proc_macro2/lib.rs
1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//! main.rs.** Types from `proc_macro` are entirely specific to procedural
14//! macros and cannot ever exist in code outside of a procedural macro.
15//! Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//! By developing foundational libraries like [syn] and [quote] against
17//! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//! becomes easily applicable to many other use cases and we avoid
19//! reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//! specific to procedural macros, nothing that uses `proc_macro` can be
23//! executed from a unit test. In order for helper libraries or components of
24//! a macro to be testable in isolation, they must be implemented using
25//! `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//! let input = proc_macro2::TokenStream::from(input);
43//!
44//! let output: proc_macro2::TokenStream = {
45//! /* transform input */
46//! # input
47//! };
48//!
49//! proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.101")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93 clippy::cast_lossless,
94 clippy::cast_possible_truncation,
95 clippy::checked_conversions,
96 clippy::doc_markdown,
97 clippy::elidable_lifetime_names,
98 clippy::incompatible_msrv,
99 clippy::items_after_statements,
100 clippy::iter_without_into_iter,
101 clippy::let_underscore_untyped,
102 clippy::manual_assert,
103 clippy::manual_range_contains,
104 clippy::missing_panics_doc,
105 clippy::missing_safety_doc,
106 clippy::must_use_candidate,
107 clippy::needless_doctest_main,
108 clippy::needless_lifetimes,
109 clippy::new_without_default,
110 clippy::return_self_not_must_use,
111 clippy::shadow_unrelated,
112 clippy::trivially_copy_pass_by_ref,
113 clippy::unnecessary_wraps,
114 clippy::unused_self,
115 clippy::used_underscore_binding,
116 clippy::vec_init_then_push
117)]
118#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
119
120#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
121compile_error! {"\
122 Something is not right. If you've tried to turn on \
123 procmacro2_semver_exempt, you need to ensure that it \
124 is turned on for the compilation of the proc-macro2 \
125 build script as well.
126"}
127
128#[cfg(all(
129 procmacro2_nightly_testing,
130 feature = "proc-macro",
131 not(proc_macro_span)
132))]
133compile_error! {"\
134 Build script probe failed to compile.
135"}
136
137extern crate alloc;
138
139#[cfg(feature = "proc-macro")]
140extern crate proc_macro;
141
142mod marker;
143mod parse;
144mod probe;
145mod rcvec;
146
147#[cfg(wrap_proc_macro)]
148mod detection;
149
150// Public for proc_macro2::fallback::force() and unforce(), but those are quite
151// a niche use case so we omit it from rustdoc.
152#[doc(hidden)]
153pub mod fallback;
154
155pub mod extra;
156
157#[cfg(not(wrap_proc_macro))]
158use crate::fallback as imp;
159#[path = "wrapper.rs"]
160#[cfg(wrap_proc_macro)]
161mod imp;
162
163#[cfg(span_locations)]
164mod location;
165
166use crate::extra::DelimSpan;
167use crate::marker::{ProcMacroAutoTraits, MARKER};
168use core::cmp::Ordering;
169use core::fmt::{self, Debug, Display};
170use core::hash::{Hash, Hasher};
171#[cfg(span_locations)]
172use core::ops::Range;
173use core::ops::RangeBounds;
174use core::str::FromStr;
175use std::error::Error;
176use std::ffi::CStr;
177#[cfg(span_locations)]
178use std::path::PathBuf;
179
180#[cfg(span_locations)]
181#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
182pub use crate::location::LineColumn;
183
184/// An abstract stream of tokens, or more concretely a sequence of token trees.
185///
186/// This type provides interfaces for iterating over token trees and for
187/// collecting token trees into one stream.
188///
189/// Token stream is both the input and output of `#[proc_macro]`,
190/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
191#[derive(Clone)]
192pub struct TokenStream {
193 inner: imp::TokenStream,
194 _marker: ProcMacroAutoTraits,
195}
196
197/// Error returned from `TokenStream::from_str`.
198pub struct LexError {
199 inner: imp::LexError,
200 _marker: ProcMacroAutoTraits,
201}
202
203impl TokenStream {
204 fn _new(inner: imp::TokenStream) -> Self {
205 TokenStream {
206 inner,
207 _marker: MARKER,
208 }
209 }
210
211 fn _new_fallback(inner: fallback::TokenStream) -> Self {
212 TokenStream {
213 inner: imp::TokenStream::from(inner),
214 _marker: MARKER,
215 }
216 }
217
218 /// Returns an empty `TokenStream` containing no token trees.
219 pub fn new() -> Self {
220 TokenStream::_new(imp::TokenStream::new())
221 }
222
223 /// Checks if this `TokenStream` is empty.
224 pub fn is_empty(&self) -> bool {
225 self.inner.is_empty()
226 }
227}
228
229/// `TokenStream::default()` returns an empty stream,
230/// i.e. this is equivalent with `TokenStream::new()`.
231impl Default for TokenStream {
232 fn default() -> Self {
233 TokenStream::new()
234 }
235}
236
237/// Attempts to break the string into tokens and parse those tokens into a token
238/// stream.
