pub struct CommutationTable { /* private fields */ }
Expand description
Commutation table for gates
Implementations§
Source§impl CommutationTable
impl CommutationTable
Sourcepub fn new() -> Self
pub fn new() -> Self
Create a new commutation table
Examples found in repository?
examples/optimization_demo.rs (line 194)
168fn demo_gate_properties() {
169 println!("\nDemo 4: Gate Properties");
170 println!("-----------------------");
171
172 // Show properties of various gates
173 let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175 for gate_name in gates {
176 let props = match gate_name {
177 "H" | "X" => GateProperties::single_qubit(gate_name),
178 "CNOT" => GateProperties::two_qubit(gate_name),
179 "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180 _ => continue,
181 };
182
183 println!("\n{} Gate Properties:", gate_name);
184 println!(" Native: {}", props.is_native);
185 println!(" Duration: {:.1} ns", props.cost.duration_ns);
186 println!(" Error rate: {:.6}", props.error.error_rate);
187 println!(" Self-inverse: {}", props.is_self_inverse);
188 println!(" Diagonal: {}", props.is_diagonal);
189 println!(" Decompositions: {}", props.decompositions.len());
190 }
191
192 // Show commutation relations
193 println!("\nCommutation Relations:");
194 let comm_table = CommutationTable::new();
195
196 let gate_pairs = vec![
197 ("X", "Y"),
198 ("X", "Z"),
199 ("Z", "Z"),
200 ("Z", "RZ"),
201 ("CNOT", "CNOT"),
202 ];
203
204 for (g1, g2) in gate_pairs {
205 println!(
206 " {} ↔ {}: {}",
207 g1,
208 g2,
209 if comm_table.commutes(g1, g2) {
210 "✓"
211 } else {
212 "✗"
213 }
214 );
215 }
216 println!();
217}
Sourcepub fn commutes(&self, gate1: &str, gate2: &str) -> bool
pub fn commutes(&self, gate1: &str, gate2: &str) -> bool
Check if two gates commute
Examples found in repository?
examples/optimization_demo.rs (line 209)
168fn demo_gate_properties() {
169 println!("\nDemo 4: Gate Properties");
170 println!("-----------------------");
171
172 // Show properties of various gates
173 let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175 for gate_name in gates {
176 let props = match gate_name {
177 "H" | "X" => GateProperties::single_qubit(gate_name),
178 "CNOT" => GateProperties::two_qubit(gate_name),
179 "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180 _ => continue,
181 };
182
183 println!("\n{} Gate Properties:", gate_name);
184 println!(" Native: {}", props.is_native);
185 println!(" Duration: {:.1} ns", props.cost.duration_ns);
186 println!(" Error rate: {:.6}", props.error.error_rate);
187 println!(" Self-inverse: {}", props.is_self_inverse);
188 println!(" Diagonal: {}", props.is_diagonal);
189 println!(" Decompositions: {}", props.decompositions.len());
190 }
191
192 // Show commutation relations
193 println!("\nCommutation Relations:");
194 let comm_table = CommutationTable::new();
195
196 let gate_pairs = vec![
197 ("X", "Y"),
198 ("X", "Z"),
199 ("Z", "Z"),
200 ("Z", "RZ"),
201 ("CNOT", "CNOT"),
202 ];
203
204 for (g1, g2) in gate_pairs {
205 println!(
206 " {} ↔ {}: {}",
207 g1,
208 g2,
209 if comm_table.commutes(g1, g2) {
210 "✓"
211 } else {
212 "✗"
213 }
214 );
215 }
216 println!();
217}
Sourcepub fn gates_commute(&self, gate1: &dyn GateOp, gate2: &dyn GateOp) -> bool
pub fn gates_commute(&self, gate1: &dyn GateOp, gate2: &dyn GateOp) -> bool
Check if two gate operations commute (considering qubit indices)
Trait Implementations§
Auto Trait Implementations§
impl Freeze for CommutationTable
impl RefUnwindSafe for CommutationTable
impl Send for CommutationTable
impl Sync for CommutationTable
impl Unpin for CommutationTable
impl UnwindSafe for CommutationTable
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.