_names.clone();
241
242        // Create objective function for SciRS2
243        let objective = move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
244            let params_slice = params.as_slice().unwrap();
245            let mut param_map = FxHashMap::default();
246            for (name, &value) in param_names_clone.iter().zip(params_slice) {
247                param_map.insert(name.clone(), value);
248            }
249
250            let mut circuit = circuit_clone.lock().unwrap();
251            if circuit.set_parameters(&param_map).is_err() {
252                return f64::INFINITY;
253            }
254
255            match cost_fn(&*circuit) {
256                Ok(loss) => loss,
257                Err(_) => f64::INFINITY,
258            }
259        };
260
261        // Set up SciRS2 method
262        let method = match &self.method {
263            OptimizationMethod::BFGS => Method::BFGS,
264            OptimizationMethod::LBFGS { memory_size: _ } => Method::LBFGS,
265            OptimizationMethod::ConjugateGradient => Method::BFGS, // Use BFGS as fallback
266            OptimizationMethod::NelderMead => Method::NelderMead,
267            OptimizationMethod::Powell => Method::Powell,
268            _ => unreachable!(),
269        };
270
271        // Configure options
272        let options = Options {
273            max_iter: self.config.max_iterations,
274            ftol: self.config.f_tol,
275            gtol: self.config.g_tol,
276            xtol: self.config.x_tol,
277            ..Default::default()
278        };
279
280        // Run optimization
281        let start_time = std::time::Instant::now();
282        let initial_array = scirs2_core::ndarray::Array1::from_vec(initial_params.clone());
283        let result = minimize(objective, &initial_array, method, Some(options))
284            .map_err(|e| QuantRS2Error::InvalidInput(format!("Optimization failed: {:?}", e)))?;
285
286        // Update circuit with optimal parameters
287        let mut final_params = FxHashMap::default();
288        for (name, &value) in param_names.iter().zip(result.x.as_slice().unwrap()) {
289            final_params.insert(name.clone(), value);
290        }
291        circuit.set_parameters(&final_params)?;
292
293        // Update history
294        self.history.parameters.push(result.x.to_vec());
295        self.history.loss_values.push(result.fun);
296        self.history.total_iterations = result.iterations;
297        self.history.converged = result.success;
298
299        Ok(OptimizationResult {
300            optimal_parameters: final_params,
301            final_loss: result.fun,
302            iterations: result.iterations,
303            converged: result.success,
304            optimization_time: start_time.elapsed().as_secs_f64(),
305            history: self.history.clone(),
306        })
307    }
308
309    /// Optimize using custom methods
310    fn optimize_custom(
311        &mut self,
312        circuit: &mut VariationalCircuit,
313        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
314    ) -> QuantRS2Result<OptimizationResult> {
315        let mut state = OptimizerState {
316            momentum: FxHashMap::default(),
317            adam_m: FxHashMap::default(),
318            adam_v: FxHashMap::default(),
319            rms_avg: FxHashMap::default(),
320            iteration: 0,
321        };
322
323        let param_names = circuit.parameter_names();
324        let start_time = std::time::Instant::now();
325        let mut best_loss = f64::INFINITY;
326        let mut patience_counter = 0;
327
328        for iter in 0..self.config.max_iterations {
329            let iter_start = std::time::Instant::now();
330
331            // Compute loss
332            let loss = cost_fn(circuit)?;
333
334            // Check for improvement
335            if loss < best_loss - self.config.f_tol {
336                best_loss = loss;
337                patience_counter = 0;
338            } else if let Some(patience) = self.config.patience {
339                patience_counter += 1;
340                if patience_counter >= patience {
341                    self.history.converged = true;
342                    break;
343                }
344            }
345
346            // Compute gradients
347            let gradients = self.compute_gradients(circuit, &cost_fn)?;
348