239///
240/// May fail for a number of reasons, for example, if the string contains
241/// unbalanced delimiters or characters not existing in the language.
242///
243/// NOTE: Some errors may cause panics instead of returning `LexError`. We
244/// reserve the right to change these errors into `LexError`s later.
245impl FromStr for TokenStream {
246 type Err = LexError;
247
248 fn from_str(src: &str) -> Result<TokenStream, LexError> {
249 match imp::TokenStream::from_str_checked(src) {
250 Ok(tokens) => Ok(TokenStream::_new(tokens)),
251 Err(lex) => Err(LexError {
252 inner: lex,
253 _marker: MARKER,
254 }),
255 }
256 }
257}
258
259#[cfg(feature = "proc-macro")]
260#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
261impl From<proc_macro::TokenStream> for TokenStream {
262 fn from(inner: proc_macro::TokenStream) -> Self {
263 TokenStream::_new(imp::TokenStream::from(inner))
264 }
265}
266
267#[cfg(feature = "proc-macro")]
268#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
269impl From<TokenStream> for proc_macro::TokenStream {
270 fn from(inner: TokenStream) -> Self {
271 proc_macro::TokenStream::from(inner.inner)
272 }
273}
274
275impl From<TokenTree> for TokenStream {
276 fn from(token: TokenTree) -> Self {
277 TokenStream::_new(imp::TokenStream::from(token))
278 }
279}
280
281impl Extend<TokenTree> for TokenStream {
282 fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
283 self.inner.extend(streams);
284 }
285}
286
287impl Extend<TokenStream> for TokenStream {
288 fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
289 self.inner
290 .extend(streams.into_iter().map(|stream| stream.inner));
291 }
292}
293
294/// Collects a number of token trees into a single stream.
295impl FromIterator<TokenTree> for TokenStream {
296 fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
297 TokenStream::_new(streams.into_iter().collect())
298 }
299}
300impl FromIterator<TokenStream> for TokenStream {
301 fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
302 TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
303 }
304}
305
306/// Prints the token stream as a string that is supposed to be losslessly
307/// convertible back into the same token stream (modulo spans), except for
308/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
309/// numeric literals.
310impl Display for TokenStream {
311 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
312 Display::fmt(&self.inner, f)
313 }
314}
315
316/// Prints token in a form convenient for debugging.
317impl Debug for TokenStream {
318 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
319 Debug::fmt(&self.inner, f)
320 }
321}
322
323impl LexError {
324 pub fn span(&self) -> Span {
325 Span::_new(self.inner.span())
326 }
327}
328
329impl Debug for LexError {
330 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
331 Debug::fmt(&self.inner, f)
332 }
333}
334
335impl Display for LexError {
336 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
337 Display::fmt(&self.inner, f)
338 }
339}
340
341impl Error for LexError {}
342
343/// A region of source code, along with macro expansion information.
344#[derive(Copy, Clone)]
345pub struct Span {
346 inner: imp::Span,
347 _marker: ProcMacroAutoTraits,
348}
349
350impl Span {
351 fn _new(inner: imp::Span) -> Self {
352 Span {
353 inner,
354 _marker: MARKER,
355 }
356 }
357
358 fn _new_fallback(inner: fallback::Span) -> Self {
359 Span {
360 inner: imp::Span::from(inner),
361 _marker: MARKER,
362 }
363 }
364
365 /// The span of the invocation of the current procedural macro.
366 ///
367 /// Identifiers created with this span will be resolved as if they were
368 /// written directly at the macro call location (call-site hygiene) and
369 /// other code at the macro call site will be able to refer to them as well.
370 pub fn call_site() -> Self {
371 Span::_new(imp::Span::call_site())
372 }
373
374 /// The span located at the invocation of the procedural macro, but with
375 /// local variables, labels, and `$crate` resolved at the definition site
376 /// of the macro. This is the same hygiene behavior as `macro_rules`.
377 pub fn mixed_site() -> Self {
378 Span::_new(imp::Span::mixed_site())
379 }
380
381 /// A span that resolves at the macro definition site.
382 ///
383 /// This method is semver exempt and not exposed by default.
384 #[cfg(procmacro2_semver_exempt)]
385 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
386 pub fn def_site() -> Self {
387 Span::_new(imp::Span::def_site())
388 }
389
390 /// Creates a new span with the same line/column information as `self` but
391 /// that resolves symbols as though it were at `other`.
392 pub fn resolved_at(&self, other: Span) -> Span {
393 Span::_new(self.inner.resolved_at(other.inner))
394 }
395
396 /// Creates a new span with the same name resolution behavior as `self` but
397 /// with the line/column information of `other`.
398 pub fn located_at(&self, other: Span) -> Span {
399 Span::_new(self.inner.located_at(other.inner))
400 }
401
402 /// Convert `proc_macro2::Span` to `proc_macro::Span`.
403 ///
404 /// This method is available when building with a nightly compiler, or when
405 /// building with rustc 1.29+ *without* semver exempt features.
406 ///
407 /// # Panics
408 ///
409 /// Panics if called from outside of a procedural macro. Unlike
410 /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
411 /// the context of a procedural macro invocation.
