pub enum PropositionalFormula {
Variable(Variable),
Negation(Option<Box<PropositionalFormula>>),
Conjunction(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>),
Disjunction(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>),
Implication(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>),
Biimplication(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>),
}
Expand description
A propositional formula is defined inductively, conforming to the following BNF:
<formula>
::= <propositional-variable>
| ( - <formula> )
| ( <formula> ^ <formula>)
| ( <formula> | <formula> )
| ( <formula> -> <formula> )
| ( <formula> <-> <formula> )
Notice the requirement for explicit parentheses around the unary and binary operators, which eliminates the requirement for operator precedence due to grammar ambiguity at the cost of being more verbose.
§Ownership, Interior Mutability and Optional Sub-formulas
Since we don’t need any fancy multiple-threading or multi-owner business, we’ll stick with the
most trivial Box
pointer indirection instead of the fancier alternatives:
- Reference-counted smart pointer
Rc
- Atomically-reference-counted smart pointer
Arc
- Lifetime-bounded references
&'a
We do not support interior mutability as we do not need it for our use cases with respect to the propositional formula AST.
We need sub-formulas to be wrapped in Option
for construction purposes, so we can build a
PropPropositionalFormula
during parsing.
§No Default
We cannot soundly define a sane default for a PropositionalFormula
– even in the base case of
a single propositional variable, what would the default propositional variable be?
Variants§
Variable(Variable)
Base case: a single propositional variable.
Negation(Option<Box<PropositionalFormula>>)
Unary case: negated formula.
Conjunction(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>)
Binary formula with the main connective being the logical AND connective.
Disjunction(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>)
Binary formula with the main connective being the logical OR operator.
Implication(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>)
Binary formula with the main connective being the implication operator.
Biimplication(Option<Box<PropositionalFormula>>, Option<Box<PropositionalFormula>>)
Binary formula with the main connective being the biimplication operator.
Implementations§
Source§impl PropositionalFormula
impl PropositionalFormula
Sourcepub fn variable(v: Variable) -> Self
pub fn variable(v: Variable) -> Self
Construct a new propositional formula from a propositional Variable
.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let formula = PropositionalFormula::variable(Variable::new("a"));
println!("{:#?}", formula);
Sourcepub fn negated(formula: Box<PropositionalFormula>) -> Self
pub fn negated(formula: Box<PropositionalFormula>) -> Self
Construct a new propositional formula from a sub propositional formula with negation.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let sub_formula = PropositionalFormula::variable(Variable::new("a"));
let formula = PropositionalFormula::negated(Box::new(sub_formula.clone()));
println!("{:#?}", formula);
Sourcepub fn conjunction(
left_sub_formula: Box<PropositionalFormula>,
right_sub_formula: Box<PropositionalFormula>,
) -> Self
pub fn conjunction( left_sub_formula: Box<PropositionalFormula>, right_sub_formula: Box<PropositionalFormula>, ) -> Self
Construct a new propositional formula from two propositional sub-formulas with a conjunction main connective.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let sub_formula = PropositionalFormula::variable(Variable::new("a"));
let formula = PropositionalFormula::conjunction(Box::new(sub_formula.clone()), Box::new(sub_formula.clone()));
println!("{:#?}", formula);
Sourcepub fn disjunction(
left_sub_formula: Box<PropositionalFormula>,
right_sub_formula: Box<PropositionalFormula>,
) -> Self
pub fn disjunction( left_sub_formula: Box<PropositionalFormula>, right_sub_formula: Box<PropositionalFormula>, ) -> Self
Construct a new propositional formula from two propositional sub-formulas with a disjunction main connective.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let sub_formula = PropositionalFormula::variable(Variable::new("a"));
let formula = PropositionalFormula::disjunction(Box::new(sub_formula.clone()), Box::new(sub_formula.clone()));
println!("{:#?}", formula);
Sourcepub fn implication(
left_sub_formula: Box<PropositionalFormula>,
right_sub_formula: Box<PropositionalFormula>,
) -> Self
pub fn implication( left_sub_formula: Box<PropositionalFormula>, right_sub_formula: Box<PropositionalFormula>, ) -> Self
Construct a new propositional formula from two propositional sub-formulas with an implication main connective.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let sub_formula = PropositionalFormula::variable(Variable::new("a"));
let formula = PropositionalFormula::implication(Box::new(sub_formula.clone()), Box::new(sub_formula.clone()));
println!("{:#?}", formula);
Sourcepub fn biimplication(
left_sub_formula: Box<PropositionalFormula>,
right_sub_formula: Box<PropositionalFormula>,
) -> Self
pub fn biimplication( left_sub_formula: Box<PropositionalFormula>, right_sub_formula: Box<PropositionalFormula>, ) -> Self
Construct a new propositional formula from two propositional sub-formulas with a biimplication main connective.
§Example
use libprop_sat_solver::formula::{PropositionalFormula, Variable};
let sub_formula = PropositionalFormula::variable(Variable::new("a"));
let formula = PropositionalFormula::biimplication(Box::new(sub_formula.clone()), Box::new(sub_formula.clone()));
println!("{:#?}", formula);
Sourcepub fn is_literal(&self) -> bool
pub fn is_literal(&self) -> bool
Checks if the given PropositionalFormula
is a literal (either a propositional variable
like p
or its negation -p
).
Trait Implementations§
Source§impl Clone for PropositionalFormula
impl Clone for PropositionalFormula
Source§fn clone(&self) -> PropositionalFormula
fn clone(&self) -> PropositionalFormula
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more