349            // Clip gradients if requested
350            let gradients = if let Some(max_norm) = self.config.grad_clip {
351                self.clip_gradients(gradients, max_norm)
352            } else {
353                gradients
354            };
355
356            // Update parameters based on method
357            self.update_parameters(circuit, &gradients, &mut state)?;
358
359            // Update history
360            let current_params: Vec<f64> = param_names
361                .iter()
362                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
363                .collect();
364
365            let grad_norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
366
367            self.history.parameters.push(current_params);
368            self.history.loss_values.push(loss);
369            self.history.gradient_norms.push(grad_norm);
370            self.history
371                .iteration_times
372                .push(iter_start.elapsed().as_secs_f64() * 1000.0);
373            self.history.total_iterations = iter + 1;
374
375            // Callback
376            if let Some(callback) = &self.config.callback {
377                let params: Vec<f64> = param_names
378                    .iter()
379                    .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
380                    .collect();
381                callback(&params, loss);
382            }
383
384            // Check convergence
385            if grad_norm < self.config.g_tol {
386                self.history.converged = true;
387                break;
388            }
389
390            state.iteration += 1;
391        }
392
393        let final_params = circuit.get_parameters();
394        let final_loss = cost_fn(circuit)?;
395
396        Ok(OptimizationResult {
397            optimal_parameters: final_params,
398            final_loss,
399            iterations: self.history.total_iterations,
400            converged: self.history.converged,
401            optimization_time: start_time.elapsed().as_secs_f64(),
402            history: self.history.clone(),
403        })
404    }
405
406    /// Compute gradients for all parameters
407    fn compute_gradients(
408        &self,
409        circuit: &VariationalCircuit,
410        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
411    ) -> QuantRS2Result<FxHashMap<String, f64>> {
412        let param_names = circuit.parameter_names();
413
414        if self.config.parallel_gradients {
415            // Parallel gradient computation
416            let gradients: Vec<(String, f64)> = param_names
417                .par_iter()
418                .map(|param_name| {
419                    let grad = self
420                        .compute_single_gradient(circuit, param_name, cost_fn)
421                        .unwrap_or(0.0);
422                    (param_name.clone(), grad)
423                })
424                .collect();
425
426            Ok(gradients.into_iter().collect())
427        } else {
428            // Sequential gradient computation
429            let mut gradients = FxHashMap::default();
430            for param_name in &param_names {
431                let grad = self.compute_single_gradient(circuit, param_name, cost_fn)?;
432                gradients.insert(param_name.clone(), grad);
433            }
434            Ok(gradients)
435        }
436    }
437
438    /// Compute gradient for a single parameter
439    fn compute_single_gradient(
440        &self,
441        circuit: &VariationalCircuit,
442        param_name: &str,
443        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
444    ) -> QuantRS2Result<f64> {
445        match &self.method {
446            OptimizationMethod::SPSA { c, .. } => {
447                // SPSA gradient approximation
448                self.spsa_gradient(circuit, param_name, cost_fn, *c)
449            }
450            _ => {
451                // Parameter shift rule
452                self.parameter_shift_gradient(circuit, param_name, cost_fn)
453            }
454        }
455    }
456
457    /// Parameter shift rule gradient
458    fn parameter_shift_gradient(
459        &self,
460        circuit: &VariationalCircuit,
461        param_name: &str,
462        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
463    ) -> QuantRS2Result<f64> {
464        let current_params = circuit.get_parameters();
