PolyOverZq

Struct PolyOverZq 

Source
pub struct PolyOverZq { /* private fields */ }
Expand description

PolyOverZq is a type of polynomial with arbitrarily many coefficients of type Zq.

§Examples

use qfall_math::integer::Z;
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::traits::*;
use std::str::FromStr;

// instantiations
let poly_1 = PolyOverZq::from_str("4  0 1 2 3 mod 42").unwrap();
let poly_2 = poly_1.clone();

// evaluate function
let value = Z::from(3);
let res = poly_1.evaluate(&value);

// properties
let reducibility: bool = poly_1.is_irreducible();

// comparison
assert_eq!(poly_1, poly_2);

Implementations§

Source§

impl PolyOverZq

Source

pub fn add_safe(&self, other: &Self) -> Result<PolyOverZq, MathError>

Implements addition for two PolyOverZq values.

Parameters:

  • other: specifies the polynomial to add to self

Returns the sum of both polynomials as a PolyOverZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = a.add_safe(&b).unwrap();
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn mul_safe(&self, other: &Self) -> Result<PolyOverZq, MathError>

Implements multiplication for two PolyOverZq values.

Parameters:

  • other: specifies the polynomial to multiply to self

Returns the product of both polynomials as a PolyOverZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = a.mul_safe(&b).unwrap();
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn mul_scalar_zq_safe(&self, scalar: &Zq) -> Result<Self, MathError>

Implements multiplication for a PolyOverZq with a Zq.

Parameters:

  • scalar: Specifies the scalar by which the polynomial is multiplied.

Returns the product of self and scalar as a PolyOverZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, Zq};
use std::str::FromStr;

let poly_1 = PolyOverZq::from_str("4  1 2 3 4 mod 17").unwrap();
let integer = Zq::from((3,17));

let poly_2 = poly_1.mul_scalar_zq_safe(&integer).unwrap();
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn sub_safe(&self, other: &Self) -> Result<PolyOverZq, MathError>

Implements subtraction for two PolyOverZq values.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the result of the subtraction of both polynomials as a PolyOverZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = a.sub_safe(&b).unwrap();
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn dot_product(&self, other: &Self) -> Result<Zq, MathError>

Returns the dot product of two polynomials of type PolyOverZq. The dot product for polynomials is obtained by treating the coefficients of the polynomials as vectors and then applying the standard dot product operation.

Parameters:

  • other: specifies the other polynomial the dot product is calculated over

Returns the resulting dot_product as a PolyOverZq or an error if the moduli mismatch.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly_1 = PolyOverZq::from_str("4  1 0 2 1 mod 11").unwrap();
let poly_2 = PolyOverZq::from_str("1  9 mod 11").unwrap();

let dot_prod = poly_1.dot_product(&poly_2).unwrap();
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn evaluate_safe(&self, value: &Zq) -> Result<Zq, MathError>

Evaluates a PolyOverZq on a given input of Zq. Note that the Zq in this case is only a reference.

Parameters:

  • value: the value with which to evaluate the polynomial.

Returns the evaluation of the polynomial as a Zq or an error if the moduli mismatch.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::Zq;
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("5  0 1 2 -3 1 mod 17").unwrap();
let value = Zq::from((3, 17));
let res = poly.evaluate(&value);
§Errors and Failures
Source§

impl PolyOverZq

Source

pub fn get_degree(&self) -> i64

Returns the degree of a polynomial PolyOverZq as a i64. The zero polynomial has degree -1.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("4  0 1 2 3 mod 7").unwrap();

let degree = poly.get_degree(); // This would only return 3
Source

pub fn get_mod(&self) -> Modulus

Returns the modulus of the polynomial as a Modulus.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let matrix = PolyOverZq::from_str("2  1 3 mod 7").unwrap();
let modulus = matrix.get_mod();
Source

pub fn get_representative_least_nonnegative_residue(&self) -> PolyOverZ

Returns a representative polynomial of the PolyOverZq element.

The representation of the coefficients is in the range [0, modulus).

§Examples
use qfall_math::integer::PolyOverZ;
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly_zq = PolyOverZq::from_str("4  -3 0 31 1 mod 17").unwrap();

let poly_z = poly_zq.get_representative_least_nonnegative_residue();

let cmp_poly = PolyOverZ::from_str("4  14 0 14 1").unwrap();
assert_eq!(cmp_poly, poly_z);
Source§

impl PolyOverZq

Source

pub fn norm_eucl_sqrd(&self) -> Z

Returns the squared Euclidean norm or squared 2-norm of the given polynomial. The squared Euclidean norm for a polynomial is obtained by treating the coefficients of the polynomial as a vector and then applying the standard squared Euclidean norm.

Each length of an entry in this vector is defined as the shortest distance to the next zero representative modulo q.

§Examples
use qfall_math::{integer::Z, integer_mod_q::PolyOverZq};
use std::str::FromStr;

let poly = PolyOverZq::from_str("3  1 2 3 mod 11").unwrap();

let sqrd_2_norm = poly.norm_eucl_sqrd();

// 1*1 + 2*2 + 3*3 = 14
assert_eq!(Z::from(14), sqrd_2_norm);
Source

pub fn norm_infty(&self) -> Z

Returns the infinity norm or the maximal absolute value of a coefficient of the given polynomial. The infinity norm for a polynomial is obtained by treating the coefficients of the polynomial as a vector and then applying the standard infinity norm.

Each length of an entry in this vector is defined as the shortest distance to the next zero representative modulo q.

§Examples
use qfall_math::{integer::Z, integer_mod_q::PolyOverZq};
use std::str::FromStr;

let poly = PolyOverZq::from_str("3  1 2 4 mod 7").unwrap();

let infty_norm = poly.norm_infty();

// max coefficient is 4 = -3
assert_eq!(Z::from(3), infty_norm);
Source§

impl PolyOverZq

Source

pub fn is_irreducible(&self) -> bool

Checks if a PolyOverZq is irreducible.

Returns true if the polynomial is irreducible and false otherwise.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly_irr = PolyOverZq::from_str("2  1 1 mod 17").unwrap();
// returns true, since X + 1 is irreducible
assert!(poly_irr.is_irreducible());
Source

pub fn is_one(&self) -> bool

Checks if a PolyOverZq is the constant polynomial with coefficient 1.

