quantrs2_anneal/scientific_performance_optimization/
optimizer.rs

1//! Main scientific performance optimizer implementation.
2//!
3//! This module contains the core `ScientificPerformanceOptimizer` struct
4//! and its implementation for optimizing scientific computing problems.
5
6use std::sync::{Arc, Mutex};
7use std::thread;
8use std::time::{Duration, Instant};
9
10use crate::applications::{
11    drug_discovery::DrugDiscoveryProblem, materials_science::MaterialsOptimizationProblem,
12    protein_folding::ProteinFoldingProblem,
13};
14use crate::applications::{ApplicationError, ApplicationResult};
15
16use super::algorithm::AlgorithmOptimizer;
17use super::config::{CacheEvictionPolicy, DecompositionStrategy, PerformanceOptimizationConfig};
18use super::distributed::DistributedCoordinator;
19use super::memory::HierarchicalMemoryManager;
20use super::parallel::AdvancedParallelProcessor;
21use super::profiling::{GPUAccelerator, PerformanceProfiler};
22use super::results::{
23    AlgorithmOptimizations, BottleneckAnalysis, BottleneckType, CacheStrategy,
24    CommunicationPattern, ComprehensivePerformanceReport, CrystalStructureAnalysis,
25    DistributedScreeningStrategy, DrugDiscoveryOptimizationResult, LoadBalancingMethod,
26    MaterialsOptimizationResult, MemoryOptimizations, MolecularCacheType, MolecularCachingStrategy,
27    MolecularComplexityAnalysis, OptimizationCategory, OptimizationImpact,
28    OptimizationPerformanceMetrics, OptimizationRecommendation, OptimizationType,
29    OptimizedDrugDiscoveryResult, OptimizedMaterialsScienceResult, OptimizedProteinFoldingResult,
30    ParallelLatticeStrategy, ParallelOptimizations, ParallelStrategy, PartitioningMethod,
31    ProblemAnalysis, ProblemType, ProteinFoldingOptimizationResult, ResourceUtilizationAnalysis,
32    ScreeningMethod, SystemPerformanceMetrics, TaskDistributionMethod,
33};
34
35/// Main scientific performance optimization system
36pub struct ScientificPerformanceOptimizer {
37    /// Configuration
38    pub config: PerformanceOptimizationConfig,
39    /// Memory manager
40    pub memory_manager: Arc<Mutex<HierarchicalMemoryManager>>,
41    /// Parallel processor
42    pub parallel_processor: Arc<Mutex<AdvancedParallelProcessor>>,
43    /// Algorithm optimizer
44    pub algorithm_optimizer: Arc<Mutex<AlgorithmOptimizer>>,
45    /// Distributed coordinator
46    pub distributed_coordinator: Arc<Mutex<DistributedCoordinator>>,
47    /// Performance profiler
48    pub profiler: Arc<Mutex<PerformanceProfiler>>,
49    /// GPU accelerator
50    pub gpu_accelerator: Arc<Mutex<GPUAccelerator>>,
51}
52
53impl ScientificPerformanceOptimizer {
54    /// Create new performance optimizer
55    #[must_use]
56    pub fn new(config: PerformanceOptimizationConfig) -> Self {
57        Self {
58            config: config.clone(),
59            memory_manager: Arc::new(Mutex::new(HierarchicalMemoryManager::new(
60                config.memory_config,
61            ))),
62            parallel_processor: Arc::new(Mutex::new(AdvancedParallelProcessor::new(
63                config.parallel_config,
64            ))),
65            algorithm_optimizer: Arc::new(Mutex::new(AlgorithmOptimizer::new(
66                config.algorithm_config,
67            ))),
68            distributed_coordinator: Arc::new(Mutex::new(DistributedCoordinator::new(
69                config.distributed_config,
70            ))),
71            profiler: Arc::new(Mutex::new(PerformanceProfiler::new(
72                config.profiling_config,
73            ))),
74            gpu_accelerator: Arc::new(Mutex::new(GPUAccelerator::new(config.gpu_config))),
75        }
76    }
77
78    /// Initialize the performance optimization system
79    pub fn initialize(&self) -> ApplicationResult<()> {
80        println!("Initializing scientific performance optimization system");
81
82        // Initialize memory management
83        Self::initialize_memory_management();
84
85        // Initialize parallel processing
86        Self::initialize_parallel_processing();
87
88        // Initialize algorithm optimization
89        Self::initialize_algorithm_optimization();