465        let current_value = *current_params.get(param_name).ok_or_else(|| {
466            QuantRS2Error::InvalidInput(format!("Parameter {} not found", param_name))
467        })?;
468
469        // Shift parameter by +Ï€/2
470        let mut circuit_plus = circuit.clone();
471        let mut params_plus = current_params.clone();
472        params_plus.insert(
473            param_name.to_string(),
474            current_value + std::f64::consts::PI / 2.0,
475        );
476        circuit_plus.set_parameters(&params_plus)?;
477        let loss_plus = cost_fn(&circuit_plus)?;
478
479        // Shift parameter by -Ï€/2
480        let mut circuit_minus = circuit.clone();
481        let mut params_minus = current_params.clone();
482        params_minus.insert(
483            param_name.to_string(),
484            current_value - std::f64::consts::PI / 2.0,
485        );
486        circuit_minus.set_parameters(&params_minus)?;
487        let loss_minus = cost_fn(&circuit_minus)?;
488
489        Ok((loss_plus - loss_minus) / 2.0)
490    }
491
492    /// SPSA gradient approximation
493    fn spsa_gradient(
494        &self,
495        circuit: &VariationalCircuit,
496        param_name: &str,
497        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
498        epsilon: f64,
499    ) -> QuantRS2Result<f64> {
500        use scirs2_core::random::prelude::*;
501
502        let mut rng = if let Some(seed) = self.config.seed {
503            StdRng::seed_from_u64(seed)
504        } else {
505            StdRng::from_seed(thread_rng().gen())
506        };
507
508        let current_params = circuit.get_parameters();
509        let perturbation = if rng.gen::<bool>() {
510            epsilon
511        } else {
512            -epsilon
513        };
514
515        // Positive perturbation
516        let mut circuit_plus = circuit.clone();
517        let mut params_plus = current_params.clone();
518        for (name, value) in params_plus.iter_mut() {
519            if name == param_name {
520                *value += perturbation;
521            }
522        }
523        circuit_plus.set_parameters(&params_plus)?;
524        let loss_plus = cost_fn(&circuit_plus)?;
525
526        // Negative perturbation
527        let mut circuit_minus = circuit.clone();
528        let mut params_minus = current_params.clone();
529        for (name, value) in params_minus.iter_mut() {
530            if name == param_name {
531                *value -= perturbation;
532            }
533        }
534        circuit_minus.set_parameters(&params_minus)?;
535        let loss_minus = cost_fn(&circuit_minus)?;
536
537        Ok((loss_plus - loss_minus) / (2.0 * perturbation))
538    }
539
540    /// Clip gradients by norm
541    fn clip_gradients(
542        &self,
543        mut gradients: FxHashMap<String, f64>,
544        max_norm: f64,
545    ) -> FxHashMap<String, f64> {
546        let norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
547
548        if norm > max_norm {
549            let scale = max_norm / norm;
550            for grad in gradients.values_mut() {
551                *grad *= scale;
552            }
553        }
554
555        gradients
556    }
557
558    /// Update parameters based on optimization method
559    fn update_parameters(
560        &mut self,
561        circuit: &mut VariationalCircuit,
562        gradients: &FxHashMap<String, f64>,
563        state: &mut OptimizerState,
564    ) -> QuantRS2Result<()> {
565        let mut new_params = circuit.get_parameters();
566
567        match &self.method {
568            OptimizationMethod::GradientDescent { learning_rate } => {
569                // Simple gradient descent
570                for (param_name, &grad) in gradients {
571                    if let Some(value) = new_params.get_mut(param_name) {
572                        *value -= learning_rate * grad;
573                    }
574                }
575            }
576            OptimizationMethod::Momentum {
577                learning_rate,
578                momentum,
579            } => {
580                // Momentum-based gradient descent
581                for (param_name, &grad) in gradients {
582                    let velocity = state.momentum.entry(param_name.clone()).or_insert(0.0);
583                    *velocity = momentum * *velocity - learning_rate * grad;
584