Returns true if there is only one coefficient, which is 1.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let value = PolyOverZq::from_str("1  1 mod 4").unwrap();
assert!(value.is_one());
Source

pub fn is_zero(&self) -> bool

Checks if every entry of a PolyOverZq is 0.

Returns true if PolyOverZq has no coefficients.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let value = PolyOverZq::from_str("0 mod 7").unwrap();
assert!(value.is_zero());
Source§

impl PolyOverZq

Source

pub fn sample_binomial( max_degree: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Generates a PolyOverZq instance of maximum degree max_degree and coefficients chosen according to the binomial distribution parameterized by n and p.

Parameters:

  • max_degree: specifies the length of the polynomial, i.e. the number of coefficients
  • modulus: specifies the Modulus of the new PolyOverZq instance
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a fresh PolyOverZq instance with each value sampled according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or max_degree is negative or does not into an i64.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;

let sample = PolyOverZq::sample_binomial(2, 7, 2, 0.5).unwrap();
§Errors and Failures
Source

pub fn sample_binomial_with_offset( max_degree: impl TryInto<i64> + Display, offset: impl Into<Z>, modulus: impl Into<Modulus>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>

Generates a PolyOverZq instance of maximum degree max_degree and coefficients chosen according to the binomial distribution parameterized by n and p with given offset.

Parameters:

  • max_degree: specifies the length of the polynomial, i.e. the number of coefficients
  • offset: specifies an offset applied to each sample collected from the binomial distribution
  • modulus: specifies the Modulus of the new PolyOverZq instance
  • n: specifies the number of trials
  • p: specifies the probability of success

Returns a fresh PolyOverZq instance with each value sampled according to the binomial distribution or a MathError if n < 0, p ∉ (0,1), n does not fit into an i64, or max_degree is negative or does not into an i64.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;

let sample = PolyOverZq::sample_binomial_with_offset(2, -1, 7, 2, 0.5).unwrap();
§Errors and Failures
§Panics …
  • if modulus is smaller than 2.
Source§

impl PolyOverZq

Source

pub fn sample_discrete_gauss( max_degree: impl TryInto<i64> + Display, modulus: impl Into<Modulus>, center: impl Into<Q>, s: impl Into<Q>, ) -> Result<Self, MathError>

Initializes a new PolyOverZq with maximum degree max_degree and with each entry sampled independently according to the discrete Gaussian distribution, using Z::sample_discrete_gauss.

Parameters:

  • max_degree: specifies the included maximal degree the created PolyOverZq should have
  • modulus: specififes the Modulus over which the ring of integer coefficients is defined
  • center: specifies the positions of the center with peak probability
  • s: specifies the Gaussian parameter, which is proportional to the standard deviation sigma * sqrt(2 * pi) = s

Returns a fresh PolyOverZq instance of maximum degree max_degree with coefficients chosen independently according the discrete Gaussian distribution or a MathError if s < 0.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;

let sample = PolyOverZq::sample_discrete_gauss(2, 17, 0, 1).unwrap();
§Errors and Failures
§Panics …
  • if max_degree is negative, or does not fit into an i64.
  • if modulus is smaller than 2.
Source§

impl PolyOverZq

Source

pub fn sample_uniform( max_degree: impl TryInto<i64> + Display + Copy, modulus: impl Into<Z>, ) -> Result<Self, MathError>

Generates a PolyOverZq instance with maximum degree max_degree and coefficients chosen uniform at random in [0, modulus).

The internally used uniform at random chosen bytes are generated by ThreadRng, which uses ChaCha12 and is considered cryptographically secure.

Parameters:

  • max_degree: specifies the length of the polynomial, i.e. the number of coefficients
  • modulus: specifies the modulus of the coefficients and thus, the interval size over which is sampled

Returns a fresh PolyOverZq instance of length max_degree with coefficients chosen uniform at random in [0, modulus) or a MathError if the max_degree was smaller than 0 or the provided modulus was chosen too small.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;

let sample = PolyOverZq::sample_uniform(3, 17).unwrap();
§Errors and Failures
§Panics …
  • if modulus is smaller than 2.
Source§

impl PolyOverZq

Source

pub unsafe fn get_fmpz_mod_poly_struct(&mut self) -> &mut fmpz_mod_poly_struct

Returns a mutable reference to the field poly of type fmpz_mod_poly_struct.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl PolyOverZq

Source

pub unsafe fn get_fmpz_mod_ctx(&mut self) -> &mut fmpz_mod_ctx

Returns a mutable reference to the underlying fmpz_mod_ctx by calling get_fmpz_mod_ctx on modulus.

WARNING: The returned struct is part of flint_sys. Any changes to this object are unsafe and may introduce memory leaks. In case you are calling this function to a modulus struct, please be aware that most moduli are shared across multiple instances and all modifications of this struct will affect any other instance with a reference to this object.

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl PolyOverZq

Source

pub unsafe fn set_fmpz_mod_poly_struct( &mut self, flint_struct: fmpz_mod_poly_struct, )

Sets the field poly of type PolyOverZq to flint_struct.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Source§

impl PolyOverZq

Source

pub unsafe fn set_fmpz_mod_ctx(&mut self, flint_struct: fmpz_mod_ctx)

Sets the field fmpz_mod_ctx to flint_struct by calling set_fmpz_mod_ctx on modulus.

Parameters:

  • flint_struct: value to set the attribute to

This function is a passthrough to enable users of this library to use flint_sys and with that FLINT functions that might not be covered in our library yet. If this is the case, please consider contributing to this open-source project by opening a Pull Request at qfall_math to provide this feature in the future.

§Safety

Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.

Any flint_sys struct and function is part of a FFI to the C-library FLINT. As FLINT is a C-library, it does not provide all memory safety features that Rust and our Wrapper provide. Thus, using functions of flint_sys can introduce memory leaks.