412 #[cfg(wrap_proc_macro)]
413 pub fn unwrap(self) -> proc_macro::Span {
414 self.inner.unwrap()
415 }
416
417 // Soft deprecated. Please use Span::unwrap.
418 #[cfg(wrap_proc_macro)]
419 #[doc(hidden)]
420 pub fn unstable(self) -> proc_macro::Span {
421 self.unwrap()
422 }
423
424 /// Returns the span's byte position range in the source file.
425 ///
426 /// This method requires the `"span-locations"` feature to be enabled.
427 ///
428 /// When executing in a procedural macro context, the returned range is only
429 /// accurate if compiled with a nightly toolchain. The stable toolchain does
430 /// not have this information available. When executing outside of a
431 /// procedural macro, such as main.rs or build.rs, the byte range is always
432 /// accurate regardless of toolchain.
433 #[cfg(span_locations)]
434 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
435 pub fn byte_range(&self) -> Range<usize> {
436 self.inner.byte_range()
437 }
438
439 /// Get the starting line/column in the source file for this span.
440 ///
441 /// This method requires the `"span-locations"` feature to be enabled.
442 ///
443 /// When executing in a procedural macro context, the returned line/column
444 /// are only meaningful if compiled with a nightly toolchain. The stable
445 /// toolchain does not have this information available. When executing
446 /// outside of a procedural macro, such as main.rs or build.rs, the
447 /// line/column are always meaningful regardless of toolchain.
448 #[cfg(span_locations)]
449 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
450 pub fn start(&self) -> LineColumn {
451 self.inner.start()
452 }
453
454 /// Get the ending line/column in the source file for this span.
455 ///
456 /// This method requires the `"span-locations"` feature to be enabled.
457 ///
458 /// When executing in a procedural macro context, the returned line/column
459 /// are only meaningful if compiled with a nightly toolchain. The stable
460 /// toolchain does not have this information available. When executing
461 /// outside of a procedural macro, such as main.rs or build.rs, the
462 /// line/column are always meaningful regardless of toolchain.
463 #[cfg(span_locations)]
464 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
465 pub fn end(&self) -> LineColumn {
466 self.inner.end()
467 }
468
469 /// The path to the source file in which this span occurs, for display
470 /// purposes.
471 ///
472 /// This might not correspond to a valid file system path. It might be
473 /// remapped, or might be an artificial path such as `"<macro expansion>"`.
474 #[cfg(span_locations)]
475 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
476 pub fn file(&self) -> String {
477 self.inner.file()
478 }
479
480 /// The path to the source file in which this span occurs on disk.
481 ///
482 /// This is the actual path on disk. It is unaffected by path remapping.
483 ///
484 /// This path should not be embedded in the output of the macro; prefer
485 /// `file()` instead.
486 #[cfg(span_locations)]
487 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
488 pub fn local_file(&self) -> Option<PathBuf> {
489 self.inner.local_file()
490 }
491
492 /// Create a new span encompassing `self` and `other`.
493 ///
494 /// Returns `None` if `self` and `other` are from different files.
495 ///
496 /// Warning: the underlying [`proc_macro::Span::join`] method is
497 /// nightly-only. When called from within a procedural macro not using a
498 /// nightly compiler, this method will always return `None`.
499 pub fn join(&self, other: Span) -> Option<Span> {
500 self.inner.join(other.inner).map(Span::_new)
501 }
502
503 /// Compares two spans to see if they're equal.
504 ///
505 /// This method is semver exempt and not exposed by default.
506 #[cfg(procmacro2_semver_exempt)]
507 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
508 pub fn eq(&self, other: &Span) -> bool {
509 self.inner.eq(&other.inner)
510 }
511
512 /// Returns the source text behind a span. This preserves the original
513 /// source code, including spaces and comments. It only returns a result if
514 /// the span corresponds to real source code.
515 ///
516 /// Note: The observable result of a macro should only rely on the tokens
517 /// and not on this source text. The result of this function is a best
518 /// effort to be used for diagnostics only.
519 pub fn source_text(&self) -> Option<String> {
520 self.inner.source_text()
521 }
522}
523
524/// Prints a span in a form convenient for debugging.
525impl Debug for Span {
526 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
527 Debug::fmt(&self.inner, f)
528 }
529}
530
531/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
532#[derive(Clone)]
533pub enum TokenTree {
534 /// A token stream surrounded by bracket delimiters.
535 Group(Group),
536 /// An identifier.
537 Ident(Ident),
538 /// A single punctuation character (`+`, `,`, `$`, etc.).
539 Punct(Punct),
540 /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
541 Literal(Literal),
542}
543
544impl TokenTree {
545 /// Returns the span of this tree, delegating to the `span` method of
546 /// the contained token or a delimited stream.
547 pub fn span(&self) -> Span {
548 match self {
549 TokenTree::Group(t) => t.span(),
550 TokenTree::Ident(t) => t.span(),
551 TokenTree::Punct(t) => t.span(),
552 TokenTree::Literal(t) => t.span(),
553 }
554 }
555
556 /// Configures the span for *only this token*.