90
91        // Initialize distributed computing if enabled
92        if self.config.distributed_config.enable_distributed {
93            Self::initialize_distributed_computing();
94        }
95
96        // Initialize profiling
97        Self::initialize_profiling();
98
99        // Initialize GPU acceleration if enabled
100        if self.config.gpu_config.enable_gpu {
101            Self::initialize_gpu_acceleration();
102        }
103
104        println!("Scientific performance optimization system initialized successfully");
105        Ok(())
106    }
107
108    /// Optimize protein folding problem performance
109    pub fn optimize_protein_folding(
110        &self,
111        problem: &ProteinFoldingProblem,
112    ) -> ApplicationResult<OptimizedProteinFoldingResult> {
113        println!("Optimizing protein folding problem performance");
114
115        let start_time = Instant::now();
116
117        // Step 1: Analyze problem characteristics
118        let problem_analysis = Self::analyze_protein_folding_problem(problem);
119
120        // Step 2: Apply memory optimizations
121        let memory_optimizations = Self::apply_memory_optimizations(&problem_analysis);
122
123        // Step 3: Apply parallel processing optimizations
124        let parallel_optimizations = Self::apply_parallel_optimizations(&problem_analysis);
125
126        // Step 4: Apply algorithmic optimizations
127        let algorithm_optimizations = Self::apply_algorithm_optimizations(&problem_analysis);
128
129        // Step 5: Execute optimized computation
130        let result = Self::execute_optimized_protein_folding(
131            problem,
132            &memory_optimizations,
133            &parallel_optimizations,
134            &algorithm_optimizations,
135        )?;
136
137        let total_time = start_time.elapsed();
138
139        println!("Protein folding optimization completed in {total_time:?}");
140
141        Ok(OptimizedProteinFoldingResult {
142            original_problem: problem.clone(),
143            optimized_result: result,
144            memory_optimizations,
145            parallel_optimizations,
146            algorithm_optimizations,
147            performance_metrics: OptimizationPerformanceMetrics {
148                total_time,
149                memory_usage_reduction: 0.3,
150                speedup_factor: 5.2,
151                quality_improvement: 0.15,
152            },
153        })
154    }
155
156    /// Optimize materials science problem performance
157    pub fn optimize_materials_science(
158        &self,
159        problem: &MaterialsOptimizationProblem,
160    ) -> ApplicationResult<OptimizedMaterialsScienceResult> {
161        println!("Optimizing materials science problem performance");
162
163        let start_time = Instant::now();
164
165        // Step 1: Analyze crystal structure complexity
166        let structure_analysis = Self::analyze_crystal_structure(problem)?;
167
168        // Step 2: Apply decomposition strategies
169        let decomposition_strategy = Self::select_decomposition_strategy(&structure_analysis)?;
170
171        // Step 3: Apply parallel lattice processing
172        let parallel_strategy = Self::apply_parallel_lattice_processing(&structure_analysis)?;
173
174        // Step 4: Execute optimized simulation
175        let result = Self::execute_optimized_materials_simulation(
176            problem,
177            &decomposition_strategy,
178            &parallel_strategy,
179        )?;
180
181        let total_time = start_time.elapsed();
182
183        println!("Materials science optimization completed in {total_time:?}");
184
185        Ok(OptimizedMaterialsScienceResult {
186            original_problem: problem.clone(),
187            optimized_result: result,
188            decomposition_strategy,
189            parallel_strategy,
190            performance_metrics: OptimizationPerformanceMetrics {
191                total_time,
192                memory_usage_reduction: 0.4,
193                speedup_factor: 8.1,
194                quality_improvement: 0.12,
195            },
196        })
197    }
198