Trait Implementations§

Source§

impl Add<&PolyOverZ> for &PolyOverZq

Source§

fn add(self, other: &PolyOverZ) -> Self::Output

Implements the Add trait for PolyOverZq and PolyOverZ. Add is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to add to self

Returns the addition of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let a = PolyOverZq::from_str("4  -1 0 1 1 mod 17").unwrap();
let b = PolyOverZ::from_str("4  2 0 3 1").unwrap();

let c: PolyOverZq = &a + &b;
Source§

type Output = PolyOverZq

The resulting type after applying the + operator.
Source§

impl Add<&PolyOverZq> for &PolynomialRingZq

Source§

fn add(self, other: &PolyOverZq) -> Self::Output

Implements the Add trait for PolynomialRingZq and PolyOverZq. Add is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to add to self

Returns the addition of both polynomials as a PolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, PolynomialRingZq};
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly = PolyOverZ::from_str("4  -1 0 1 1").unwrap();
let a = PolynomialRingZq::from((&poly, &modulus));
let b = PolyOverZq::from_str("4  2 0 3 1 mod 17").unwrap();

let c: PolynomialRingZq = &a + &b;
§Panics …
  • if the moduli mismatch.
Source§

type Output = PolynomialRingZq

The resulting type after applying the + operator.
Source§

impl Add for &PolyOverZq

Source§

fn add(self, other: Self) -> Self::Output

Implements the Add trait for two PolyOverZq values. Add is implemented for any combination of PolyOverZq and borrowed PolyOverZq.

Parameters:

  • other: specifies the polynomial to add to self

Returns the sum of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = &a + &b;
let d: PolyOverZq = a + b;
let e: PolyOverZq = &c + d;
let f: PolyOverZq = c + &e;
§Panics …
Source§

type Output = PolyOverZq

The resulting type after applying the + operator.
Source§

impl AddAssign<&PolyOverZ> for PolyOverZq

Source§

fn add_assign(&mut self, other: &PolyOverZ)

Documentation at PolyOverZq::add_assign.

Source§

impl AddAssign<&PolyOverZq> for PolyOverZq

Source§

fn add_assign(&mut self, other: &Self)

Computes the addition of self and other reusing the memory of self. AddAssign can be used on PolyOverZq in combination with PolyOverZq and PolyOverZ.

Parameters:

  • other: specifies the polynomial to add to self

Returns the sum of both polynomials modulo q as a PolyOverZq.

§Examples
use qfall_math::{integer_mod_q::PolyOverZq, integer::PolyOverZ};
use std::str::FromStr;

let mut a = PolyOverZq::from_str("3  1 2 3 mod 7").unwrap();
let b = PolyOverZq::from_str("5  1 2 -3 0 4 mod 7").unwrap();
let c = PolyOverZ::from_str("4  -1 2 5 3").unwrap();

a += &b;
a += b;
a += &c;
a += c;
§Panics …
Source§

impl AddAssign<&PolyOverZq> for PolynomialRingZq

Source§

fn add_assign(&mut self, other: &PolyOverZq)

Documentation at PolynomialRingZq::add_assign.

§Panics …
  • if the moduli are different.
Source§

impl AddAssign<PolyOverZ> for PolyOverZq

Source§

fn add_assign(&mut self, other: PolyOverZ)

Documentation at PolyOverZq::add_assign.

Source§

impl AddAssign<PolyOverZq> for PolynomialRingZq

Source§

fn add_assign(&mut self, other: PolyOverZq)

Documentation at PolynomialRingZq::add_assign.

Source§

impl AddAssign for PolyOverZq

Source§

fn add_assign(&mut self, other: PolyOverZq)

Documentation at PolyOverZq::add_assign.

Source§

impl Clone for PolyOverZq

Source§

fn clone(&self) -> Self

Clones the given PolyOverZq element by returning a deep clone, storing the actual value separately and including a reference to the Modulus element.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a = PolyOverZq::from_str("4  0 1 -2 3 mod 13").unwrap();
let b = a.clone();
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl CompareBase<&PolyOverZ> for PolyOverZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<&PolyOverZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolyOverZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolyOverZq> for NTTPolynomialRingZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolyOverZq> for PolyOverZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&PolyOverZq> for PolynomialRingZq

Source§

fn compare_base(&self, other: &&PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<&Zq> for PolyOverZq

Source§

fn compare_base(&self, other: &&Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &&Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl<Integer: Into<Z>> CompareBase<Integer> for PolyOverZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<PolyOverZ> for PolyOverZq

Source§

fn compare_base(&self, other: &T) -> bool

Compares the base elements of the objects and returns true if they match and an operation between the two provided types is possible. Read more
Source§

fn call_compare_base_error(&self, other: &T) -> Option<MathError>

Calls an error that gives small explanation how the base elements differ. This function only calls the error and does not check if the two actually differ. Read more
Source§

impl CompareBase<PolyOverZq> for MatNTTPolynomialRingZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<PolyOverZq> for MatPolynomialRingZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<PolyOverZq> for NTTPolynomialRingZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<PolyOverZq> for PolynomialRingZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase<Zq> for PolyOverZq

Source§

fn compare_base(&self, other: &Zq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &Zq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl CompareBase for PolyOverZq

Source§

fn compare_base(&self, other: &PolyOverZq) -> bool

Compares the moduli of the two elements.

Parameters:

  • other: The other object whose base is compared to self

Returns true if the moduli match and false otherwise.

Source§

fn call_compare_base_error(&self, other: &PolyOverZq) -> Option<MathError>

Returns an error that gives a small explanation of how the moduli are incomparable.

Parameters:

  • other: The other object whose base is compared to self

Returns a MathError of type MismatchingModulus.

Source§

impl Debug for PolyOverZq

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for PolyOverZq

Source§

fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>,

Implements the deserialize option. This allows to create a PolyOverZq from a given Json-object.

Source§

impl Display for PolyOverZq

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Allows to convert a PolyOverZq into a String.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;
use core::fmt;

let poly = PolyOverZq::from_str("4  0 1 2 3 mod 5").unwrap();
println!("{poly}");
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("4  0 1 2 3 mod 5").unwrap();
let poly_string = poly.to_string();
Source§

impl Drop for PolyOverZq

Source§

fn drop(&mut self)

Drops the given memory allocated for the underlying value and frees the allocated memory of the corresponding Modulus if no other references are left.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;
{
    let a = PolyOverZq::from_str("4  0 1 -2 3 mod 13").unwrap();
} // as a's scope ends here, it get's dropped
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a = PolyOverZq::from_str("4  0 1 -2 3 mod 13").unwrap();
drop(a); // explicitly drops a's value
Source§

impl Evaluate<&Zq, Zq> for PolyOverZq

Source§

fn evaluate(&self, value: &Zq) -> Zq

Evaluates a PolyOverZq on a given input of Zq. Note that the Zq in this case is only a reference. Note that this function will panic if the modulus of the input and the polynomial mismatch. Use PolyOverZq::evaluate_safe if a panic has to be avoided.

