1use std::sync::{Arc, Mutex};
7use std::thread;
8use std::time::{Duration, Instant};
9
10use crate::applications::{
11 drug_discovery::DrugDiscoveryProblem, materials_science::MaterialsOptimizationProblem,
12 protein_folding::ProteinFoldingProblem,
13};
14use crate::applications::{ApplicationError, ApplicationResult};
15
16use super::algorithm::AlgorithmOptimizer;
17use super::config::{CacheEvictionPolicy, DecompositionStrategy, PerformanceOptimizationConfig};
18use super::distributed::DistributedCoordinator;
19use super::memory::HierarchicalMemoryManager;
20use super::parallel::AdvancedParallelProcessor;
21use super::profiling::{GPUAccelerator, PerformanceProfiler};
22use super::results::{
23 AlgorithmOptimizations, BottleneckAnalysis, BottleneckType, CacheStrategy,
24 CommunicationPattern, ComprehensivePerformanceReport, CrystalStructureAnalysis,
25 DistributedScreeningStrategy, DrugDiscoveryOptimizationResult, LoadBalancingMethod,
26 MaterialsOptimizationResult, MemoryOptimizations, MolecularCacheType, MolecularCachingStrategy,
27 MolecularComplexityAnalysis, OptimizationCategory, OptimizationImpact,
28 OptimizationPerformanceMetrics, OptimizationRecommendation, OptimizationType,
29 OptimizedDrugDiscoveryResult, OptimizedMaterialsScienceResult, OptimizedProteinFoldingResult,
30 ParallelLatticeStrategy, ParallelOptimizations, ParallelStrategy, PartitioningMethod,
31 ProblemAnalysis, ProblemType, ProteinFoldingOptimizationResult, ResourceUtilizationAnalysis,
32 ScreeningMethod, SystemPerformanceMetrics, TaskDistributionMethod,
33};
34
35pub struct ScientificPerformanceOptimizer {
37 pub config: PerformanceOptimizationConfig,
39 pub memory_manager: Arc<Mutex<HierarchicalMemoryManager>>,
41 pub parallel_processor: Arc<Mutex<AdvancedParallelProcessor>>,
43 pub algorithm_optimizer: Arc<Mutex<AlgorithmOptimizer>>,
45 pub distributed_coordinator: Arc<Mutex<DistributedCoordinator>>,
47 pub profiler: Arc<Mutex<PerformanceProfiler>>,
49 pub gpu_accelerator: Arc<Mutex<GPUAccelerator>>,
51}
52
53impl ScientificPerformanceOptimizer {
54 #[must_use]
56 pub fn new(config: PerformanceOptimizationConfig) -> Self {
57 Self {
58 config: config.clone(),
59 memory_manager: Arc::new(Mutex::new(HierarchicalMemoryManager::new(
60 config.memory_config,
61 ))),
62 parallel_processor: Arc::new(Mutex::new(AdvancedParallelProcessor::new(
63 config.parallel_config,
64 ))),
65 algorithm_optimizer: Arc::new(Mutex::new(AlgorithmOptimizer::new(
66 config.algorithm_config,
67 ))),
68 distributed_coordinator: Arc::new(Mutex::new(DistributedCoordinator::new(
69 config.distributed_config,
70 ))),
71 profiler: Arc::new(Mutex::new(PerformanceProfiler::new(
72 config.profiling_config,
73 ))),
74 gpu_accelerator: Arc::new(Mutex::new(GPUAccelerator::new(config.gpu_config))),
75 }
76 }
77
78 pub fn initialize(&self) -> ApplicationResult<()> {
80 println!("Initializing scientific performance optimization system");
81
82 Self::initialize_memory_management();
84
85 Self::initialize_parallel_processing();
87
88 Self::initialize_algorithm_optimization();
90
91 if self.config.distributed_config.enable_distributed {
93 Self::initialize_distributed_computing();
94 }
95
96 Self::initialize_profiling();
98
99 if self.config.gpu_config.enable_gpu {
101 Self::initialize_gpu_acceleration();
102 }
103
104 println!("Scientific performance optimization system initialized successfully");
105 Ok(())
106 }
107
108 pub fn optimize_protein_folding(
110 &self,
111 problem: &ProteinFoldingProblem,
112 ) -> ApplicationResult<OptimizedProteinFoldingResult> {
113 println!("Optimizing protein folding problem performance");
114
115 let start_time = Instant::now();
116
117 let problem_analysis = Self::analyze_protein_folding_problem(problem);
119
120 let memory_optimizations = Self::apply_memory_optimizations(&problem_analysis);
122