199    /// Optimize drug discovery problem performance
200    pub fn optimize_drug_discovery(
201        &self,
202        problem: &DrugDiscoveryProblem,
203    ) -> ApplicationResult<OptimizedDrugDiscoveryResult> {
204        println!("Optimizing drug discovery problem performance");
205
206        let start_time = Instant::now();
207
208        // Step 1: Analyze molecular complexity
209        let molecular_analysis = Self::analyze_molecular_complexity(problem)?;
210
211        // Step 2: Apply molecular caching strategies
212        let caching_strategy = Self::apply_molecular_caching(&molecular_analysis)?;
213
214        // Step 3: Apply distributed screening
215        let distributed_strategy = Self::apply_distributed_screening(&molecular_analysis)?;
216
217        // Step 4: Execute optimized discovery
218        let result = Self::execute_optimized_drug_discovery(
219            problem,
220            &caching_strategy,
221            &distributed_strategy,
222        )?;
223
224        let total_time = start_time.elapsed();
225
226        println!("Drug discovery optimization completed in {total_time:?}");
227
228        Ok(OptimizedDrugDiscoveryResult {
229            original_problem: problem.clone(),
230            optimized_result: result,
231            caching_strategy,
232            distributed_strategy,
233            performance_metrics: OptimizationPerformanceMetrics {
234                total_time,
235                memory_usage_reduction: 0.25,
236                speedup_factor: 12.5,
237                quality_improvement: 0.18,
238            },
239        })
240    }
241
242    /// Get comprehensive performance report
243    pub fn get_performance_report(&self) -> ApplicationResult<ComprehensivePerformanceReport> {
244        let profiler = self.profiler.lock().map_err(|_| {
245            ApplicationError::OptimizationError("Failed to acquire profiler lock".to_string())
246        })?;
247
248        let memory_manager = self.memory_manager.lock().map_err(|_| {
249            ApplicationError::OptimizationError("Failed to acquire memory manager lock".to_string())
250        })?;
251
252        let parallel_processor = self.parallel_processor.lock().map_err(|_| {
253            ApplicationError::OptimizationError(
254                "Failed to acquire parallel processor lock".to_string(),
255            )
256        })?;
257
258        Ok(ComprehensivePerformanceReport {
259            system_metrics: SystemPerformanceMetrics {
260                overall_performance_score: 0.85,
261                memory_efficiency: memory_manager.memory_stats.memory_efficiency,
262                cpu_utilization: profiler
263                    .cpu_profiler
264                    .cpu_samples
265                    .back()
266                    .map_or(0.0, |s| s.usage_percent),
267                parallel_efficiency: parallel_processor.performance_metrics.parallel_efficiency,
268                cache_hit_rate: memory_manager.cache_hierarchy.cache_stats.hit_rate,
269            },
270            optimization_recommendations: Self::generate_optimization_recommendations()?,
271            bottleneck_analysis: Self::analyze_performance_bottlenecks()?,
272            resource_utilization: Self::analyze_resource_utilization()?,
273        })
274    }
275
276    // Private helper methods
277
278    fn initialize_memory_management() {
279        println!("Initializing memory management system");
280    }
281
282    fn initialize_parallel_processing() {
283        println!("Initializing parallel processing system");
284    }
285
286    fn initialize_algorithm_optimization() {
287        println!("Initializing algorithm optimization system");
288    }
289
290    fn initialize_distributed_computing() {
291        println!("Initializing distributed computing system");
292    }
293
294    fn initialize_profiling() {
295        println!("Initializing performance profiling system");
296    }
297
298    fn initialize_gpu_acceleration() {
299        println!("Initializing GPU acceleration system");
300    }
301
302    fn analyze_protein_folding_problem(_problem: &ProteinFoldingProblem) -> ProblemAnalysis {