557 ///
558 /// Note that if this token is a `Group` then this method will not configure
559 /// the span of each of the internal tokens, this will simply delegate to
560 /// the `set_span` method of each variant.
561 pub fn set_span(&mut self, span: Span) {
562 match self {
563 TokenTree::Group(t) => t.set_span(span),
564 TokenTree::Ident(t) => t.set_span(span),
565 TokenTree::Punct(t) => t.set_span(span),
566 TokenTree::Literal(t) => t.set_span(span),
567 }
568 }
569}
570
571impl From<Group> for TokenTree {
572 fn from(g: Group) -> Self {
573 TokenTree::Group(g)
574 }
575}
576
577impl From<Ident> for TokenTree {
578 fn from(g: Ident) -> Self {
579 TokenTree::Ident(g)
580 }
581}
582
583impl From<Punct> for TokenTree {
584 fn from(g: Punct) -> Self {
585 TokenTree::Punct(g)
586 }
587}
588
589impl From<Literal> for TokenTree {
590 fn from(g: Literal) -> Self {
591 TokenTree::Literal(g)
592 }
593}
594
595/// Prints the token tree as a string that is supposed to be losslessly
596/// convertible back into the same token tree (modulo spans), except for
597/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
598/// numeric literals.
599impl Display for TokenTree {
600 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
601 match self {
602 TokenTree::Group(t) => Display::fmt(t, f),
603 TokenTree::Ident(t) => Display::fmt(t, f),
604 TokenTree::Punct(t) => Display::fmt(t, f),
605 TokenTree::Literal(t) => Display::fmt(t, f),
606 }
607 }
608}
609
610/// Prints token tree in a form convenient for debugging.
611impl Debug for TokenTree {
612 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
613 // Each of these has the name in the struct type in the derived debug,
614 // so don't bother with an extra layer of indirection
615 match self {
616 TokenTree::Group(t) => Debug::fmt(t, f),
617 TokenTree::Ident(t) => {
618 let mut debug = f.debug_struct("Ident");
619 debug.field("sym", &format_args!("{}", t));
620 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
621 debug.finish()
622 }
623 TokenTree::Punct(t) => Debug::fmt(t, f),
624 TokenTree::Literal(t) => Debug::fmt(t, f),
625 }
626 }
627}
628
629/// A delimited token stream.
630///
631/// A `Group` internally contains a `TokenStream` which is surrounded by
632/// `Delimiter`s.
633#[derive(Clone)]
634pub struct Group {
635 inner: imp::Group,
636}
637
638/// Describes how a sequence of token trees is delimited.
639#[derive(Copy, Clone, Debug, Eq, PartialEq)]
640pub enum Delimiter {
641 /// `( ... )`
642 Parenthesis,
643 /// `{ ... }`
644 Brace,
645 /// `[ ... ]`
646 Bracket,
647 /// `∅ ... ∅`
648 ///
649 /// An invisible delimiter, that may, for example, appear around tokens
650 /// coming from a "macro variable" `$var`. It is important to preserve
651 /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
652 /// Invisible delimiters may not survive roundtrip of a token stream through
653 /// a string.
654 ///
655 /// <div class="warning">
656 ///
657 /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
658 /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
659 /// of a proc_macro macro are preserved, and only in very specific circumstances.
660 /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
661 /// operator priorities as indicated above. The other `Delimiter` variants should be used
662 /// instead in this context. This is a rustc bug. For details, see
663 /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
664 ///
665 /// </div>
666 None,
667}
668
669impl Group {
670 fn _new(inner: imp::Group) -> Self {
671 Group { inner }
672 }
673
674 fn _new_fallback(inner: fallback::Group) -> Self {
675 Group {
676 inner: imp::Group::from(inner),
677 }
678 }
679
680 /// Creates a new `Group` with the given delimiter and token stream.
681 ///
682 /// This constructor will set the span for this group to
683 /// `Span::call_site()`. To change the span you can use the `set_span`
684 /// method below.
685 pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
686 Group {
687 inner: imp::Group::new(delimiter, stream.inner),
688 }
689 }
690
691 /// Returns the punctuation used as the delimiter for this group: a set of
692 /// parentheses, square brackets, or curly braces.
693 pub fn delimiter(&self) -> Delimiter {
694 self.inner.delimiter()
695 }
696
697 /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
698 ///
699 /// Note that the returned token stream does not include the delimiter
700 /// returned above.
701 pub fn stream(&self) -> TokenStream {
702 TokenStream::_new(self.inner.stream())
703 }
704
705 /// Returns the span for the delimiters of this token stream, spanning the
706 /// entire `Group`.
707 ///
708 /// ```text
709 /// pub fn span(&self) -> Span {
710 /// ^^^^^^^
711 /// ```
712 pub fn span(&self) -> Span {
713 Span::_new(self.inner.span())
714 }
715
716 /// Returns the span pointing to the opening delimiter of this group.
717 ///
718 /// ```text
719 /// pub fn span_open(&self) -> Span {
720 /// ^
721 /// ```
722 pub fn span_open(&self) -> Span {
723 Span::_new(self.inner.span_open())
724 }
725
726 /// Returns the span pointing to the closing delimiter of this group.
