PostalAddress

Struct PostalAddress 

Source
pub struct PostalAddress {
    pub revision: i32,
    pub region_code: String,
    pub language_code: String,
    pub postal_code: String,
    pub sorting_code: String,
    pub administrative_area: String,
    pub locality: String,
    pub sublocality: String,
    pub address_lines: Vec<String>,
    pub recipients: Vec<String>,
    pub organization: String,
}
Available on crate feature postal_address only.
Expand description

Represents a postal address, e.g. for postal delivery or payments addresses. Given a postal address, a postal service can deliver items to a premise, P.O. Box or similar. It is not intended to model geographical locations (roads, towns, mountains).

In typical usage an address would be created via user input or from importing existing data, depending on the type of process.

Advice on address input / editing:

  • Use an i18n-ready address widget such as https://github.com/google/libaddressinput)
  • Users should not be presented with UI elements for input or editing of fields outside countries where that field is used.

For more guidance on how to use this schema, please see: https://support.google.com/business/answer/6397478

Fields§

§revision: i32

The schema revision of the PostalAddress. This must be set to 0, which is the latest revision.

All new revisions must be backward compatible with old revisions.

§region_code: String

Required. CLDR region code of the country/region of the address. This is never inferred and it is up to the user to ensure the value is correct. See http://cldr.unicode.org/ and http://www.unicode.org/cldr/charts/30/supplemental/territory_information.html for details. Example: “CH” for Switzerland.

§language_code: String

Optional. BCP-47 language code of the contents of this address (if known). This is often the UI language of the input form or is expected to match one of the languages used in the address’ country/region, or their transliterated equivalents. This can affect formatting in certain countries, but is not critical to the correctness of the data and will never affect any validation or other non-formatting related operations.

If this value is not known, it should be omitted (rather than specifying a possibly incorrect default).

Examples: “zh-Hant”, “ja”, “ja-Latn”, “en”.

§postal_code: String

Optional. Postal code of the address. Not all countries use or require postal codes to be present, but where they are used, they may trigger additional validation with other parts of the address (e.g. state/zip validation in the U.S.A.).

§sorting_code: String

Optional. Additional, country-specific, sorting code. This is not used in most regions. Where it is used, the value is either a string like “CEDEX”, optionally followed by a number (e.g. “CEDEX 7”), or just a number alone, representing the “sector code” (Jamaica), “delivery area indicator” (Malawi) or “post office indicator” (e.g. Côte d’Ivoire).

§administrative_area: String

Optional. Highest administrative subdivision which is used for postal addresses of a country or region. For example, this can be a state, a province, an oblast, or a prefecture. Specifically, for Spain this is the province and not the autonomous community (e.g. “Barcelona” and not “Catalonia”). Many countries don’t use an administrative area in postal addresses. E.g. in Switzerland this should be left unpopulated.

§locality: String

Optional. Generally refers to the city/town portion of the address. Examples: US city, IT comune, UK post town. In regions of the world where localities are not well defined or do not fit into this structure well, leave locality empty and use address_lines.

§sublocality: String

Optional. Sublocality of the address. For example, this can be neighborhoods, boroughs, districts.

§address_lines: Vec<String>

Unstructured address lines describing the lower levels of an address.

Because values in address_lines do not have type information and may sometimes contain multiple values in a single field (e.g. “Austin, TX”), it is important that the line order is clear. The order of address lines should be “envelope order” for the country/region of the address. In places where this can vary (e.g. Japan), address_language is used to make it explicit (e.g. “ja” for large-to-small ordering and “ja-Latn” or “en” for small-to-large). This way, the most specific line of an address can be selected based on the language.

The minimum permitted structural representation of an address consists of a region_code with all remaining information placed in the address_lines. It would be possible to format such an address very approximately without geocoding, but no semantic reasoning could be made about any of the address components until it was at least partially resolved.

Creating an address only containing a region_code and address_lines, and then geocoding is the recommended way to handle completely unstructured addresses (as opposed to guessing which parts of the address should be localities or administrative areas).

§recipients: Vec<String>

Optional. The recipient at the address. This field may, under certain circumstances, contain multiline information. For example, it might contain “care of” information.

§organization: String

Optional. The name of the organization at the address.