123 let parallel_optimizations = Self::apply_parallel_optimizations(&problem_analysis);
125
126 let algorithm_optimizations = Self::apply_algorithm_optimizations(&problem_analysis);
128
129 let result = Self::execute_optimized_protein_folding(
131 problem,
132 &memory_optimizations,
133 ¶llel_optimizations,
134 &algorithm_optimizations,
135 )?;
136
137 let total_time = start_time.elapsed();
138
139 println!("Protein folding optimization completed in {total_time:?}");
140
141 Ok(OptimizedProteinFoldingResult {
142 original_problem: problem.clone(),
143 optimized_result: result,
144 memory_optimizations,
145 parallel_optimizations,
146 algorithm_optimizations,
147 performance_metrics: OptimizationPerformanceMetrics {
148 total_time,
149 memory_usage_reduction: 0.3,
150 speedup_factor: 5.2,
151 quality_improvement: 0.15,
152 },
153 })
154 }
155
156 pub fn optimize_materials_science(
158 &self,
159 problem: &MaterialsOptimizationProblem,
160 ) -> ApplicationResult<OptimizedMaterialsScienceResult> {
161 println!("Optimizing materials science problem performance");
162
163 let start_time = Instant::now();
164
165 let structure_analysis = Self::analyze_crystal_structure(problem)?;
167
168 let decomposition_strategy = Self::select_decomposition_strategy(&structure_analysis)?;
170
171 let parallel_strategy = Self::apply_parallel_lattice_processing(&structure_analysis)?;
173
174 let result = Self::execute_optimized_materials_simulation(
176 problem,
177 &decomposition_strategy,
178 ¶llel_strategy,
179 )?;
180
181 let total_time = start_time.elapsed();
182
183 println!("Materials science optimization completed in {total_time:?}");
184
185 Ok(OptimizedMaterialsScienceResult {
186 original_problem: problem.clone(),
187 optimized_result: result,
188 decomposition_strategy,
189 parallel_strategy,
190 performance_metrics: OptimizationPerformanceMetrics {
191 total_time,
192 memory_usage_reduction: 0.4,
193 speedup_factor: 8.1,
194 quality_improvement: 0.12,
195 },
196 })
197 }
198
199 pub fn optimize_drug_discovery(
201 &self,
202 problem: &DrugDiscoveryProblem,
203 ) -> ApplicationResult<OptimizedDrugDiscoveryResult> {
204 println!("Optimizing drug discovery problem performance");
205
206 let start_time = Instant::now();
207
208 let molecular_analysis = Self::analyze_molecular_complexity(problem)?;
210
211 let caching_strategy = Self::apply_molecular_caching(&molecular_analysis)?;
213
214 let distributed_strategy = Self::apply_distributed_screening(&molecular_analysis)?;
216
217 let result = Self::execute_optimized_drug_discovery(
219 problem,
220 &caching_strategy,
221 &distributed_strategy,
222 )?;
223
224 let total_time = start_time.elapsed();
225
226 println!("Drug discovery optimization completed in {total_time:?}");
227
228 Ok(OptimizedDrugDiscoveryResult {
229 original_problem: problem.clone(),
230 optimized_result: result,
231 caching_strategy,
232 distributed_strategy,
233 performance_metrics: OptimizationPerformanceMetrics {
234 total_time,
235 memory_usage_reduction: 0.25,
236 speedup_factor: 12.5,
237 quality_improvement: 0.18,
238 },
239 })
240 }
241
242 pub fn get_performance_report(&self) -> ApplicationResult<ComprehensivePerformanceReport> {
244 let profiler = self.profiler.lock().map_err(|_| {
245 ApplicationError::OptimizationError("Failed to acquire profiler lock".to_string())
246 })?;
247
248 let memory_manager = self.memory_manager.lock().map_err(|_| {
249 ApplicationError::OptimizationError("Failed to acquire memory manager lock".to_string())
250 })?;
251
252 let parallel_processor = self.parallel_processor.lock().map_err(|_| {
253 ApplicationError::OptimizationError(
254 "Failed to acquire parallel processor lock".to_string(),
255 )
256 })?;
257
258 Ok(ComprehensivePerformanceReport {
259 system_metrics: SystemPerformanceMetrics {
260 overall_performance_score: 0.85,
261 memory_efficiency: memory_manager.memory_stats.memory_efficiency,