Parameters:

  • value: the value with which to evaluate the polynomial.

Returns the evaluation of the polynomial as a Zq.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::Zq;
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("5  0 1 2 -3 1 mod 17").unwrap();
let value = Zq::from((3, 17));
let res = poly.evaluate(&value);
§Panics …
  • if the moduli of the polynomial and the input mismatch.
Source§

impl<Integer: Into<Z>> Evaluate<Integer, Zq> for PolyOverZq

Source§

fn evaluate(&self, value: Integer) -> Zq

Evaluates a PolyOverZq on a given input that implements Into<Z>.

Parameters:

  • value: the value with which to evaluate the polynomial.

Returns the evaluation of the polynomial as a Zq.

§Examples
use qfall_math::traits::*;
use qfall_math::integer::Z;
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("5  0 1 2 -3 1 mod 17").unwrap();
let value = Z::from(3);

let res = poly.evaluate(&value);
let res_2 = poly.evaluate(3);
Source§

impl Evaluate<Zq, Zq> for PolyOverZq

Source§

fn evaluate(&self, value: Zq) -> Zq

Documentation can be found at PolyOverZq::evaluate for &Zq.

Source§

impl From<&ModulusPolynomialRingZq> for PolyOverZq

Source§

fn from(modulus: &ModulusPolynomialRingZq) -> Self

Creates a PolyOverZq from a ModulusPolynomialRingZq.

Parameters:

  • modulus: the context polynomial from which the coefficients are copied.
§Examples

Returns a new PolyOverZq representing the modulus object.

use qfall_math::integer_mod_q::{ModulusPolynomialRingZq, PolyOverZq};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();

let poly_zq = PolyOverZq::from(&modulus);

let poly_cmp = PolyOverZq::from_str("4  1 0 0 1 mod 17").unwrap();
assert_eq!(poly_cmp, poly_zq);
Source§

impl From<&PolyOverZq> for ModulusPolynomialRingZq

Source§

fn from(poly: &PolyOverZq) -> Self

Creates a Modulus object of type ModulusPolynomialRingZq for PolynomialRingZq

Parameters:

  • poly: the polynomial which is used as the modulus.

Returns a new ModulusPolynomialRingZq object with the coefficients and modulus from the PolyOverZq instance.

§Examples
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("3  1 0 1 mod 17").unwrap();
let mod_poly = ModulusPolynomialRingZq::try_from(&poly).unwrap();
§Panics …
  • if modulus is smaller than 2, or
  • if the modulus polynomial is of degree smaller than 1.
Source§

impl From<&PolyOverZq> for PolyOverZq

Source§

fn from(value: &PolyOverZq) -> Self

Alias for PolyOverZq::clone.

Source§

impl From<&PolyOverZq> for String

Source§

fn from(value: &PolyOverZq) -> Self

Converts a PolyOverZq into its String representation.

Parameters:

  • value: specifies the polynommial that will be represented as a String

Returns a String of the form "[#number of coefficients]⌴⌴[0th coefficient]⌴[1st coefficient]⌴...⌴mod⌴[q]".

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;
let poly = PolyOverZq::from_str("2  2 1 mod 3").unwrap();

let string: String = poly.into();
Source§

impl From<&Zq> for PolyOverZq

Source§

fn from(value: &Zq) -> Self

Creates a constant PolyOverZq, i.e. the polynomial x mod q, where x is the value of the given Zq value and q its modulus.

Parameters:

  • value: the constant value the polynomial will have.

Returns a new constant PolyOverZq with the specified value and modulus of the Zq value.

§Examples
use qfall_math::{integer_mod_q::*, traits::*};

let poly = PolyOverZq::from(&Zq::from((1, 10)));

let poly_cmp = PolyOverZq::from((1, 10));
assert_eq!(poly, poly_cmp);
assert_eq!(poly.get_degree(), 0);
Source§

impl<Mod: Into<Modulus>> From<(&PolyOverZ, Mod)> for PolyOverZq

Source§

fn from((poly, modulus): (&PolyOverZ, Mod)) -> Self

Creates a PolyOverZq from a PolyOverZ and a value that implements Into<Modulus>.

Parameters:

  • poly: the coefficients of the polynomial.
  • modulus: the modulus by which each entry is reduced.

Returns a new PolyOverZq with the coefficients from the PolyOverZ instance under the specified Modulus value.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, Modulus};
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let poly = PolyOverZ::from_str("4  0 1 102 3").unwrap();
let modulus = Modulus::from(100);

let mod_poly = PolyOverZq::from((&poly, &modulus));
§Panics …
  • if modulus is smaller than 2.
Source§

impl<Integer: Into<Z>, Mod: Into<Modulus>> From<(Integer, Mod)> for PolyOverZq

Source§

fn from((z, modulus): (Integer, Mod)) -> Self

Creates a PolyOverZq from any values that implement Into<Z> and Into<Modulus>, where the second value must be larger than 1.

Parameters:

  • z: the single, constant coefficient of the polynomial.
  • modulus: the modulus by which each entry is reduced.

Returns a new constant PolyOverZq with the specified z and modulus value.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let mod_poly = PolyOverZq::from((5, 42));
§Panics …
  • if modulus is smaller than 2.
Source§

impl<Mod: Into<Modulus>> From<(PolyOverZ, Mod)> for PolyOverZq

Source§

fn from((poly, modulus): (PolyOverZ, Mod)) -> Self

Creates a PolyOverZq from a PolyOverZ and a value that implements Into<Modulus>.

Parameters:

  • poly: the coefficients of the polynomial.
  • modulus: the modulus by which each entry is reduced.

Returns a new PolyOverZq with the coefficients from the PolyOverZ instance under the specified Modulus value.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let poly = PolyOverZ::from_str("4  0 1 102 3").unwrap();

let mod_poly = PolyOverZq::from((poly, 100));
§Panics …
  • if modulus is smaller than 2.
Source§

impl<Mod: Into<Modulus>> From<Mod> for PolyOverZq

Source§

fn from(modulus: Mod) -> Self

Creates a zero polynomial with a given Modulus.