727 ///
728 /// ```text
729 /// pub fn span_close(&self) -> Span {
730 /// ^
731 /// ```
732 pub fn span_close(&self) -> Span {
733 Span::_new(self.inner.span_close())
734 }
735
736 /// Returns an object that holds this group's `span_open()` and
737 /// `span_close()` together (in a more compact representation than holding
738 /// those 2 spans individually).
739 pub fn delim_span(&self) -> DelimSpan {
740 DelimSpan::new(&self.inner)
741 }
742
743 /// Configures the span for this `Group`'s delimiters, but not its internal
744 /// tokens.
745 ///
746 /// This method will **not** set the span of all the internal tokens spanned
747 /// by this group, but rather it will only set the span of the delimiter
748 /// tokens at the level of the `Group`.
749 pub fn set_span(&mut self, span: Span) {
750 self.inner.set_span(span.inner);
751 }
752}
753
754/// Prints the group as a string that should be losslessly convertible back
755/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
756/// with `Delimiter::None` delimiters.
757impl Display for Group {
758 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
759 Display::fmt(&self.inner, formatter)
760 }
761}
762
763impl Debug for Group {
764 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
765 Debug::fmt(&self.inner, formatter)
766 }
767}
768
769/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
770///
771/// Multicharacter operators like `+=` are represented as two instances of
772/// `Punct` with different forms of `Spacing` returned.
773#[derive(Clone)]
774pub struct Punct {
775 ch: char,
776 spacing: Spacing,
777 span: Span,
778}
779
780/// Whether a `Punct` is followed immediately by another `Punct` or followed by
781/// another token or whitespace.
782#[derive(Copy, Clone, Debug, Eq, PartialEq)]
783pub enum Spacing {
784 /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
785 Alone,
786 /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
787 ///
788 /// Additionally, single quote `'` can join with identifiers to form
789 /// lifetimes `'ident`.
790 Joint,
791}
792
793impl Punct {
794 /// Creates a new `Punct` from the given character and spacing.
795 ///
796 /// The `ch` argument must be a valid punctuation character permitted by the
797 /// language, otherwise the function will panic.
798 ///
799 /// The returned `Punct` will have the default span of `Span::call_site()`
800 /// which can be further configured with the `set_span` method below.
801 pub fn new(ch: char, spacing: Spacing) -> Self {
802 if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
803 | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
804 {
805 Punct {
806 ch,
807 spacing,
808 span: Span::call_site(),
809 }
810 } else {
811 panic!("unsupported proc macro punctuation character {:?}", ch);
812 }
813 }
814
815 /// Returns the value of this punctuation character as `char`.
816 pub fn as_char(&self) -> char {
817 self.ch
818 }
819
820 /// Returns the spacing of this punctuation character, indicating whether
821 /// it's immediately followed by another `Punct` in the token stream, so
822 /// they can potentially be combined into a multicharacter operator
823 /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
824 /// so the operator has certainly ended.
825 pub fn spacing(&self) -> Spacing {
826 self.spacing
827 }
828
829 /// Returns the span for this punctuation character.
830 pub fn span(&self) -> Span {
831 self.span
832 }
833
834 /// Configure the span for this punctuation character.
835 pub fn set_span(&mut self, span: Span) {
836 self.span = span;
837 }
838}
839
840/// Prints the punctuation character as a string that should be losslessly
841/// convertible back into the same character.
842impl Display for Punct {
843 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
844 Display::fmt(&self.ch, f)
845 }
846}
847
848impl Debug for Punct {
849 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
850 let mut debug = fmt.debug_struct("Punct");
851 debug.field("char", &self.ch);
852 debug.field("spacing", &self.spacing);
853 imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
854 debug.finish()
855 }
856}
857
858/// A word of Rust code, which may be a keyword or legal variable name.
859///
860/// An identifier consists of at least one Unicode code point, the first of
861/// which has the XID_Start property and the rest of which have the XID_Continue
862/// property.
863///
864/// - The empty string is not an identifier. Use `Option<Ident>`.
865/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
866///
867/// An identifier constructed with `Ident::new` is permitted to be a Rust
868/// keyword, though parsing one through its [`Parse`] implementation rejects
869/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
870/// behaviour of `Ident::new`.
871///
872/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
873///
874/// # Examples
875///
876/// A new ident can be created from a string using the `Ident::new` function.
877/// A span must be provided explicitly which governs the name resolution
878/// behavior of the resulting identifier.
879///
880/// ```
881/// use proc_macro2::{Ident, Span};
882///
883/// fn main() {
884/// let call_ident = Ident::new("calligraphy", Span::call_site());
885///
886/// println!("{}", call_ident);
887/// }
888/// ```
889///
890/// An ident can be interpolated into a token stream using the `quote!` macro.
891///
892/// ```
893/// use proc_macro2::{Ident, Span};
894/// use quote::quote;
895///
896/// fn main() {
897/// let ident = Ident::new("demo", Span::call_site());
898///
899/// // Create a variable binding whose name is this ident.
