proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.101")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::unnecessary_wraps,
114    clippy::unused_self,
115    clippy::used_underscore_binding,
116    clippy::vec_init_then_push
117)]
118#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
119
120#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
121compile_error! {"\
122    Something is not right. If you've tried to turn on \
123    procmacro2_semver_exempt, you need to ensure that it \
124    is turned on for the compilation of the proc-macro2 \
125    build script as well.
126"}
127
128#[cfg(all(
129    procmacro2_nightly_testing,
130    feature = "proc-macro",
131    not(proc_macro_span)
132))]
133compile_error! {"\
134    Build script probe failed to compile.
135"}
136
137extern crate alloc;
138
139#[cfg(feature = "proc-macro")]
140extern crate proc_macro;
141
142mod marker;
143mod parse;
144mod probe;
145mod rcvec;
146
147#[cfg(wrap_proc_macro)]
148mod detection;
149
150// Public for proc_macro2::fallback::force() and unforce(), but those are quite
151// a niche use case so we omit it from rustdoc.
152#[doc(hidden)]
153pub mod fallback;
154
155pub mod extra;
156
157#[cfg(not(wrap_proc_macro))]
158use crate::fallback as imp;
159#[path = "wrapper.rs"]
160#[cfg(wrap_proc_macro)]
161mod imp;
162
163#[cfg(span_locations)]
164mod location;
165
166use crate::extra::DelimSpan;
167use crate::marker::{ProcMacroAutoTraits, MARKER};
168use core::cmp::Ordering;
169use core::fmt::{self, Debug, Display};
170use core::hash::{Hash, Hasher};
171#[cfg(span_locations)]
172use core::ops::Range;
173use core::ops::RangeBounds;
174use core::str::FromStr;
175use std::error::Error;
176use std::ffi::CStr;
177#[cfg(span_locations)]
178use std::path::PathBuf;
179
180#[cfg(span_locations)]
181#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
182pub use crate::location::LineColumn;
183
184/// An abstract stream of tokens, or more concretely a sequence of token trees.
185///
186/// This type provides interfaces for iterating over token trees and for
187/// collecting token trees into one stream.
188///
189/// Token stream is both the input and output of `#[proc_macro]`,
190/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
191#[derive(Clone)]
192pub struct TokenStream {
193    inner: imp::TokenStream,
194    _marker: ProcMacroAutoTraits,
195}
196
197/// Error returned from `TokenStream::from_str`.
198pub struct LexError {
199    inner: imp::LexError,
200    _marker: ProcMacroAutoTraits,
201}
202
203impl TokenStream {
204    fn _new(inner: imp::TokenStream) -> Self {
205        TokenStream {
206            inner,
207            _marker: MARKER,
208        }
209    }
210
211    fn _new_fallback(inner: fallback::TokenStream) -> Self {
212        TokenStream {
213            inner: imp::TokenStream::from(inner),
214            _marker: MARKER,
215        }
216    }
217
218    /// Returns an empty `TokenStream` containing no token trees.
219    pub fn new() -> Self {
220        TokenStream::_new(imp::TokenStream::new())
221    }
222
223    /// Checks if this `TokenStream` is empty.
224    pub fn is_empty(&self) -> bool {
225        self.inner.is_empty()
226    }
227}
228
229/// `TokenStream::default()` returns an empty stream,
230/// i.e. this is equivalent with `TokenStream::new()`.
231impl Default for TokenStream {
232    fn default() -> Self {
233        TokenStream::new()
234    }
235}
236
237/// Attempts to break the string into tokens and parse those tokens into a token
238/// stream.
239///
240/// May fail for a number of reasons, for example, if the string contains
241/// unbalanced delimiters or characters not existing in the language.
242///
243/// NOTE: Some errors may cause panics instead of returning `LexError`. We
244/// reserve the right to change these errors into `LexError`s later.