Parameters:

Returns a new constant PolyOverZq with the specified Modulus.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from(100);

let poly_cmp = PolyOverZq::from_str("0 mod 100").unwrap();
assert_eq!(poly, poly_cmp);
§Panics …
  • if modulus is smaller than 2.
Source§

impl From<ModulusPolynomialRingZq> for PolyOverZq

Source§

fn from(value: ModulusPolynomialRingZq) -> Self

Documentation can be found at PolyOverZq::from for &ModulusPolynomialRingZq.

Source§

impl From<PolyOverZq> for ModulusPolynomialRingZq

Source§

fn from(value: PolyOverZq) -> Self

Documentation can be found at ModulusPolynomialRingZq::from for &PolyOverZq.

Source§

impl From<PolyOverZq> for String

Source§

fn from(value: PolyOverZq) -> Self

Documentation can be found at String::from for &PolyOverZq.

Source§

impl From<Zq> for PolyOverZq

Source§

fn from(value: Zq) -> Self

Documentation can be found at PolyOverZq::from for &Zq.

Source§

impl FromCoefficientEmbedding<&MatZq> for PolyOverZq

Source§

fn from_coefficient_embedding(embedding: &MatZq) -> Self

Computes a polynomial from a vector. The first i-th entry of the column vector is taken as the coefficient of the polynomial. It inverts the operation of PolyOverZq::into_coefficient_embedding.

Parameters:

  • embedding: the column vector that encodes the embedding

Returns a polynomial that corresponds to the embedding.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, PolyOverZq},
    traits::FromCoefficientEmbedding,
};

let vector = MatZq::from_str("[[17],[3],[-5]] mod 19").unwrap();
let poly = PolyOverZq::from_coefficient_embedding(&vector);
let cmp_poly = PolyOverZq::from_str("3  17 3 -5 mod 19").unwrap();
assert_eq!(cmp_poly, poly);
§Panics …
  • if the provided embedding is not a column vector.
Source§

impl FromStr for PolyOverZq

Source§

fn from_str(s: &str) -> Result<Self, Self::Err>

Creates a polynomial with arbitrarily many coefficients of type Zq.

Warning: If the input string starts with a correctly formatted PolyOverZ object, the rest of the string until the "mod" is ignored. This means that the input string "4 0 1 2 3 mod 13" is the same as "4 0 1 2 3 4 5 6 7 mod 13".

Parameters:

  • s: the polynomial of form: "[#number of coefficients]⌴⌴[0th coefficient]⌴[1st coefficient]⌴...⌴mod⌴[modulus]".

Note that the [#number of coefficients] and [0th coefficient] are divided by two spaces and the string for the polynomial is trimmed, i.e. all whitespaces before around the polynomial and the modulus are ignored.

Returns a PolyOverZq or an error if the provided string was not formatted correctly, the number of coefficients was smaller than the number provided at the start of the provided string, or the modulus was smaller than 2.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("4  0 1 -2 3 mod 42").unwrap();
§Errors and Failures
  • Returns a MathError of type StringConversionError
    • if the provided first half of the string was not formatted correctly to create a PolyOverZ,
    • if the provided second half of the string was not formatted correctly to create a Modulus,
    • if the number of coefficients was smaller than the number provided at the start of the provided string,
    • if the provided value did not contain two whitespaces, or
    • if the delimiter mod could not be found.
  • Returns a MathError of type InvalidModulus if modulus is smaller than 2.
Source§

type Err = MathError

The associated error which can be returned from parsing.
Source§

impl GetCoefficient<Z> for PolyOverZq

Source§

unsafe fn get_coeff_unchecked(&self, index: i64) -> Z

Returns the coefficient of a polynomial PolyOverZq as a Z.

If an index is provided which exceeds the highest set coefficient, 0 is returned.

Parameters:

  • index: the index of the coefficient to get (has to be positive)

Returns the coefficient as a Z, or a MathError if the provided index is negative and therefore invalid, or it does not fit into an i64.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::Z;
use std::str::FromStr;

let poly = PolyOverZq::from_str("4  0 1 2 3 mod 17").unwrap();

let coeff_0: Z = poly.get_coeff(0).unwrap();
let coeff_1: Z = unsafe{ poly.get_coeff_unchecked(1) };
let coeff_4: Z = poly.get_coeff(4).unwrap();

assert_eq!(Z::ZERO, coeff_0);
assert_eq!(Z::ONE, coeff_1);
assert_eq!(Z::ZERO, coeff_4);
§Safety

To use this function safely, make sure that the selected index is greater or equal than 0.

Source§

fn get_coeff(&self, index: impl TryInto<i64> + Display) -> Result<T, MathError>

Returns a coefficient of the given object, e.g. a polynomial, for a given index. Read more
Source§

impl GetCoefficient<Zq> for PolyOverZq

Source§

unsafe fn get_coeff_unchecked(&self, index: i64) -> Zq

Returns the coefficient of a polynomial PolyOverZq as a Zq.

If an index is provided which exceeds the highest set coefficient, 0 is returned.

Parameters:

  • index: the index of the coefficient to get (has to be positive)

Returns the coefficient as a Zq, or a MathError if the provided index is negative and therefore invalid, or it does not fit into an i64.

§Examples
use qfall_math::traits::*;
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer_mod_q::Zq;
use std::str::FromStr;

let poly = PolyOverZq::from_str("4  0 1 2 3 mod 17").unwrap();

let coeff_0: Zq = poly.get_coeff(0).unwrap();
let coeff_1: Zq = unsafe{ poly.get_coeff_unchecked(1) };
let coeff_4: Zq = poly.get_coeff(4).unwrap();

assert_eq!(Zq::from((0, 17)), coeff_0);
assert_eq!(Zq::from((1, 17)), coeff_1);
assert_eq!(Zq::from((0, 17)), coeff_4);
§Safety

To use this function safely, make sure that the selected index is greater or equal than 0.

Source§

fn get_coeff(&self, index: impl TryInto<i64> + Display) -> Result<T, MathError>

Returns a coefficient of the given object, e.g. a polynomial, for a given index. Read more
Source§

impl IntoCoefficientEmbedding<MatZq> for &PolyOverZq

Source§

fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZq

Computes the coefficient embedding of the polynomial in a MatZq as a column vector, where the i-th entry of the vector corresponds to the i-th coefficient. It inverts the operation of PolyOverZq::from_coefficient_embedding.