900/// let expanded = quote! { let #ident = 10; };
901///
902/// // Create a variable binding with a slightly different name.
903/// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
904/// let expanded = quote! { let #temp_ident = 10; };
905/// }
906/// ```
907///
908/// A string representation of the ident is available through the `to_string()`
909/// method.
910///
911/// ```
912/// # use proc_macro2::{Ident, Span};
913/// #
914/// # let ident = Ident::new("another_identifier", Span::call_site());
915/// #
916/// // Examine the ident as a string.
917/// let ident_string = ident.to_string();
918/// if ident_string.len() > 60 {
919/// println!("Very long identifier: {}", ident_string)
920/// }
921/// ```
922#[derive(Clone)]
923pub struct Ident {
924 inner: imp::Ident,
925 _marker: ProcMacroAutoTraits,
926}
927
928impl Ident {
929 fn _new(inner: imp::Ident) -> Self {
930 Ident {
931 inner,
932 _marker: MARKER,
933 }
934 }
935
936 fn _new_fallback(inner: fallback::Ident) -> Self {
937 Ident {
938 inner: imp::Ident::from(inner),
939 _marker: MARKER,
940 }
941 }
942
943 /// Creates a new `Ident` with the given `string` as well as the specified
944 /// `span`.
945 ///
946 /// The `string` argument must be a valid identifier permitted by the
947 /// language, otherwise the function will panic.
948 ///
949 /// Note that `span`, currently in rustc, configures the hygiene information
950 /// for this identifier.
951 ///
952 /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
953 /// hygiene meaning that identifiers created with this span will be resolved
954 /// as if they were written directly at the location of the macro call, and
955 /// other code at the macro call site will be able to refer to them as well.
956 ///
957 /// Later spans like `Span::def_site()` will allow to opt-in to
958 /// "definition-site" hygiene meaning that identifiers created with this
959 /// span will be resolved at the location of the macro definition and other
960 /// code at the macro call site will not be able to refer to them.
961 ///
962 /// Due to the current importance of hygiene this constructor, unlike other
963 /// tokens, requires a `Span` to be specified at construction.
964 ///
965 /// # Panics
966 ///
967 /// Panics if the input string is neither a keyword nor a legal variable
968 /// name. If you are not sure whether the string contains an identifier and
969 /// need to handle an error case, use
970 /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
971 /// style="padding-right:0;">syn::parse_str</code></a><code
972 /// style="padding-left:0;">::<Ident></code>
973 /// rather than `Ident::new`.
974 #[track_caller]
975 pub fn new(string: &str, span: Span) -> Self {
976 Ident::_new(imp::Ident::new_checked(string, span.inner))
977 }
978
979 /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
980 /// `string` argument must be a valid identifier permitted by the language
981 /// (including keywords, e.g. `fn`). Keywords which are usable in path
982 /// segments (e.g. `self`, `super`) are not supported, and will cause a
983 /// panic.
984 #[track_caller]
985 pub fn new_raw(string: &str, span: Span) -> Self {
986 Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
987 }
988
989 /// Returns the span of this `Ident`.
990 pub fn span(&self) -> Span {
991 Span::_new(self.inner.span())
992 }
993
994 /// Configures the span of this `Ident`, possibly changing its hygiene
995 /// context.
996 pub fn set_span(&mut self, span: Span) {
997 self.inner.set_span(span.inner);
998 }
999}
1000
1001impl PartialEq for Ident {
1002 fn eq(&self, other: &Ident) -> bool {
1003 self.inner == other.inner
1004 }
1005}
1006
1007impl<T> PartialEq<T> for Ident
1008where
1009 T: ?Sized + AsRef<str>,
1010{
1011 fn eq(&self, other: &T) -> bool {
1012 self.inner == other
1013 }
1014}
1015
1016impl Eq for Ident {}
1017
1018impl PartialOrd for Ident {
1019 fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1020 Some(self.cmp(other))
1021 }
1022}
1023
1024impl Ord for Ident {
1025 fn cmp(&self, other: &Ident) -> Ordering {
1026 self.to_string().cmp(&other.to_string())
1027 }
1028}
1029
1030impl Hash for Ident {
1031 fn hash<H: Hasher>(&self, hasher: &mut H) {
1032 self.to_string().hash(hasher);
1033 }
1034}
1035
1036/// Prints the identifier as a string that should be losslessly convertible back
1037/// into the same identifier.
1038impl Display for Ident {
1039 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1040 Display::fmt(&self.inner, f)
1041 }
1042}
1043
1044impl Debug for Ident {
1045 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1046 Debug::fmt(&self.inner, f)
1047 }
1048}
1049
1050/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1051/// byte character (`b'a'`), an integer or floating point number with or without
1052/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1053///
1054/// Boolean literals like `true` and `false` do not belong here, they are
1055/// `Ident`s.
1056#[derive(Clone)]
1057pub struct Literal {
1058 inner: imp::Literal,
1059 _marker: ProcMacroAutoTraits,
1060}
1061
1062macro_rules! suffixed_int_literals {
1063 ($($name:ident => $kind:ident,)*) => ($(
1064 /// Creates a new suffixed integer literal with the specified value.
