pub struct PSO { /* private fields */ }Expand description
Particle Swarm Optimizer
Base struct to run optimization jobs using Particle Swarms and an objective function
§Examples
use pso::PSO;
use pso::job_config::JobConfig;
// create a PSO with 6 swarms using the default swarm configuration
// the verbose flag tells the pso to provide updates about configuration information
let pso = PSO::default(6, true);
// create a Job Configuration to run an optimization job on the PSO over a 3 dimensional search space
let mut jc = JobConfig::new(3);
// set some configuration parameters
jc.exit_cost(10e-10);
jc.variable_bound([-10.0, 10.0]);
jc.update_console(10);
// define some data to be used in the optimization (this will be moved in to the closure below)
let mins = [1.0, -3.0, 3.0];
// run an optimization job with a closure as the cost function
let mins_opt = pso.run_job_fn(jc, move |position: &[f64]| -> f64 {
position.iter().enumerate().map(|(i, x)| {
(x - mins[i]).powi(2)
}).sum::<f64>()
});
for (min, min_opt) in mins.iter().zip(mins_opt.1.iter()) {
assert!((min - min_opt).abs() < 0.0001);
}
Implementations§
Source§impl PSO
impl PSO
Sourcepub fn from_swarm_configs(
verbose: bool,
swarm_configs: Vec<SwarmConfig>,
) -> Self
pub fn from_swarm_configs( verbose: bool, swarm_configs: Vec<SwarmConfig>, ) -> Self
Generate a PSO from a list of Swarm Configurations
Sourcepub fn from_swarm_config(
num_swarms: usize,
verbose: bool,
swarm_config: &SwarmConfig,
) -> Self
pub fn from_swarm_config( num_swarms: usize, verbose: bool, swarm_config: &SwarmConfig, ) -> Self
Generate a PSO with num_swarms swarms using the given Swarm Configuration
Sourcepub fn sampled_swarm_config(
num_swarms: usize,
verbose: bool,
swarm_config_sampler: &SwarmConfigSampler,
) -> Self
pub fn sampled_swarm_config( num_swarms: usize, verbose: bool, swarm_config_sampler: &SwarmConfigSampler, ) -> Self
Generate a PSO with num_swarms swarms by sampling SwarmConfig’s from a SwarmConfigSampler
Sourcepub fn default(num_swarms: usize, verbose: bool) -> Self
pub fn default(num_swarms: usize, verbose: bool) -> Self
Generate a PSO with num_swarms swarms using the default Swarm Configuration
Sourcepub fn run_job_fn<T>(
&self,
job_config: JobConfig,
objective_function: T,
) -> (f64, Vec<f64>)
pub fn run_job_fn<T>( &self, job_config: JobConfig, objective_function: T, ) -> (f64, Vec<f64>)
Run an optimization with the given Job Configuration and Objective Function
Returns a tuple with the minimum cost and corresponding location in the search space.
This function puts the objective function in an Arc in order to share it across threads, so the function must be Sync + Send (it must not mutate itself).
This method of objective function sharing prioritizes memory efficiency, but may be less efficient at runtime
than run_job_fn_mut() due to Atomic instruction overhead (especially when using many swarms/ threads).
Sourcepub fn run_job_fn_mut<T>(
&self,
job_config: JobConfig,
objective_function: T,
) -> (f64, Vec<f64>)
pub fn run_job_fn_mut<T>( &self, job_config: JobConfig, objective_function: T, ) -> (f64, Vec<f64>)
Run an optimization with the given Job Configuration and Objective Function
Returns a tuple with the minimum cost and corresponding location in the search space.
This function clones the objective function S.T. each swarm/thread has its own copy of the function. This allows the function to mutate itself and use internal memory sharing that is !Sync + !Send.
This method of objective function sharing prioritizes performance but is not as memory efficient as run_job_fn() (especially when using many swarms/ threads).