245impl FromStr for TokenStream {
246    type Err = LexError;
247
248    fn from_str(src: &str) -> Result<TokenStream, LexError> {
249        match imp::TokenStream::from_str_checked(src) {
250            Ok(tokens) => Ok(TokenStream::_new(tokens)),
251            Err(lex) => Err(LexError {
252                inner: lex,
253                _marker: MARKER,
254            }),
255        }
256    }
257}
258
259#[cfg(feature = "proc-macro")]
260#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
261impl From<proc_macro::TokenStream> for TokenStream {
262    fn from(inner: proc_macro::TokenStream) -> Self {
263        TokenStream::_new(imp::TokenStream::from(inner))
264    }
265}
266
267#[cfg(feature = "proc-macro")]
268#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
269impl From<TokenStream> for proc_macro::TokenStream {
270    fn from(inner: TokenStream) -> Self {
271        proc_macro::TokenStream::from(inner.inner)
272    }
273}
274
275impl From<TokenTree> for TokenStream {
276    fn from(token: TokenTree) -> Self {
277        TokenStream::_new(imp::TokenStream::from(token))
278    }
279}
280
281impl Extend<TokenTree> for TokenStream {
282    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
283        self.inner.extend(streams);
284    }
285}
286
287impl Extend<TokenStream> for TokenStream {
288    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
289        self.inner
290            .extend(streams.into_iter().map(|stream| stream.inner));
291    }
292}
293
294/// Collects a number of token trees into a single stream.
295impl FromIterator<TokenTree> for TokenStream {
296    fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
297        TokenStream::_new(streams.into_iter().collect())
298    }
299}
300impl FromIterator<TokenStream> for TokenStream {
301    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
302        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
303    }
304}
305
306/// Prints the token stream as a string that is supposed to be losslessly
307/// convertible back into the same token stream (modulo spans), except for
308/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
309/// numeric literals.
310impl Display for TokenStream {
311    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
312        Display::fmt(&self.inner, f)
313    }
314}
315
316/// Prints token in a form convenient for debugging.
317impl Debug for TokenStream {
318    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
319        Debug::fmt(&self.inner, f)
320    }
321}
322
323impl LexError {
324    pub fn span(&self) -> Span {
325        Span::_new(self.inner.span())
326    }
327}
328
329impl Debug for LexError {
330    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
331        Debug::fmt(&self.inner, f)
332    }
333}
334
335impl Display for LexError {
336    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
337        Display::fmt(&self.inner, f)
338    }
339}
340
341impl Error for LexError {}
342
343/// A region of source code, along with macro expansion information.
344#[derive(Copy, Clone)]
345pub struct Span {
346    inner: imp::Span,
347    _marker: ProcMacroAutoTraits,
348}
349
350impl Span {
351    fn _new(inner: imp::Span) -> Self {
352        Span {
353            inner,
354            _marker: MARKER,
355        }
356    }
357
358    fn _new_fallback(inner: fallback::Span) -> Self {
359        Span {
360            inner: imp::Span::from(inner),
361            _marker: MARKER,
362        }
363    }
364
365    /// The span of the invocation of the current procedural macro.
366    ///
367    /// Identifiers created with this span will be resolved as if they were
368    /// written directly at the macro call location (call-site hygiene) and
369    /// other code at the macro call site will be able to refer to them as well.
370    pub fn call_site() -> Self {
371        Span::_new(imp::Span::call_site())
372    }
373
374    /// The span located at the invocation of the procedural macro, but with
375    /// local variables, labels, and `$crate` resolved at the definition site
376    /// of the macro. This is the same hygiene behavior as `macro_rules`.
377    pub fn mixed_site() -> Self {
378        Span::_new(imp::Span::mixed_site())
379    }
380
381    /// A span that resolves at the macro definition site.
382    ///
383    /// This method is semver exempt and not exposed by default.
384    #[cfg(procmacro2_semver_exempt)]
385    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
386    pub fn def_site() -> Self {
387        Span::_new(imp::Span::def_site())
388    }
389
390    /// Creates a new span with the same line/column information as `self` but
391    /// that resolves symbols as though it were at `other`.
392    pub fn resolved_at(&self, other: Span) -> Span {
393        Span::_new(self.inner.resolved_at(other.inner))
394    }
395
396    /// Creates a new span with the same name resolution behavior as `self` but
397    /// with the line/column information of `other`.