Implementations§

Source§

impl PostalAddress

Source

pub fn has_region_code(&self) -> bool

Checks if this PostalAddress’s region_code is empty. If it is, it means that the instance is invalid.

Source

pub fn matches_region_code(&self, code: &str) -> bool

Checks if the region_code of this address matches the given code. The code should be a CLDR region code (ISO 3166-1 alpha-2, e.g., “US”, “CH”).

Source

pub fn has_language_code(&self, code: &str) -> bool

Checks if the language_code of this address matches the given BCP-47 code. The code should be a BCP-44 language tag (e.g., “en-US”, “ja”).

Source

pub fn has_postal_code(&self, code: &str) -> bool

Checks if the postal_code of this address matches the given code.

Source

pub fn has_sorting_code(&self, code: &str) -> bool

Checks if the sorting_code of this address matches the given code.

Source

pub fn has_administrative_area(&self, name: &str) -> bool

Checks if the administrative_area of this address matches the given name.

Source

pub fn has_locality(&self, name: &str) -> bool

Checks if the locality (city/town) of this address matches the given name.

Source

pub fn has_sublocality(&self, name: &str) -> bool

Checks if the sublocality of this address matches the given name.

Trait Implementations§

Source§

impl Clone for PostalAddress

Source§

fn clone(&self) -> PostalAddress

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for PostalAddress

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for PostalAddress

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for PostalAddress

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl From<PostalAddress> for Value

Available on crate feature cel only.
Source§

fn from(value: PostalAddress) -> Self

Converts to this type from the input type.
Source§

impl Hash for PostalAddress

Source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl Message for PostalAddress

Source§

fn encoded_len(&self) -> usize

Returns the encoded length of the message without a length delimiter.
Source§

fn clear(&mut self)

Clears the message, resetting all fields to their default.
Source§

fn encode(&self, buf: &mut impl BufMut) -> Result<(), EncodeError>
where Self: Sized,

Encodes the message to a buffer. Read more
Source§

fn encode_to_vec(&self) -> Vec<u8>
where Self: Sized,

Encodes the message to a newly allocated buffer.
Source§

fn encode_length_delimited( &self, buf: &mut impl BufMut, ) -> Result<(), EncodeError>
where Self: Sized,

Encodes the message with a length-delimiter to a buffer. Read more
Source§

fn encode_length_delimited_to_vec(&self) -> Vec<u8>
where Self: Sized,

Encodes the message with a length-delimiter to a newly allocated buffer.
Source§

fn decode(buf: impl Buf) -> Result<Self, DecodeError>
where Self: Default,

Decodes an instance of the message from a buffer. Read more
Source§

fn decode_length_delimited(buf: impl Buf) -> Result<Self, DecodeError>
where Self: Default,

Decodes a length-delimited instance of the message from the buffer.
Source§

fn merge(&mut self, buf: impl Buf) -> Result<(), DecodeError>
where Self: Sized,

Decodes an instance of the message from a buffer, and merges it into self. Read more
Source§

fn merge_length_delimited(&mut self, buf: impl Buf) -> Result<(), DecodeError>
where Self: Sized,

Decodes a length-delimited instance of the message from buffer, and merges it into self.
Source§

impl PartialEq for PostalAddress

Source§

fn eq(&self, other: &PostalAddress) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for PostalAddress

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Eq for PostalAddress

Source§

impl StructuralPartialEq for PostalAddress

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for S
where T: Real + Zero + Arithmetics + Clone, Swp: WhitePoint<T>, Dwp: WhitePoint<T>, D: AdaptFrom<S, Swp, Dwp, T>,

Source§

fn adapt_into_using<M>(self, method: M) -> D
where M: TransformMatrix<T>,

Convert the source color to the destination color using the specified method.
Source§

fn adapt_into(self) -> D

Convert the source color to the destination color using the bradford method by default.
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> AnyExt for T
where T: Any + ?Sized,