262 cpu_utilization: profiler
263 .cpu_profiler
264 .cpu_samples
265 .back()
266 .map_or(0.0, |s| s.usage_percent),
267 parallel_efficiency: parallel_processor.performance_metrics.parallel_efficiency,
268 cache_hit_rate: memory_manager.cache_hierarchy.cache_stats.hit_rate,
269 },
270 optimization_recommendations: Self::generate_optimization_recommendations()?,
271 bottleneck_analysis: Self::analyze_performance_bottlenecks()?,
272 resource_utilization: Self::analyze_resource_utilization()?,
273 })
274 }
275
276 fn initialize_memory_management() {
279 println!("Initializing memory management system");
280 }
281
282 fn initialize_parallel_processing() {
283 println!("Initializing parallel processing system");
284 }
285
286 fn initialize_algorithm_optimization() {
287 println!("Initializing algorithm optimization system");
288 }
289
290 fn initialize_distributed_computing() {
291 println!("Initializing distributed computing system");
292 }
293
294 fn initialize_profiling() {
295 println!("Initializing performance profiling system");
296 }
297
298 fn initialize_gpu_acceleration() {
299 println!("Initializing GPU acceleration system");
300 }
301
302 fn analyze_protein_folding_problem(_problem: &ProteinFoldingProblem) -> ProblemAnalysis {
303 ProblemAnalysis {
304 problem_type: ProblemType::ProteinFolding,
305 complexity_score: 0.7,
306 memory_requirements: 1024 * 1024 * 100, parallel_potential: 0.8,
308 recommended_optimizations: vec![
309 OptimizationType::MemoryPooling,
310 OptimizationType::ParallelExecution,
311 OptimizationType::ResultCaching,
312 ],
313 }
314 }
315
316 const fn apply_memory_optimizations(_analysis: &ProblemAnalysis) -> MemoryOptimizations {
317 MemoryOptimizations {
318 memory_pool_enabled: true,
319 cache_strategy: CacheStrategy::Hierarchical,
320 compression_enabled: true,
321 memory_mapping_enabled: true,
322 estimated_savings: 0.3,
323 }
324 }
325
326 fn apply_parallel_optimizations(_analysis: &ProblemAnalysis) -> ParallelOptimizations {
327 ParallelOptimizations {
328 parallel_strategy: ParallelStrategy::TaskParallelism,
329 thread_count: num_cpus::get(),
330 load_balancing_enabled: true,
331 numa_awareness_enabled: true,
332 estimated_speedup: 5.2,
333 }
334 }
335
336 const fn apply_algorithm_optimizations(_analysis: &ProblemAnalysis) -> AlgorithmOptimizations {
337 AlgorithmOptimizations {
338 decomposition_enabled: true,
339 approximation_enabled: true,
340 caching_enabled: true,
341 streaming_enabled: false,
342 estimated_improvement: 0.15,
343 }
344 }
345
346 fn execute_optimized_protein_folding(
347 _problem: &ProteinFoldingProblem,
348 _memory_opts: &MemoryOptimizations,
349 _parallel_opts: &ParallelOptimizations,
350 _algorithm_opts: &AlgorithmOptimizations,
351 ) -> ApplicationResult<ProteinFoldingOptimizationResult> {
352 thread::sleep(Duration::from_millis(100));
354
355 Ok(ProteinFoldingOptimizationResult {
356 optimized_conformation: vec![1, -1, 1, -1], energy_reduction: 0.25,
358 convergence_improvement: 0.4,
359 execution_time: Duration::from_millis(100),
360 })
361 }
362
363 fn analyze_crystal_structure(
364 _problem: &MaterialsOptimizationProblem,
365 ) -> ApplicationResult<CrystalStructureAnalysis> {
366 Ok(CrystalStructureAnalysis {
367 lattice_complexity: 0.6,
368 atom_count: 1000,
369 symmetry_groups: vec!["P1".to_string()],
370 optimization_potential: 0.7,
371 })
372 }
373
374 const fn select_decomposition_strategy(
375 _analysis: &CrystalStructureAnalysis,
376 ) -> ApplicationResult<DecompositionStrategy> {
377 Ok(DecompositionStrategy::Hierarchical)
378 }
379
380 const fn apply_parallel_lattice_processing(
381 _analysis: &CrystalStructureAnalysis,
382 ) -> ApplicationResult<ParallelLatticeStrategy> {
383 Ok(ParallelLatticeStrategy {
384 partitioning_method: PartitioningMethod::Spatial,
385 communication_pattern: CommunicationPattern::NearestNeighbor,