Parameters:

  • size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.

Returns a coefficient embedding as a column vector if size is large enough.

§Examples
use std::str::FromStr;
use qfall_math::{
    integer_mod_q::{MatZq, PolyOverZq},
    traits::IntoCoefficientEmbedding,
};

let poly = PolyOverZq::from_str("3  17 3 -5 mod 19").unwrap();
let vector = poly.into_coefficient_embedding(4);
let cmp_vector = MatZq::from_str("[[17],[3],[-5],[0]] mod 19").unwrap();
assert_eq!(cmp_vector, vector);
§Panics …
  • if size is not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§

impl Mul<&PolyOverZ> for &PolyOverZq

Source§

fn mul(self, other: &PolyOverZ) -> Self::Output

Implements the Mul trait for PolyOverZq and PolyOverZ. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to multiply to self

Returns the product of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let a = PolyOverZq::from_str("4  -1 0 1 1 mod 17").unwrap();
let b = PolyOverZ::from_str("4  2 0 3 1").unwrap();

let c: PolyOverZq = &a * &b;
Source§

type Output = PolyOverZq

The resulting type after applying the * operator.
Source§

impl Mul<&PolyOverZq> for &MatPolynomialRingZq

Source§

fn mul(self, scalar: &PolyOverZq) -> Self::Output

Implements the Mul trait for a MatPolynomialRingZq matrix with a PolyOverZq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • scalar: Specifies the scalar by which the matrix is multiplied.

Returns the product of self and scalar as a MatPolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{MatPolynomialRingZq, ModulusPolynomialRingZq, PolynomialRingZq, PolyOverZq};
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3  0 1 1, 1  42],[0, 2  1 2]]").unwrap();
let poly_ring_mat1 = MatPolynomialRingZq::from((&poly_mat1, &modulus));
let poly = PolyOverZq::from_str("3  1 0 1 mod 17").unwrap();

let poly_ring_mat2 = &poly_ring_mat1 * &poly;
§Panics …
  • if the moduli mismatch.
Source§

type Output = MatPolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&PolyOverZq> for &PolynomialRingZq

Source§

fn mul(self, other: &PolyOverZq) -> Self::Output

Implements the Mul trait for PolynomialRingZq and PolyOverZq. Mul is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to multiply to self

Returns the product of both polynomials as a PolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, PolynomialRingZq};
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly = PolyOverZ::from_str("4  -1 0 1 1").unwrap();
let a = PolynomialRingZq::from((&poly, &modulus));
let b = PolyOverZq::from_str("4  2 0 3 1 mod 17").unwrap();

let c: PolynomialRingZq = &a * &b;
§Panics …
  • if the moduli mismatch.
Source§

type Output = PolynomialRingZq

The resulting type after applying the * operator.
Source§

impl Mul<&Z> for &PolyOverZq

Source§

fn mul(self, scalar: &Z) -> Self::Output

Implements the Mul trait for a PolyOverZq with a Z integer. Mul is implemented for any combination of owned and borrowed values. Mul is also implemented for Z using PolyOverZq.

Parameters:

  • scalar: specifies the scalar by which the polynomial is multiplied

Returns the product of self and scalar as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::Z;
use std::str::FromStr;

let poly_1 = PolyOverZq::from_str("4  1 2 3 4 mod 17").unwrap();
let integer = Z::from(3);

let poly_2 = &poly_1 * &integer;
Source§

type Output = PolyOverZq

The resulting type after applying the * operator.
Source§

impl Mul<&Zq> for &PolyOverZq

Source§

fn mul(self, scalar: &Zq) -> PolyOverZq

Implements the Mul trait for a PolyOverZq with a Zq. Mul is implemented for any combination of owned and borrowed values. Mul is also implemented for Zq using PolyOverZq.

Parameters:

  • scalar: specifies the scalar by which the matrix is multiplied

Returns the product of self and scalar as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, Zq};
use std::str::FromStr;

let poly_1 = PolyOverZq::from_str("4  1 2 3 4 mod 17").unwrap();
let integer = Zq::from((3,17));

let poly_2 = &poly_1 * &integer;
§Panics …
  • if the moduli mismatch.
Source§

type Output = PolyOverZq

The resulting type after applying the * operator.
Source§

impl Mul for &PolyOverZq

Source§

fn mul(self, other: Self) -> Self::Output

Implements the Mul trait for two PolyOverZq values. Mul is implemented for any combination of PolyOverZq and borrowed PolyOverZq.

Parameters:

  • other: specifies the polynomial to multiply with self

Returns the product of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = &a * &b;
let d: PolyOverZq = a * b;
let e: PolyOverZq = &c * d;
let f: PolyOverZq = c * &e;
§Panics …
Source§

type Output = PolyOverZq

The resulting type after applying the * operator.
Source§

impl MulAssign<&PolyOverZ> for PolyOverZq

Source§

fn mul_assign(&mut self, other: &PolyOverZ)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<&PolyOverZq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, scalar: &PolyOverZq)

Documentation at MatPolynomialRingZq::mul_assign. Performs underlying scalar multiplication as PolyOverZ and then applies the reduction.

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<&PolyOverZq> for PolyOverZq

Source§

fn mul_assign(&mut self, other: &Self)

Computes the multiplication of self and other reusing the memory of self. MulAssign can be used on PolyOverZq in combination with PolyOverZq and PolyOverZ.

Parameters:

  • other: specifies the polynomial to multiply to self

Returns the product of both polynomials modulo q as a PolyOverZq.

§Examples
use qfall_math::{integer_mod_q::PolyOverZq, integer::PolyOverZ};
use std::str::FromStr;

let mut a = PolyOverZq::from_str("3  1 2 3 mod 7").unwrap();
let b = PolyOverZq::from_str("5  1 2 -3 0 4 mod 7").unwrap();
let c = PolyOverZ::from_str("4  -1 2 5 3").unwrap();

a *= &b;
a *= b;
a *= &c;
a *= c;
§Panics …
Source§

impl MulAssign<&PolyOverZq> for PolynomialRingZq

Source§

fn mul_assign(&mut self, other: &PolyOverZq)

Documentation at PolynomialRingZq::mul_assign.

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<&Z> for PolyOverZq

Source§

fn mul_assign(&mut self, scalar: &Z)

Computes the scalar multiplication of self and other reusing the memory of self.