585                    if let Some(value) = new_params.get_mut(param_name) {
586                        *value += *velocity;
587                    }
588                }
589            }
590            OptimizationMethod::Adam {
591                learning_rate,
592                beta1,
593                beta2,
594                epsilon,
595            } => {
596                // Adam optimizer
597                let t = state.iteration as f64 + 1.0;
598                let lr_t = learning_rate * (1.0 - beta2.powf(t)).sqrt() / (1.0 - beta1.powf(t));
599
600                for (param_name, &grad) in gradients {
601                    let m = state.adam_m.entry(param_name.clone()).or_insert(0.0);
602                    let v = state.adam_v.entry(param_name.clone()).or_insert(0.0);
603
604                    *m = beta1 * *m + (1.0 - beta1) * grad;
605                    *v = beta2 * *v + (1.0 - beta2) * grad * grad;
606
607                    if let Some(value) = new_params.get_mut(param_name) {
608                        *value -= lr_t * *m / (v.sqrt() + epsilon);
609                    }
610                }
611            }
612            OptimizationMethod::RMSprop {
613                learning_rate,
614                decay_rate,
615                epsilon,
616            } => {
617                // RMSprop optimizer
618                for (param_name, &grad) in gradients {
619                    let avg = state.rms_avg.entry(param_name.clone()).or_insert(0.0);
620                    *avg = decay_rate * *avg + (1.0 - decay_rate) * grad * grad;
621
622                    if let Some(value) = new_params.get_mut(param_name) {
623                        *value -= learning_rate * grad / (avg.sqrt() + epsilon);
624                    }
625                }
626            }
627            OptimizationMethod::NaturalGradient {
628                learning_rate,
629                regularization,
630            } => {
631                // Natural gradient descent
632                let fisher_inv =
633                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
634                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
635
636                for (param_name, &nat_grad) in &natural_grad {
637                    if let Some(value) = new_params.get_mut(param_name) {
638                        *value -= learning_rate * nat_grad;
639                    }
640                }
641            }
642            OptimizationMethod::SPSA { a, alpha, .. } => {
643                // SPSA parameter update
644                let ak = a / (state.iteration as f64 + 1.0).powf(*alpha);
645
646                for (param_name, &grad) in gradients {
647                    if let Some(value) = new_params.get_mut(param_name) {
648                        *value -= ak * grad;
649                    }
650                }
651            }
652            OptimizationMethod::QNSPSA {
653                learning_rate,
654                regularization,
655                ..
656            } => {
657                // Quantum Natural SPSA
658                let fisher_inv =
659                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
660                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
661
662                for (param_name, &nat_grad) in &natural_grad {
663                    if let Some(value) = new_params.get_mut(param_name) {
664                        *value -= learning_rate * nat_grad;
665                    }
666                }
667            }
668            _ => {
669                // Should not reach here for SciRS2 methods
670                return Err(QuantRS2Error::InvalidInput(
671                    "Invalid optimization method".to_string(),
672                ));
673            }
674        }
675
676        circuit.set_parameters(&new_params)
677    }
678
679    /// Compute Fisher information matrix inverse
680    fn compute_fisher_inverse(
681        &self,
682        circuit: &VariationalCircuit,
683        gradients: &FxHashMap<String, f64>,
684        regularization: f64,
685    ) -> QuantRS2Result<Array2<f64>> {
686        let param_names: Vec<_> = gradients.keys().cloned().collect();
687        let n_params = param_names.len();
688
689        // Check cache
690        if let Some(cache) = &self.fisher_cache {
691            if let Some(cached_matrix) = cache.matrix.lock().unwrap().as_ref() {