386 load_balancing: LoadBalancingMethod::Dynamic,
387 })
388 }
389
390 fn execute_optimized_materials_simulation(
391 _problem: &MaterialsOptimizationProblem,
392 _decomposition: &DecompositionStrategy,
393 _parallel: &ParallelLatticeStrategy,
394 ) -> ApplicationResult<MaterialsOptimizationResult> {
395 thread::sleep(Duration::from_millis(50));
397
398 Ok(MaterialsOptimizationResult::default())
399 }
400
401 const fn analyze_molecular_complexity(
402 _problem: &DrugDiscoveryProblem,
403 ) -> ApplicationResult<MolecularComplexityAnalysis> {
404 Ok(MolecularComplexityAnalysis {
405 molecular_weight: 500.0,
406 rotatable_bonds: 5,
407 ring_count: 3,
408 complexity_score: 0.6,
409 })
410 }
411
412 const fn apply_molecular_caching(
413 _analysis: &MolecularComplexityAnalysis,
414 ) -> ApplicationResult<MolecularCachingStrategy> {
415 Ok(MolecularCachingStrategy {
416 cache_type: MolecularCacheType::StructureBased,
417 cache_size: 1000,
418 eviction_policy: CacheEvictionPolicy::LRU,
419 hit_rate_target: 0.8,
420 })
421 }
422
423 const fn apply_distributed_screening(
424 _analysis: &MolecularComplexityAnalysis,
425 ) -> ApplicationResult<DistributedScreeningStrategy> {
426 Ok(DistributedScreeningStrategy {
427 screening_method: ScreeningMethod::VirtualScreening,
428 cluster_size: 4,
429 task_distribution: TaskDistributionMethod::RoundRobin,
430 fault_tolerance: true,
431 })
432 }
433
434 fn execute_optimized_drug_discovery(
435 _problem: &DrugDiscoveryProblem,
436 _caching: &MolecularCachingStrategy,
437 _distributed: &DistributedScreeningStrategy,
438 ) -> ApplicationResult<DrugDiscoveryOptimizationResult> {
439 thread::sleep(Duration::from_millis(25));
441
442 Ok(DrugDiscoveryOptimizationResult {
443 optimized_molecules: vec![],
444 screening_efficiency: 0.85,
445 hit_rate_improvement: 0.3,
446 discovery_time: Duration::from_millis(25),
447 })
448 }
449
450 pub fn generate_optimization_recommendations(
452 ) -> ApplicationResult<Vec<OptimizationRecommendation>> {
453 Ok(vec![
454 OptimizationRecommendation {
455 category: OptimizationCategory::Memory,
456 recommendation: "Increase memory pool size for better allocation efficiency"
457 .to_string(),
458 impact: OptimizationImpact::Medium,
459 estimated_improvement: 0.15,
460 },
461 OptimizationRecommendation {
462 category: OptimizationCategory::Parallelization,
463 recommendation: "Enable NUMA awareness for better parallel performance".to_string(),
464 impact: OptimizationImpact::High,
465 estimated_improvement: 0.25,
466 },
467 OptimizationRecommendation {
468 category: OptimizationCategory::Algorithm,
469 recommendation: "Implement result caching for repeated calculations".to_string(),
470 impact: OptimizationImpact::Medium,
471 estimated_improvement: 0.20,
472 },
473 ])
474 }
475
476 fn analyze_performance_bottlenecks() -> ApplicationResult<BottleneckAnalysis> {
477 Ok(BottleneckAnalysis {
478 primary_bottleneck: BottleneckType::MemoryBandwidth,
479 secondary_bottlenecks: vec![BottleneckType::CPUUtilization, BottleneckType::DiskIO],
480 bottleneck_impact: 0.3,
481 resolution_suggestions: vec![
482 "Optimize memory access patterns".to_string(),
483 "Implement parallel algorithms".to_string(),
484 "Use SSD storage for temporary data".to_string(),
485 ],
486 })
487 }
488
489 const fn analyze_resource_utilization() -> ApplicationResult<ResourceUtilizationAnalysis> {
490 Ok(ResourceUtilizationAnalysis {
491 cpu_utilization: 0.75,
492 memory_utilization: 0.65,
493 disk_utilization: 0.45,
494 network_utilization: 0.35,
495 gpu_utilization: 0.20,
496 efficiency_score: 0.68,
497 })
498 }
499}
500
501pub fn create_example_performance_optimizer() -> ApplicationResult<ScientificPerformanceOptimizer> {
503 let config = PerformanceOptimizationConfig::default();
504 let optimizer = ScientificPerformanceOptimizer::new(config);
505
506 optimizer.initialize()?;
508
509 Ok(optimizer)
510}