Parameters:

  • other: specifies the value to multiply to self

Returns the scalar of the polynomial as a PolyOverZq.

§Examples
use qfall_math::integer::Z;
use qfall_math::integer_mod_q::{PolyOverZq, Zq};
use std::str::FromStr;

let mut a = PolyOverZq::from_str("3  1 2 -3 mod 5").unwrap();
let b = Z::from(2);
let c = Zq::from((17, 5));

a *= &b;
a *= &c;
a *= b;
a *= c;
a *= 2;
a *= -2;
Source§

impl MulAssign<&Zq> for PolyOverZq

Source§

fn mul_assign(&mut self, scalar: &Zq)

Documentation at PolyOverZq::mul_assign

§Panics …
  • if the moduli are different.
Source§

impl MulAssign<PolyOverZ> for PolyOverZq

Source§

fn mul_assign(&mut self, other: PolyOverZ)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<PolyOverZq> for MatPolynomialRingZq

Source§

fn mul_assign(&mut self, other: PolyOverZq)

Source§

impl MulAssign<PolyOverZq> for PolynomialRingZq

Source§

fn mul_assign(&mut self, other: PolyOverZq)

Documentation at PolynomialRingZq::mul_assign.

Source§

impl MulAssign<Z> for PolyOverZq

Source§

fn mul_assign(&mut self, other: Z)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<Zq> for PolyOverZq

Source§

fn mul_assign(&mut self, other: Zq)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<i16> for PolyOverZq

Source§

fn mul_assign(&mut self, other: i16)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<i32> for PolyOverZq

Source§

fn mul_assign(&mut self, other: i32)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<i64> for PolyOverZq

Source§

fn mul_assign(&mut self, other: i64)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<i8> for PolyOverZq

Source§

fn mul_assign(&mut self, other: i8)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<u16> for PolyOverZq

Source§

fn mul_assign(&mut self, other: u16)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<u32> for PolyOverZq

Source§

fn mul_assign(&mut self, other: u32)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<u64> for PolyOverZq

Source§

fn mul_assign(&mut self, other: u64)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign<u8> for PolyOverZq

Source§

fn mul_assign(&mut self, other: u8)

Documentation at PolyOverZq::mul_assign.

Source§

impl MulAssign for PolyOverZq

Source§

fn mul_assign(&mut self, other: PolyOverZq)

Documentation at PolyOverZq::mul_assign.

Source§

impl PartialEq<PolyOverZq> for ModulusPolynomialRingZq

Source§

fn eq(&self, other: &PolyOverZq) -> bool

Checks if an integer matrix and a rational matrix are equal. Used by the == and != operators. PartialEq is also implemented for PolyOverZq using ModulusPolynomialRingZq.

Parameters:

  • other: the other value that is used to compare the elements

Returns true if the elements are equal, otherwise false.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, ModulusPolynomialRingZq};
use std::str::FromStr;
let a: ModulusPolynomialRingZq = ModulusPolynomialRingZq::from_str("3  1 2 3 mod 17").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  1 2 3 mod 17").unwrap();

// These are all equivalent and return true.
let compared: bool = (a == b);
let compared: bool = (b == a);
let compared: bool = (&a == &b);
let compared: bool = (&b == &a);
let compared: bool = (a.eq(&b));
let compared: bool = (b.eq(&a));
let compared: bool = (ModulusPolynomialRingZq::eq(&a, &b));
let compared: bool = (PolyOverZq::eq(&b, &a));
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq for PolyOverZq

Source§

fn eq(&self, other: &Self) -> bool

Checks if two polynomials over Zq are equal. Two PolyOverZq are considered equal if their modulus is equal and all coefficients are equal modulus q. Used by the == and != operators.

Parameters:

  • other: the other value that is used to compare the elements

Returns true if the elements are equal, otherwise false.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;
let a: PolyOverZq = PolyOverZq::from_str("2  42 1 mod 17").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("2  24 1 mod 19").unwrap();

// These are all equivalent and return false.
let compared: bool = (a == b);
let compared: bool = (&a == &b);
let compared: bool = (a.eq(&b));
let compared: bool = (PolyOverZq::eq(&a, &b));
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for PolyOverZq

Source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer,

Implements the serialize option. This allows to create a Json-object from a given PolyOverZq.

Source§

impl SetCoefficient<&Zq> for PolyOverZq

Source§

unsafe fn set_coeff_unchecked(&mut self, index: i64, value: &Zq)

Sets the coefficient of a polynomial PolyOverZq. We advise to use small coefficients, since already 2^32 coefficients take space of roughly 34 GB. If not careful, be prepared that memory problems can occur, if the index is very high.

This function does not check if the modulus of the polynomial and the value match.

Parameters:

  • index: the index of the coefficient to set (has to be positive)
  • value: the new value the index should have from a borrowed Zq.
§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer_mod_q::Zq;
use qfall_math::traits::*;
use std::str::FromStr;

let mut poly = PolyOverZq::from_str("4  0 1 2 3 mod 17").unwrap();
let value = Zq::from((1000, 17));

assert!(poly.set_coeff(4, &value).is_ok());
unsafe{ poly.set_coeff_unchecked(5, &value) };
§Safety

To use this function safely, make sure that the selected index is greater or equal than 0 and that the provided value has the same base so that they have a matching base.

Source§

fn set_coeff( &mut self, index: impl TryInto<i64> + Display, value: T, ) -> Result<(), MathError>

Sets coefficient of the object, e.g. polynomial, for a given input value and a index. Read more
Source§

impl<Integer: Into<Z>> SetCoefficient<Integer> for PolyOverZq

Source§

unsafe fn set_coeff_unchecked(&mut self, index: i64, value: Integer)

Sets the coefficient of a polynomial PolyOverZq. We advise to use small coefficients, since already 2^32 coefficients take space of roughly 34 GB. If not careful, be prepared that memory problems can occur, if the index is very high.

Parameters:

  • index: the index of the coefficient to set (has to be positive)
  • value: the new value the coefficient will be set to.
§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::Z;
use qfall_math::traits::*;
use std::str::FromStr;

let mut poly = PolyOverZq::from_str("4  0 1 2 3 mod 17").unwrap();

assert!(poly.set_coeff(4, 1000).is_ok());
unsafe{ poly.set_coeff_unchecked(5, 75) };
§Safety

To use this function safely, make sure that the selected index is greater or equal than 0 and that the provided value has the same base so that they have a matching base.