1065 ///
1066 /// This function will create an integer like `1u32` where the integer
1067 /// value specified is the first part of the token and the integral is
1068 /// also suffixed at the end. Literals created from negative numbers may
1069 /// not survive roundtrips through `TokenStream` or strings and may be
1070 /// broken into two tokens (`-` and positive literal).
1071 ///
1072 /// Literals created through this method have the `Span::call_site()`
1073 /// span by default, which can be configured with the `set_span` method
1074 /// below.
1075 pub fn $name(n: $kind) -> Literal {
1076 Literal::_new(imp::Literal::$name(n))
1077 }
1078 )*)
1079}
1080
1081macro_rules! unsuffixed_int_literals {
1082 ($($name:ident => $kind:ident,)*) => ($(
1083 /// Creates a new unsuffixed integer literal with the specified value.
1084 ///
1085 /// This function will create an integer like `1` where the integer
1086 /// value specified is the first part of the token. No suffix is
1087 /// specified on this token, meaning that invocations like
1088 /// `Literal::i8_unsuffixed(1)` are equivalent to
1089 /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1090 /// may not survive roundtrips through `TokenStream` or strings and may
1091 /// be broken into two tokens (`-` and positive literal).
1092 ///
1093 /// Literals created through this method have the `Span::call_site()`
1094 /// span by default, which can be configured with the `set_span` method
1095 /// below.
1096 pub fn $name(n: $kind) -> Literal {
1097 Literal::_new(imp::Literal::$name(n))
1098 }
1099 )*)
1100}
1101
1102impl Literal {
1103 fn _new(inner: imp::Literal) -> Self {
1104 Literal {
1105 inner,
1106 _marker: MARKER,
1107 }
1108 }
1109
1110 fn _new_fallback(inner: fallback::Literal) -> Self {
1111 Literal {
1112 inner: imp::Literal::from(inner),
1113 _marker: MARKER,
1114 }
1115 }
1116
1117 suffixed_int_literals! {
1118 u8_suffixed => u8,
1119 u16_suffixed => u16,
1120 u32_suffixed => u32,
1121 u64_suffixed => u64,
1122 u128_suffixed => u128,
1123 usize_suffixed => usize,
1124 i8_suffixed => i8,
1125 i16_suffixed => i16,
1126 i32_suffixed => i32,
1127 i64_suffixed => i64,
1128 i128_suffixed => i128,
1129 isize_suffixed => isize,
1130 }
1131
1132 unsuffixed_int_literals! {
1133 u8_unsuffixed => u8,
1134 u16_unsuffixed => u16,
1135 u32_unsuffixed => u32,
1136 u64_unsuffixed => u64,
1137 u128_unsuffixed => u128,
1138 usize_unsuffixed => usize,
1139 i8_unsuffixed => i8,
1140 i16_unsuffixed => i16,
1141 i32_unsuffixed => i32,
1142 i64_unsuffixed => i64,
1143 i128_unsuffixed => i128,
1144 isize_unsuffixed => isize,
1145 }
1146
1147 /// Creates a new unsuffixed floating-point literal.
1148 ///
1149 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1150 /// the float's value is emitted directly into the token but no suffix is
1151 /// used, so it may be inferred to be a `f64` later in the compiler.
1152 /// Literals created from negative numbers may not survive round-trips
1153 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1154 /// and positive literal).
1155 ///
1156 /// # Panics
1157 ///
1158 /// This function requires that the specified float is finite, for example
1159 /// if it is infinity or NaN this function will panic.
1160 pub fn f64_unsuffixed(f: f64) -> Literal {
1161 assert!(f.is_finite());
1162 Literal::_new(imp::Literal::f64_unsuffixed(f))
1163 }
1164
1165 /// Creates a new suffixed floating-point literal.
1166 ///
1167 /// This constructor will create a literal like `1.0f64` where the value
1168 /// specified is the preceding part of the token and `f64` is the suffix of
1169 /// the token. This token will always be inferred to be an `f64` in the
1170 /// compiler. Literals created from negative numbers may not survive
1171 /// round-trips through `TokenStream` or strings and may be broken into two
1172 /// tokens (`-` and positive literal).
1173 ///
1174 /// # Panics
1175 ///
1176 /// This function requires that the specified float is finite, for example
1177 /// if it is infinity or NaN this function will panic.
1178 pub fn f64_suffixed(f: f64) -> Literal {
1179 assert!(f.is_finite());
1180 Literal::_new(imp::Literal::f64_suffixed(f))
1181 }
1182
1183 /// Creates a new unsuffixed floating-point literal.
1184 ///
1185 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1186 /// the float's value is emitted directly into the token but no suffix is
1187 /// used, so it may be inferred to be a `f64` later in the compiler.
1188 /// Literals created from negative numbers may not survive round-trips
1189 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1190 /// and positive literal).
1191 ///
1192 /// # Panics
1193 ///
1194 /// This function requires that the specified float is finite, for example
1195 /// if it is infinity or NaN this function will panic.