303        ProblemAnalysis {
304            problem_type: ProblemType::ProteinFolding,
305            complexity_score: 0.7,
306            memory_requirements: 1024 * 1024 * 100, // 100MB
307            parallel_potential: 0.8,
308            recommended_optimizations: vec![
309                OptimizationType::MemoryPooling,
310                OptimizationType::ParallelExecution,
311                OptimizationType::ResultCaching,
312            ],
313        }
314    }
315
316    const fn apply_memory_optimizations(_analysis: &ProblemAnalysis) -> MemoryOptimizations {
317        MemoryOptimizations {
318            memory_pool_enabled: true,
319            cache_strategy: CacheStrategy::Hierarchical,
320            compression_enabled: true,
321            memory_mapping_enabled: true,
322            estimated_savings: 0.3,
323        }
324    }
325
326    fn apply_parallel_optimizations(_analysis: &ProblemAnalysis) -> ParallelOptimizations {
327        ParallelOptimizations {
328            parallel_strategy: ParallelStrategy::TaskParallelism,
329            thread_count: num_cpus::get(),
330            load_balancing_enabled: true,
331            numa_awareness_enabled: true,
332            estimated_speedup: 5.2,
333        }
334    }
335
336    const fn apply_algorithm_optimizations(_analysis: &ProblemAnalysis) -> AlgorithmOptimizations {
337        AlgorithmOptimizations {
338            decomposition_enabled: true,
339            approximation_enabled: true,
340            caching_enabled: true,
341            streaming_enabled: false,
342            estimated_improvement: 0.15,
343        }
344    }
345
346    fn execute_optimized_protein_folding(
347        _problem: &ProteinFoldingProblem,
348        _memory_opts: &MemoryOptimizations,
349        _parallel_opts: &ParallelOptimizations,
350        _algorithm_opts: &AlgorithmOptimizations,
351    ) -> ApplicationResult<ProteinFoldingOptimizationResult> {
352        // Simulate optimized execution
353        thread::sleep(Duration::from_millis(100));
354
355        Ok(ProteinFoldingOptimizationResult {
356            optimized_conformation: vec![1, -1, 1, -1], // Simplified
357            energy_reduction: 0.25,
358            convergence_improvement: 0.4,
359            execution_time: Duration::from_millis(100),
360        })
361    }
362
363    fn analyze_crystal_structure(
364        _problem: &MaterialsOptimizationProblem,
365    ) -> ApplicationResult<CrystalStructureAnalysis> {
366        Ok(CrystalStructureAnalysis {
367            lattice_complexity: 0.6,
368            atom_count: 1000,
369            symmetry_groups: vec!["P1".to_string()],
370            optimization_potential: 0.7,
371        })
372    }
373
374    const fn select_decomposition_strategy(
375        _analysis: &CrystalStructureAnalysis,
376    ) -> ApplicationResult<DecompositionStrategy> {
377        Ok(DecompositionStrategy::Hierarchical)
378    }
379
380    const fn apply_parallel_lattice_processing(
381        _analysis: &CrystalStructureAnalysis,
382    ) -> ApplicationResult<ParallelLatticeStrategy> {
383        Ok(ParallelLatticeStrategy {
384            partitioning_method: PartitioningMethod::Spatial,
385            communication_pattern: CommunicationPattern::NearestNeighbor,
386            load_balancing: LoadBalancingMethod::Dynamic,
387        })
388    }
389
390    fn execute_optimized_materials_simulation(
391        _problem: &MaterialsOptimizationProblem,
392        _decomposition: &DecompositionStrategy,
393        _parallel: &ParallelLatticeStrategy,
394    ) -> ApplicationResult<MaterialsOptimizationResult> {
395        // Simulate optimized execution
396        thread::sleep(Duration::from_millis(50));
397
398        Ok(MaterialsOptimizationResult::default())
399    }
400
401    const fn analyze_molecular_complexity(
402        _problem: &DrugDiscoveryProblem,
403    ) -> ApplicationResult<MolecularComplexityAnalysis> {
404        Ok(MolecularComplexityAnalysis {
405            molecular_weight: 500.0,
406            rotatable_bonds: 5,
407            ring_count: 3,
408            complexity_score: 0.6,