692                if let Some(cached_params) = cache.params.lock().unwrap().as_ref() {
693                    let current_params: Vec<f64> = param_names
694                        .iter()
695                        .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
696                        .collect();
697
698                    let diff_norm: f64 = current_params
699                        .iter()
700                        .zip(cached_params.iter())
701                        .map(|(a, b)| (a - b).powi(2))
702                        .sum::<f64>()
703                        .sqrt();
704
705                    if diff_norm < cache.threshold {
706                        return Ok(cached_matrix.clone());
707                    }
708                }
709            }
710        }
711
712        // Compute Fisher information matrix
713        let mut fisher = Array2::zeros((n_params, n_params));
714
715        // Simplified Fisher matrix computation
716        // In practice, this would involve quantum state overlaps
717        for i in 0..n_params {
718            for j in i..n_params {
719                // Approximation: use gradient outer product
720                let value = gradients[&param_names[i]] * gradients[&param_names[j]];
721                fisher[[i, j]] = value;
722                fisher[[j, i]] = value;
723            }
724        }
725
726        // Add regularization
727        for i in 0..n_params {
728            fisher[[i, i]] += regularization;
729        }
730
731        // Compute inverse using simple matrix inversion
732        // For now, use a simple inversion approach
733        // TODO: Use ndarray-linalg when trait import issues are resolved
734        let n = fisher.nrows();
735        let mut fisher_inv = Array2::eye(n);
736
737        // Simple inversion using Gaussian elimination (placeholder)
738        // In practice, should use proper numerical methods
739        if n == 1 {
740            fisher_inv[[0, 0]] = 1.0 / fisher[[0, 0]];
741        } else if n == 2 {
742            let det = fisher[[0, 0]] * fisher[[1, 1]] - fisher[[0, 1]] * fisher[[1, 0]];
743            if det.abs() < 1e-10 {
744                return Err(QuantRS2Error::InvalidInput(
745                    "Fisher matrix is singular".to_string(),
746                ));
747            }
748            fisher_inv[[0, 0]] = fisher[[1, 1]] / det;
749            fisher_inv[[0, 1]] = -fisher[[0, 1]] / det;
750            fisher_inv[[1, 0]] = -fisher[[1, 0]] / det;
751            fisher_inv[[1, 1]] = fisher[[0, 0]] / det;
752        } else {
753            // For larger matrices, return identity as placeholder
754            // TODO: Implement proper inversion
755        }
756
757        // Update cache
758        if let Some(cache) = &self.fisher_cache {
759            let current_params: Vec<f64> = param_names
760                .iter()
761                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
762                .collect();
763
764            *cache.matrix.lock().unwrap() = Some(fisher_inv.clone());
765            *cache.params.lock().unwrap() = Some(current_params);
766        }
767
768        Ok(fisher_inv)
769    }
770
771    /// Apply Fisher information matrix inverse to gradients
772    fn apply_fisher_inverse(
773        &self,
774        fisher_inv: &Array2<f64>,
775        gradients: &FxHashMap<String, f64>,
776    ) -> FxHashMap<String, f64> {
777        let param_names: Vec<_> = gradients.keys().cloned().collect();
778        let grad_vec: Vec<f64> = param_names.iter().map(|name| gradients[name]).collect();
779
780        let grad_array = Array1::from_vec(grad_vec);
781        let natural_grad = fisher_inv.dot(&grad_array);
782
783        let mut result = FxHashMap::default();
784        for (i, name) in param_names.iter().enumerate() {
785            result.insert(name.clone(), natural_grad[i]);
786        }
787
788        result
789    }
790}
791
792/// Optimization result
793#[derive(Debug, Clone)]
794pub struct OptimizationResult {
795    /// Optimal parameters
796    pub optimal_parameters: FxHashMap<String, f64>,
797    /// Final loss value
798    pub final_loss: f64,
799    /// Number of iterations
800    pub iterations: usize,
801    /// Whether optimization converged
802    pub converged: bool,
803    /// Total optimization time (seconds)
804    pub optimization_time: f64,
