Struct puroro_codegen::File

source ·
pub struct File(_);
Expand description

Represents a single generated file.

Implementations§

source§

impl File

source

pub fn name_mut(&mut self) -> &mut String

source

pub fn clear_name(&mut self)

source

pub fn insertion_point_mut(&mut self) -> &mut String

source

pub fn clear_insertion_point(&mut self)

source

pub fn content_mut(&mut self) -> &mut String

source

pub fn clear_content(&mut self)

source

pub fn generated_code_info_mut(&mut self) -> &mut GeneratedCodeInfo

source

pub fn clear_generated_code_info(&mut self)

source

pub const NAME_FIELD_NUMBER: i32 = 1i32

source

pub const INSERTION_POINT_FIELD_NUMBER: i32 = 2i32

source

pub const CONTENT_FIELD_NUMBER: i32 = 15i32

source

pub const GENERATED_CODE_INFO_FIELD_NUMBER: i32 = 16i32

Methods from Deref<Target = FileView>§

source

pub fn name(&self) -> &str

source

pub fn name_opt(&self) -> Option<&str>

The file name, relative to the output directory. The name must not contain “.” or “..” components and must be relative, not be absolute (so, the file cannot lie outside the output directory). “/” must be used as the path separator, not “".

If the name is omitted, the content will be appended to the previous file. This allows the generator to break large files into small chunks, and allows the generated text to be streamed back to protoc so that large files need not reside completely in memory at one time. Note that as of this writing protoc does not optimize for this – it will read the entire CodeGeneratorResponse before writing files to disk.

source

pub fn has_name(&self) -> bool

source

pub fn insertion_point(&self) -> &str

source

pub fn insertion_point_opt(&self) -> Option<&str>

If non-empty, indicates that the named file should already exist, and the content here is to be inserted into that file at a defined insertion point. This feature allows a code generator to extend the output produced by another code generator. The original generator may provide insertion points by placing special annotations in the file that look like: @@protoc_insertion_point(NAME) The annotation can have arbitrary text before and after it on the line, which allows it to be placed in a comment. NAME should be replaced with an identifier naming the point – this is what other generators will use as the insertion_point. Code inserted at this point will be placed immediately above the line containing the insertion point (thus multiple insertions to the same point will come out in the order they were added). The double-@ is intended to make it unlikely that the generated code could contain things that look like insertion points by accident.

For example, the C++ code generator places the following line in the .pb.h files that it generates: // @@protoc_insertion_point(namespace_scope) This line appears within the scope of the file’s package namespace, but outside of any particular class. Another plugin can then specify the insertion_point “namespace_scope” to generate additional classes or other declarations that should be placed in this scope.

Note that if the line containing the insertion point begins with whitespace, the same whitespace will be added to every line of the inserted text. This is useful for languages like Python, where indentation matters. In these languages, the insertion point comment should be indented the same amount as any inserted code will need to be in order to work correctly in that context.

The code generator that generates the initial file and the one which inserts into it must both run as part of a single invocation of protoc. Code generators are executed in the order in which they appear on the command line.

If |insertion_point| is present, |name| must also be present.

source

pub fn has_insertion_point(&self) -> bool

source

pub fn content(&self) -> &str

source

pub fn content_opt(&self) -> Option<&str>

The file contents.

source

pub fn has_content(&self) -> bool

source

pub fn generated_code_info(&self) -> Option<&GeneratedCodeInfoView>

source

pub fn generated_code_info_opt(&self) -> Option<&GeneratedCodeInfoView>

Information describing the file content being inserted. If an insertion point is used, this information will be appropriately offset and inserted into the code generation metadata for the generated files.

source

pub fn has_generated_code_info(&self) -> bool

Trait Implementations§

source§

impl Borrow<FileView> for File

source§

fn borrow(&self) -> &FileView

Immutably borrows from an owned value. Read more
source§

impl Clone for File

source§

fn clone(&self) -> File

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for File

source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for File

source§

fn default() -> File

Returns the “default value” for a type. Read more
source§

impl Deref for File

§

type Target = FileView

The resulting type after dereferencing.
source§

fn deref(&self) -> &<File as Deref>::Target

Dereferences the value.
source§

impl Message for File

§

type ViewType = FileView

source§

fn from_bytes_iter<I>(iter: I) -> Result<File, PuroroError>where I: Iterator<Item = Result<u8, Error>>,

source§

fn merge_from_bytes_iter<I>(&mut self, iter: I) -> Result<(), PuroroError>where I: Iterator<Item = Result<u8, Error>>,

source§

impl MessageInternal for File

source§

fn merge_from_scoped_bytes_iter<I, 'a>( &mut self, iter: &mut ScopedIter<'a, I> ) -> Result<(), PuroroError>where I: Iterator<Item = Result<u8, Error>>,

source§

fn from_scoped_bytes_iter<I, 'a>( scoped_iter: &mut ScopedIter<'a, I> ) -> Result<Self, PuroroError>where I: Iterator<Item = Result<u8, Error>>, Self: Default,

source§

impl PartialEq<File> for File

source§

fn eq(&self, rhs: &File) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

§

impl RefUnwindSafe for File

§

impl Send for File

§

impl Sync for File

§

impl Unpin for File

§

impl UnwindSafe for File

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> Twhere Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pipe for Twhere T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> Rwhere Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R ) -> Rwhere Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> Rwhere Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> Rwhere Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> Rwhere Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R ) -> Rwhere Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Selfwhere Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Selfwhere Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Selfwhere Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Selfwhere Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Selfwhere Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Selfwhere Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Selfwhere Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Selfwhere Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Selfwhere Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Selfwhere Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.