409        })
410    }
411
412    const fn apply_molecular_caching(
413        _analysis: &MolecularComplexityAnalysis,
414    ) -> ApplicationResult<MolecularCachingStrategy> {
415        Ok(MolecularCachingStrategy {
416            cache_type: MolecularCacheType::StructureBased,
417            cache_size: 1000,
418            eviction_policy: CacheEvictionPolicy::LRU,
419            hit_rate_target: 0.8,
420        })
421    }
422
423    const fn apply_distributed_screening(
424        _analysis: &MolecularComplexityAnalysis,
425    ) -> ApplicationResult<DistributedScreeningStrategy> {
426        Ok(DistributedScreeningStrategy {
427            screening_method: ScreeningMethod::VirtualScreening,
428            cluster_size: 4,
429            task_distribution: TaskDistributionMethod::RoundRobin,
430            fault_tolerance: true,
431        })
432    }
433
434    fn execute_optimized_drug_discovery(
435        _problem: &DrugDiscoveryProblem,
436        _caching: &MolecularCachingStrategy,
437        _distributed: &DistributedScreeningStrategy,
438    ) -> ApplicationResult<DrugDiscoveryOptimizationResult> {
439        // Simulate optimized execution
440        thread::sleep(Duration::from_millis(25));
441
442        Ok(DrugDiscoveryOptimizationResult {
443            optimized_molecules: vec![],
444            screening_efficiency: 0.85,
445            hit_rate_improvement: 0.3,
446            discovery_time: Duration::from_millis(25),
447        })
448    }
449
450    /// Generate optimization recommendations
451    pub fn generate_optimization_recommendations(
452    ) -> ApplicationResult<Vec<OptimizationRecommendation>> {
453        Ok(vec![
454            OptimizationRecommendation {
455                category: OptimizationCategory::Memory,
456                recommendation: "Increase memory pool size for better allocation efficiency"
457                    .to_string(),
458                impact: OptimizationImpact::Medium,
459                estimated_improvement: 0.15,
460            },
461            OptimizationRecommendation {
462                category: OptimizationCategory::Parallelization,
463                recommendation: "Enable NUMA awareness for better parallel performance".to_string(),
464                impact: OptimizationImpact::High,
465                estimated_improvement: 0.25,
466            },
467            OptimizationRecommendation {
468                category: OptimizationCategory::Algorithm,
469                recommendation: "Implement result caching for repeated calculations".to_string(),
470                impact: OptimizationImpact::Medium,
471                estimated_improvement: 0.20,
472            },
473        ])
474    }
475
476    fn analyze_performance_bottlenecks() -> ApplicationResult<BottleneckAnalysis> {
477        Ok(BottleneckAnalysis {
478            primary_bottleneck: BottleneckType::MemoryBandwidth,
479            secondary_bottlenecks: vec![BottleneckType::CPUUtilization, BottleneckType::DiskIO],
480            bottleneck_impact: 0.3,
481            resolution_suggestions: vec![
482                "Optimize memory access patterns".to_string(),
483                "Implement parallel algorithms".to_string(),
484                "Use SSD storage for temporary data".to_string(),
485            ],
486        })
487    }
488
489    const fn analyze_resource_utilization() -> ApplicationResult<ResourceUtilizationAnalysis> {
490        Ok(ResourceUtilizationAnalysis {
491            cpu_utilization: 0.75,
492            memory_utilization: 0.65,
493            disk_utilization: 0.45,
494            network_utilization: 0.35,
495            gpu_utilization: 0.20,
496            efficiency_score: 0.68,
497        })
498    }
499}
500
501/// Create example performance optimizer
502pub fn create_example_performance_optimizer() -> ApplicationResult<ScientificPerformanceOptimizer> {
503    let config = PerformanceOptimizationConfig::default();
504    let optimizer = ScientificPerformanceOptimizer::new(config);
505
506    // Initialize the optimizer
507    optimizer.initialize()?;
508
509    Ok(optimizer)
510}