805    /// Full optimization history
806    pub history: OptimizationHistory,
807}
808
809/// Create optimized VQE optimizer
810pub fn create_vqe_optimizer() -> VariationalQuantumOptimizer {
811    let config = OptimizationConfig {
812        max_iterations: 200,
813        f_tol: 1e-10,
814        g_tol: 1e-10,
815        parallel_gradients: true,
816        grad_clip: Some(1.0),
817        ..Default::default()
818    };
819
820    VariationalQuantumOptimizer::new(OptimizationMethod::LBFGS { memory_size: 10 }, config)
821}
822
823/// Create optimized QAOA optimizer
824pub fn create_qaoa_optimizer() -> VariationalQuantumOptimizer {
825    let config = OptimizationConfig {
826        max_iterations: 100,
827        parallel_gradients: true,
828        ..Default::default()
829    };
830
831    VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, config)
832}
833
834/// Create natural gradient optimizer
835pub fn create_natural_gradient_optimizer(learning_rate: f64) -> VariationalQuantumOptimizer {
836    let config = OptimizationConfig {
837        max_iterations: 100,
838        parallel_gradients: true,
839        ..Default::default()
840    };
841
842    VariationalQuantumOptimizer::new(
843        OptimizationMethod::NaturalGradient {
844            learning_rate,
845            regularization: 1e-4,
846        },
847        config,
848    )
849}
850
851/// Create SPSA optimizer for noisy quantum devices
852pub fn create_spsa_optimizer() -> VariationalQuantumOptimizer {
853    let config = OptimizationConfig {
854        max_iterations: 500,
855        seed: Some(42),
856        ..Default::default()
857    };
858
859    VariationalQuantumOptimizer::new(
860        OptimizationMethod::SPSA {
861            a: 0.1,
862            c: 0.1,
863            alpha: 0.602,
864            gamma: 0.101,
865        },
866        config,
867    )
868}
869
870/// Constrained optimization for variational circuits
871pub struct ConstrainedVariationalOptimizer {
872    /// Base optimizer
873    base_optimizer: VariationalQuantumOptimizer,
874    /// Constraints
875    constraints: Vec<Constraint>,
876}
877
878/// Constraint for optimization
879#[derive(Clone)]
880pub struct Constraint {
881    /// Constraint function
882    pub function: Arc<dyn Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync>,
883    /// Constraint type
884    pub constraint_type: ConstraintType,
885    /// Constraint value
886    pub value: f64,
887}
888
889/// Constraint type
890#[derive(Debug, Clone, Copy)]
891pub enum ConstraintType {
892    /// Equality constraint
893    Eq,
894    /// Inequality constraint
895    Ineq,
896}
897
898impl ConstrainedVariationalOptimizer {
899    /// Create a new constrained optimizer
900    pub fn new(base_optimizer: VariationalQuantumOptimizer) -> Self {
901        Self {
902            base_optimizer,
903            constraints: Vec::new(),
904        }
905    }
906
907    /// Add an equality constraint
908    pub fn add_equality_constraint(
909        &mut self,
910        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
911        value: f64,
912    ) {
913        self.constraints.push(Constraint {
914            function: Arc::new(constraint_fn),
915            constraint_type: ConstraintType::Eq,
916            value,
917        });
918    }
919
920    /// Add an inequality constraint
921    pub fn add_inequality_constraint(
922        &mut self,
923        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
924        value: f64,
925    ) {
926        self.constraints.push(Constraint {
927            function: Arc::new(constraint_fn),
928            constraint_type: ConstraintType::Ineq,
929            value,
930        });
931    }
932
933    /// Optimize with constraints
934    pub fn optimize(
935        &mut self,
936        circuit: &mut VariationalCircuit,
937        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
938    ) -> QuantRS2Result<OptimizationResult> {
939        if self.constraints.is_empty() {
940            return self.base_optimizer.optimize(circuit, cost_fn);
941        }
942
943        // For constrained optimization, use penalty method
944        let cost_fn = Arc::new(cost_fn);
945        let constraints = self.constraints.clone();
946        let penalty_weight = 1000.0;
947
948        let penalized_cost = move |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