1196 pub fn f32_unsuffixed(f: f32) -> Literal {
1197 assert!(f.is_finite());
1198 Literal::_new(imp::Literal::f32_unsuffixed(f))
1199 }
1200
1201 /// Creates a new suffixed floating-point literal.
1202 ///
1203 /// This constructor will create a literal like `1.0f32` where the value
1204 /// specified is the preceding part of the token and `f32` is the suffix of
1205 /// the token. This token will always be inferred to be an `f32` in the
1206 /// compiler. Literals created from negative numbers may not survive
1207 /// round-trips through `TokenStream` or strings and may be broken into two
1208 /// tokens (`-` and positive literal).
1209 ///
1210 /// # Panics
1211 ///
1212 /// This function requires that the specified float is finite, for example
1213 /// if it is infinity or NaN this function will panic.
1214 pub fn f32_suffixed(f: f32) -> Literal {
1215 assert!(f.is_finite());
1216 Literal::_new(imp::Literal::f32_suffixed(f))
1217 }
1218
1219 /// String literal.
1220 pub fn string(string: &str) -> Literal {
1221 Literal::_new(imp::Literal::string(string))
1222 }
1223
1224 /// Character literal.
1225 pub fn character(ch: char) -> Literal {
1226 Literal::_new(imp::Literal::character(ch))
1227 }
1228
1229 /// Byte character literal.
1230 pub fn byte_character(byte: u8) -> Literal {
1231 Literal::_new(imp::Literal::byte_character(byte))
1232 }
1233
1234 /// Byte string literal.
1235 pub fn byte_string(bytes: &[u8]) -> Literal {
1236 Literal::_new(imp::Literal::byte_string(bytes))
1237 }
1238
1239 /// C string literal.
1240 pub fn c_string(string: &CStr) -> Literal {
1241 Literal::_new(imp::Literal::c_string(string))
1242 }
1243
1244 /// Returns the span encompassing this literal.
1245 pub fn span(&self) -> Span {
1246 Span::_new(self.inner.span())
1247 }
1248
1249 /// Configures the span associated for this literal.
1250 pub fn set_span(&mut self, span: Span) {
1251 self.inner.set_span(span.inner);
1252 }
1253
1254 /// Returns a `Span` that is a subset of `self.span()` containing only
1255 /// the source bytes in range `range`. Returns `None` if the would-be
1256 /// trimmed span is outside the bounds of `self`.
1257 ///
1258 /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1259 /// nightly-only. When called from within a procedural macro not using a
1260 /// nightly compiler, this method will always return `None`.
1261 pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1262 self.inner.subspan(range).map(Span::_new)
1263 }
1264
1265 // Intended for the `quote!` macro to use when constructing a proc-macro2
1266 // token out of a macro_rules $:literal token, which is already known to be
1267 // a valid literal. This avoids reparsing/validating the literal's string
1268 // representation. This is not public API other than for quote.
1269 #[doc(hidden)]
1270 pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1271 Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1272 }
1273}
1274
1275impl FromStr for Literal {
1276 type Err = LexError;
1277
1278 fn from_str(repr: &str) -> Result<Self, LexError> {
1279 match imp::Literal::from_str_checked(repr) {
1280 Ok(lit) => Ok(Literal::_new(lit)),
1281 Err(lex) => Err(LexError {
1282 inner: lex,
1283 _marker: MARKER,
1284 }),
1285 }
1286 }
1287}
1288
1289impl Debug for Literal {
1290 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1291 Debug::fmt(&self.inner, f)
1292 }
1293}
1294
1295impl Display for Literal {
1296 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1297 Display::fmt(&self.inner, f)
1298 }
1299}
1300
1301/// Public implementation details for the `TokenStream` type, such as iterators.
1302pub mod token_stream {
1303 use crate::marker::{ProcMacroAutoTraits, MARKER};
1304 use crate::{imp, TokenTree};
1305 use core::fmt::{self, Debug};
1306
1307 pub use crate::TokenStream;
1308
1309 /// An iterator over `TokenStream`'s `TokenTree`s.
1310 ///
1311 /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1312 /// delimited groups, and returns whole groups as token trees.
1313 #[derive(Clone)]
1314 pub struct IntoIter {
1315 inner: imp::TokenTreeIter,
1316 _marker: ProcMacroAutoTraits,
1317 }
1318
1319 impl Iterator for IntoIter {
1320 type Item = TokenTree;
1321
1322 fn next(&mut self) -> Option<TokenTree> {
1323 self.inner.next()
1324 }
1325
1326 fn size_hint(&self) -> (usize, Option<usize>) {
1327 self.inner.size_hint()
1328 }
1329 }
1330
1331 impl Debug for IntoIter {
1332 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1333 f.write_str("TokenStream ")?;
1334 f.debug_list().entries(self.clone()).finish()
1335 }
1336 }
1337
1338 impl IntoIterator for TokenStream {
1339 type Item = TokenTree;
1340 type IntoIter = IntoIter;
1341
1342 fn into_iter(self) -> IntoIter {
1343 IntoIter {
1344 inner: self.inner.into_iter(),
1345 _marker: MARKER,
1346 }
1347 }
1348 }
1349}