SMP

Struct SMP 

Source
pub struct SMP { /* private fields */ }
Expand description

Simulate a SMP system with n CPUs initially present on the machine type board. On boards supporting CPU hotplug, the optional maxcpus parameter can be set to enable further CPUs to be added at runtime. When both parameters are omitted, the maximum number of CPUs will be calculated from the provided topology members and the initial CPU count will match the maximum number. When only one of them is given then the omitted one will be set to its counterpart’s value. Both parameters may be specified, but the maximum number of CPUs must be equal to or greater than the initial CPU count. Product of the CPU topology hierarchy must be equal to the maximum number of CPUs. Both parameters are subject to an upper limit that is determined by the specific machine type chosen.

To control reporting of CPU topology information, values of the topology parameters can be specified. Machines may only support a subset of the parameters and different machines may have different subsets supported which vary depending on capacity of the corresponding CPU targets. So for a particular machine type board, an expected topology hierarchy can be defined through the supported sub-option. Unsupported parameters can also be provided in addition to the sub-option, but their values must be set as 1 in the purpose of correct parsing.

Either the initial CPU count, or at least one of the topology parameters must be specified. The specified parameters must be greater than zero, explicit configuration like “cpus=0” is not allowed. Values for any omitted parameters will be computed from those which are given.

For example, the following sub-option defines a CPU topology hierarchy (2 sockets totally on the machine, 2 cores per socket, 2 threads per core) for a machine that only supports sockets/cores/threads. Some members of the option can be omitted but their values will be automatically computed:

Implementations§

Source§

impl SMP

Source

pub fn builder() -> SMPBuilder

Create an instance of SMP using the builder syntax

Source§

impl SMP

Source

pub fn new(cpus: usize) -> Self

Trait Implementations§

Source§

impl Default for SMP

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl ToCommand for SMP

Auto Trait Implementations§

§

impl Freeze for SMP

§

impl RefUnwindSafe for SMP

§

impl Send for SMP

§

impl Sync for SMP

§

impl Unpin for SMP

§

impl UnwindSafe for SMP

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.