Source§

fn downcast_ref<T>(this: &Self) -> Option<&T>
where T: Any,

Attempts to downcast this to T behind reference
Source§

fn downcast_mut<T>(this: &mut Self) -> Option<&mut T>
where T: Any,

Attempts to downcast this to T behind mutable reference
Source§

fn downcast_rc<T>(this: Rc<Self>) -> Result<Rc<T>, Rc<Self>>
where T: Any,

Attempts to downcast this to T behind Rc pointer
Source§

fn downcast_arc<T>(this: Arc<Self>) -> Result<Arc<T>, Arc<Self>>
where T: Any,

Attempts to downcast this to T behind Arc pointer
Source§

fn downcast_box<T>(this: Box<Self>) -> Result<Box<T>, Box<Self>>
where T: Any,

Attempts to downcast this to T behind Box pointer
Source§

fn downcast_move<T>(this: Self) -> Option<T>
where T: Any, Self: Sized,

Attempts to downcast owned Self to T, useful only in generic context as a workaround for specialization
Source§

impl<T, C> ArraysFrom<C> for T
where C: IntoArrays<T>,

Source§

fn arrays_from(colors: C) -> T

Cast a collection of colors into a collection of arrays.
Source§

impl<T, C> ArraysInto<C> for T
where C: FromArrays<T>,

Source§

fn arrays_into(self) -> C

Cast this collection of arrays into a collection of colors.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for U
where T: FromCam16Unclamped<WpParam, U>,

Source§

type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar

The number type that’s used in parameters when converting.
Source§

fn cam16_into_unclamped( self, parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>, ) -> T

Converts self into C, using the provided parameters.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T, X> CoerceTo<T> for X
where T: CoerceFrom<X> + ?Sized,

Source§

fn coerce_rc_to(self: Rc<X>) -> Rc<T>

Source§

fn coerce_box_to(self: Box<X>) -> Box<T>

Source§

fn coerce_ref_to(&self) -> &T

Source§

fn coerce_mut_to(&mut self) -> &mut T

Source§

impl<T, C> ComponentsFrom<C> for T
where C: IntoComponents<T>,

Source§

fn components_from(colors: C) -> T

Cast a collection of colors into a collection of color components.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromAngle<T> for T

Source§

fn from_angle(angle: T) -> T

Performs a conversion from angle.
Source§

impl<T, U> FromStimulus<U> for T
where U: IntoStimulus<T>,

Source§

fn from_stimulus(other: U) -> T

Converts other into Self, while performing the appropriate scaling, rounding and clamping.
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> IntoAngle<U> for T
where U: FromAngle<T>,

Source§

fn into_angle(self) -> U

Performs a conversion into T.
Source§

impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for U
where T: Cam16FromUnclamped<WpParam, U>,

Source§

type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar

The number type that’s used in parameters when converting.
Source§

fn into_cam16_unclamped( self, parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>, ) -> T

Converts self into C, using the provided parameters.
Source§

impl<T, U> IntoColor<U> for T
where U: FromColor<T>,

Source§

fn into_color(self) -> U

Convert into T with values clamped to the color defined bounds Read more
Source§

impl<T, U> IntoColorUnclamped<U> for T
where U: FromColorUnclamped<T>,

Source§

fn into_color_unclamped(self) -> U

Convert into T. The resulting color might be invalid in its color space Read more
Source§

impl<T> IntoStimulus<T> for T

Source§

fn into_stimulus(self) -> T

Converts self into T, while performing the appropriate scaling, rounding and clamping.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, C> TryComponentsInto<C> for T
where C: TryFromComponents<T>,

Source§

type Error = <C as TryFromComponents<T>>::Error

The error for when try_into_colors fails to cast.
Source§

fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>

Try to cast this collection of color components into a collection of colors. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T, U> TryIntoColor<U> for T
where U: TryFromColor<T>,

Source§

fn try_into_color(self) -> Result<U, OutOfBounds<U>>

Convert into T, returning ok if the color is inside of its defined range, otherwise an OutOfBounds error is returned which contains the unclamped color. Read more
Source§

impl<T> TryIntoValue for T
where T: Serialize,

Source§

impl<C, U> UintsFrom<C> for U
where C: IntoUints<U>,

Source§

fn uints_from(colors: C) -> U

Cast a collection of colors into a collection of unsigned integers.
Source§

impl<C, U> UintsInto<C> for U
where C: FromUints<U>,

Source§

fn uints_into(self) -> C

Cast this collection of unsigned integers into a collection of colors.
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,