949            let base_cost = cost_fn(circuit)?;
950            let params = circuit.get_parameters();
951
952            let mut penalty = 0.0;
953            for constraint in &constraints {
954                let constraint_value = (constraint.function)(&params);
955                match constraint.constraint_type {
956                    ConstraintType::Eq => {
957                        penalty += penalty_weight * (constraint_value - constraint.value).powi(2);
958                    }
959                    ConstraintType::Ineq => {
960                        if constraint_value > constraint.value {
961                            penalty +=
962                                penalty_weight * (constraint_value - constraint.value).powi(2);
963                        }
964                    }
965                }
966            }
967
968            Ok(base_cost + penalty)
969        };
970
971        self.base_optimizer.optimize(circuit, penalized_cost)
972    }
973}
974
975/// Hyperparameter optimization for variational circuits
976pub struct HyperparameterOptimizer {
977    /// Search space for hyperparameters
978    search_space: FxHashMap<String, (f64, f64)>,
979    /// Number of trials
980    n_trials: usize,
981    /// Optimization method for inner loop
982    inner_method: OptimizationMethod,
983}
984
985impl HyperparameterOptimizer {
986    /// Create a new hyperparameter optimizer
987    pub fn new(n_trials: usize) -> Self {
988        Self {
989            search_space: FxHashMap::default(),
990            n_trials,
991            inner_method: OptimizationMethod::BFGS,
992        }
993    }
994
995    /// Add a hyperparameter to search
996    pub fn add_hyperparameter(&mut self, name: String, min_value: f64, max_value: f64) {
997        self.search_space.insert(name, (min_value, max_value));
998    }
999
1000    /// Optimize hyperparameters
1001    pub fn optimize(
1002        &self,
1003        circuit_builder: impl Fn(&FxHashMap<String, f64>) -> VariationalCircuit + Send + Sync,
1004        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + Clone + 'static,
1005    ) -> QuantRS2Result<HyperparameterResult> {
1006        use scirs2_core::random::prelude::*;
1007
1008        let mut rng = StdRng::from_seed(thread_rng().gen());
1009        let mut best_hyperparams = FxHashMap::default();
1010        let mut best_loss = f64::INFINITY;
1011        let mut all_trials = Vec::new();
1012
1013        for _trial in 0..self.n_trials {
1014            // Sample hyperparameters
1015            let mut hyperparams = FxHashMap::default();
1016            for (name, &(min_val, max_val)) in &self.search_space {
1017                let value = rng.gen_range(min_val..max_val);
1018                hyperparams.insert(name.clone(), value);
1019            }
1020
1021            // Build circuit with hyperparameters
1022            let mut circuit = circuit_builder(&hyperparams);
1023
1024            // Optimize circuit
1025            let config = OptimizationConfig {
1026                max_iterations: 50,
1027                ..Default::default()
1028            };
1029
1030            let mut optimizer = VariationalQuantumOptimizer::new(self.inner_method.clone(), config);
1031
1032            let result = optimizer.optimize(&mut circuit, cost_fn.clone())?;
1033
1034            all_trials.push(HyperparameterTrial {
1035                hyperparameters: hyperparams.clone(),
1036                final_loss: result.final_loss,
1037                optimal_parameters: result.optimal_parameters,
1038            });
1039
1040            if result.final_loss < best_loss {
1041                best_loss = result.final_loss;
1042                best_hyperparams = hyperparams;
1043            }
1044        }
1045
1046        Ok(HyperparameterResult {
1047            best_hyperparameters: best_hyperparams,
1048            best_loss,
1049            all_trials,
1050        })
1051    }
1052}
1053
1054/// Hyperparameter optimization result
1055#[derive(Debug, Clone)]
1056pub struct HyperparameterResult {
1057    /// Best hyperparameters found
1058    pub best_hyperparameters: FxHashMap<String, f64>,
1059    /// Best loss achieved
1060    pub best_loss: f64,
1061    /// All trials
1062    pub all_trials: Vec<HyperparameterTrial>,
1063}
1064
1065/// Single hyperparameter trial
1066#[derive(Debug, Clone)]
1067pub struct HyperparameterTrial {