Source§

fn set_coeff( &mut self, index: impl TryInto<i64> + Display, value: T, ) -> Result<(), MathError>

Sets coefficient of the object, e.g. polynomial, for a given input value and a index. Read more
Source§

impl SetCoefficient<Zq> for PolyOverZq

Source§

unsafe fn set_coeff_unchecked(&mut self, index: i64, value: Zq)

Documentation can be found at PolyOverZq::set_coeff for &Zq.

Source§

fn set_coeff( &mut self, index: impl TryInto<i64> + Display, value: T, ) -> Result<(), MathError>

Sets coefficient of the object, e.g. polynomial, for a given input value and a index. Read more
Source§

impl Sub<&PolyOverZ> for &PolyOverZq

Source§

fn sub(self, other: &PolyOverZ) -> Self::Output

Implements the Sub trait for PolyOverZq and PolyOverZ. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the subtraction of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let a = PolyOverZq::from_str("4  -1 0 1 1 mod 17").unwrap();
let b = PolyOverZ::from_str("4  2 0 3 1").unwrap();

let c: PolyOverZq = &a - &b;
Source§

type Output = PolyOverZq

The resulting type after applying the - operator.
Source§

impl Sub<&PolyOverZq> for &PolyOverZ

Source§

fn sub(self, other: &PolyOverZq) -> Self::Output

Implements the Sub trait for PolyOverZ and PolyOverZq. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the subtraction of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let a = PolyOverZ::from_str("4  2 0 3 1").unwrap();
let b = PolyOverZq::from_str("4  -1 0 1 1 mod 17").unwrap();

let c: PolyOverZq = &a - &b;
Source§

type Output = PolyOverZq

The resulting type after applying the - operator.
Source§

impl Sub<&PolyOverZq> for &PolynomialRingZq

Source§

fn sub(self, other: &PolyOverZq) -> Self::Output

Implements the Sub trait for PolynomialRingZq and PolyOverZq. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the subtraction of both polynomials as a PolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, PolynomialRingZq};
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly = PolyOverZ::from_str("4  -1 0 1 1").unwrap();
let a = PolynomialRingZq::from((&poly, &modulus));
let b = PolyOverZq::from_str("4  2 0 3 1 mod 17").unwrap();

let c: PolynomialRingZq = &a - &b;
§Panics …
  • if the moduli mismatch.
Source§

type Output = PolynomialRingZq

The resulting type after applying the - operator.
Source§

impl Sub<&PolynomialRingZq> for &PolyOverZq

Source§

fn sub(self, other: &PolynomialRingZq) -> Self::Output

Implements the Sub trait for PolyOverZq and PolynomialRingZq. Sub is implemented for any combination of owned and borrowed values.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the subtraction of both polynomials as a PolynomialRingZq.

§Examples
use qfall_math::integer_mod_q::{PolyOverZq, PolynomialRingZq};
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;

let modulus = ModulusPolynomialRingZq::from_str("4  1 0 0 1 mod 17").unwrap();
let poly = PolyOverZ::from_str("4  -1 0 1 1").unwrap();
let a = PolynomialRingZq::from((&poly, &modulus));
let b = PolyOverZq::from_str("4  2 0 3 1 mod 17").unwrap();

let c: PolynomialRingZq = &b - &a;
§Panics …
  • if the moduli mismatch.
Source§

type Output = PolynomialRingZq

The resulting type after applying the - operator.
Source§

impl Sub for &PolyOverZq

Source§

fn sub(self, other: Self) -> Self::Output

Implements the Sub trait for two PolyOverZq values. Sub is implemented for any combination of PolyOverZq and borrowed PolyOverZq.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the result of the subtraction of both polynomials as a PolyOverZq.

§Examples
use qfall_math::integer_mod_q::PolyOverZq;
use std::str::FromStr;

let a: PolyOverZq = PolyOverZq::from_str("3  2 4 1 mod 7").unwrap();
let b: PolyOverZq = PolyOverZq::from_str("3  5 1 1 mod 7").unwrap();

let c: PolyOverZq = &a - &b;
let d: PolyOverZq = a - b;
let e: PolyOverZq = &c - d;
let f: PolyOverZq = c - &e;
§Panics …
Source§

type Output = PolyOverZq

The resulting type after applying the - operator.
Source§

impl SubAssign<&PolyOverZ> for PolyOverZq

Source§

fn sub_assign(&mut self, other: &PolyOverZ)

Documentation at PolyOverZq::sub_assign.

Source§

impl SubAssign<&PolyOverZq> for PolyOverZq

Source§

fn sub_assign(&mut self, other: &Self)

Computes the subtraction of self and other reusing the memory of self. SubAssign can be used on PolyOverZq in combination with PolyOverZq and PolyOverZ.

Parameters:

  • other: specifies the polynomial to subtract from self

Returns the difference of both polynomials modulo q as a PolyOverZq.

§Examples
use qfall_math::{integer_mod_q::PolyOverZq, integer::PolyOverZ};
use std::str::FromStr;

let mut a = PolyOverZq::from_str("3  1 2 3 mod 7").unwrap();
let b = PolyOverZq::from_str("5  1 2 -3 0 4 mod 7").unwrap();
let c = PolyOverZ::from_str("4  -1 2 5 3").unwrap();

a -= &b;
a -= b;
a -= &c;
a -= c;
§Panics …
Source§

impl SubAssign<&PolyOverZq> for PolynomialRingZq

Source§

fn sub_assign(&mut self, other: &PolyOverZq)

Documentation at PolynomialRingZq::sub_assign.

§Panics …
  • if the moduli are different.
Source§

impl SubAssign<PolyOverZ> for PolyOverZq

Source§

fn sub_assign(&mut self, other: PolyOverZ)

Documentation at PolyOverZq::sub_assign.

Source§

impl SubAssign<PolyOverZq> for PolynomialRingZq

Source§

fn sub_assign(&mut self, other: PolyOverZq)

Documentation at PolynomialRingZq::sub_assign.

Source§

impl SubAssign for PolyOverZq

Source§

fn sub_assign(&mut self, other: PolyOverZq)

Documentation at PolyOverZq::sub_assign.

Source§

impl Eq for PolyOverZq

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,