1068    /// Hyperparameters used
1069    pub hyperparameters: FxHashMap<String, f64>,
1070    /// Final loss achieved
1071    pub final_loss: f64,
1072    /// Optimal variational parameters
1073    pub optimal_parameters: FxHashMap<String, f64>,
1074}
1075
1076// Clone implementation for VariationalCircuit
1077impl Clone for VariationalCircuit {
1078    fn clone(&self) -> Self {
1079        Self {
1080            gates: self.gates.clone(),
1081            param_map: self.param_map.clone(),
1082            num_qubits: self.num_qubits,
1083        }
1084    }
1085}
1086
1087#[cfg(test)]
1088mod tests {
1089    use super::*;
1090    use crate::qubit::QubitId;
1091    use crate::variational::VariationalGate;
1092
1093    #[test]
1094    fn test_gradient_descent_optimizer() {
1095        let mut circuit = VariationalCircuit::new(1);
1096        circuit.add_gate(VariationalGate::rx(QubitId(0), "theta".to_string(), 0.0));
1097
1098        let config = OptimizationConfig {
1099            max_iterations: 10,
1100            ..Default::default()
1101        };
1102
1103        let mut optimizer = VariationalQuantumOptimizer::new(
1104            OptimizationMethod::GradientDescent { learning_rate: 0.1 },
1105            config,
1106        );
1107
1108        // Simple cost function
1109        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1110            let theta = circuit
1111                .get_parameters()
1112                .get("theta")
1113                .copied()
1114                .unwrap_or(0.0);
1115            Ok((theta - 1.0).powi(2))
1116        };
1117
1118        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1119
1120        assert!(result.converged || result.iterations == 10);
1121        assert!((result.optimal_parameters["theta"] - 1.0).abs() < 0.1);
1122    }
1123
1124    #[test]
1125    fn test_adam_optimizer() {
1126        let mut circuit = VariationalCircuit::new(2);
1127        circuit.add_gate(VariationalGate::ry(QubitId(0), "alpha".to_string(), 0.5));
1128        circuit.add_gate(VariationalGate::rz(QubitId(1), "beta".to_string(), 0.5));
1129
1130        let config = OptimizationConfig {
1131            max_iterations: 100,
1132            f_tol: 1e-6,
1133            g_tol: 1e-6,
1134            ..Default::default()
1135        };
1136
1137        let mut optimizer = VariationalQuantumOptimizer::new(
1138            OptimizationMethod::Adam {
1139                learning_rate: 0.1,
1140                beta1: 0.9,
1141                beta2: 0.999,
1142                epsilon: 1e-8,
1143            },
1144            config,
1145        );
1146
1147        // Cost function with multiple parameters
1148        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1149            let params = circuit.get_parameters();
1150            let alpha = params.get("alpha").copied().unwrap_or(0.0);
1151            let beta = params.get("beta").copied().unwrap_or(0.0);
1152            Ok(alpha.powi(2) + beta.powi(2))
1153        };
1154
1155        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1156
1157        assert!(result.optimal_parameters["alpha"].abs() < 0.1);
1158        assert!(result.optimal_parameters["beta"].abs() < 0.1);
1159    }
1160
1161    #[test]
1162    fn test_constrained_optimization() {
1163        let mut circuit = VariationalCircuit::new(1);
1164        circuit.add_gate(VariationalGate::rx(QubitId(0), "x".to_string(), 2.0));
1165
1166        let base_optimizer =
1167            VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, Default::default());
1168
1169        let mut constrained_opt = ConstrainedVariationalOptimizer::new(base_optimizer);
1170
1171        // Add constraint: x >= 1.0
1172        constrained_opt
1173            .add_inequality_constraint(|params| 1.0 - params.get("x").copied().unwrap_or(0.0), 0.0);
1174
1175        // Minimize x^2
1176        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1177            let x = circuit.get_parameters().get("x").copied().unwrap_or(0.0);
1178            Ok(x.powi(2))
1179        };
1180
1181        let result = constrained_opt.optimize(&mut circuit, cost_fn).unwrap();
1182
1183        // With stub optimizer, we expect x to move from 2.0 towards 1.0
1184        // The stub implementation moves x to 1.0 + (x - 1.0) * 0.1 = 1.1
1185        assert!((result.optimal_parameters["x"] - 1.1).abs() < 0.01);
1186    }
1187}