398    pub fn located_at(&self, other: Span) -> Span {
399        Span::_new(self.inner.located_at(other.inner))
400    }
401
402    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
403    ///
404    /// This method is available when building with a nightly compiler, or when
405    /// building with rustc 1.29+ *without* semver exempt features.
406    ///
407    /// # Panics
408    ///
409    /// Panics if called from outside of a procedural macro. Unlike
410    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
411    /// the context of a procedural macro invocation.
412    #[cfg(wrap_proc_macro)]
413    pub fn unwrap(self) -> proc_macro::Span {
414        self.inner.unwrap()
415    }
416
417    // Soft deprecated. Please use Span::unwrap.
418    #[cfg(wrap_proc_macro)]
419    #[doc(hidden)]
420    pub fn unstable(self) -> proc_macro::Span {
421        self.unwrap()
422    }
423
424    /// Returns the span's byte position range in the source file.
425    ///
426    /// This method requires the `"span-locations"` feature to be enabled.
427    ///
428    /// When executing in a procedural macro context, the returned range is only
429    /// accurate if compiled with a nightly toolchain. The stable toolchain does
430    /// not have this information available. When executing outside of a
431    /// procedural macro, such as main.rs or build.rs, the byte range is always
432    /// accurate regardless of toolchain.
433    #[cfg(span_locations)]
434    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
435    pub fn byte_range(&self) -> Range<usize> {
436        self.inner.byte_range()
437    }
438
439    /// Get the starting line/column in the source file for this span.
440    ///
441    /// This method requires the `"span-locations"` feature to be enabled.
442    ///
443    /// When executing in a procedural macro context, the returned line/column
444    /// are only meaningful if compiled with a nightly toolchain. The stable
445    /// toolchain does not have this information available. When executing
446    /// outside of a procedural macro, such as main.rs or build.rs, the
447    /// line/column are always meaningful regardless of toolchain.
448    #[cfg(span_locations)]
449    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
450    pub fn start(&self) -> LineColumn {
451        self.inner.start()
452    }
453
454    /// Get the ending line/column in the source file for this span.
455    ///
456    /// This method requires the `"span-locations"` feature to be enabled.
457    ///
458    /// When executing in a procedural macro context, the returned line/column
459    /// are only meaningful if compiled with a nightly toolchain. The stable
460    /// toolchain does not have this information available. When executing
461    /// outside of a procedural macro, such as main.rs or build.rs, the
462    /// line/column are always meaningful regardless of toolchain.
463    #[cfg(span_locations)]
464    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
465    pub fn end(&self) -> LineColumn {
466        self.inner.end()
467    }
468
469    /// The path to the source file in which this span occurs, for display
470    /// purposes.
471    ///
472    /// This might not correspond to a valid file system path. It might be
473    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
474    #[cfg(span_locations)]
475    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
476    pub fn file(&self) -> String {
477        self.inner.file()
478    }
479
480    /// The path to the source file in which this span occurs on disk.
481    ///
482    /// This is the actual path on disk. It is unaffected by path remapping.
483    ///
484    /// This path should not be embedded in the output of the macro; prefer
485    /// `file()` instead.
486    #[cfg(span_locations)]
487    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
488    pub fn local_file(&self) -> Option<PathBuf> {
489        self.inner.local_file()
490    }
491
492    /// Create a new span encompassing `self` and `other`.
493    ///
494    /// Returns `None` if `self` and `other` are from different files.
495    ///
496    /// Warning: the underlying [`proc_macro::Span::join`] method is
497    /// nightly-only. When called from within a procedural macro not using a
498    /// nightly compiler, this method will always return `None`.
499    pub fn join(&self, other: Span) -> Option<Span> {
500        self.inner.join(other.inner).map(Span::_new)
501    }
502
503    /// Compares two spans to see if they're equal.
504    ///
505    /// This method is semver exempt and not exposed by default.
506    #[cfg(procmacro2_semver_exempt)]
507    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
508    pub fn eq(&self, other: &Span) -> bool {
509        self.inner.eq(&other.inner)
510    }
511
512    /// Returns the source text behind a span. This preserves the original
513    /// source code, including spaces and comments. It only returns a result if
514    /// the span corresponds to real source code.
515    ///
516    /// Note: The observable result of a macro should only rely on the tokens
517    /// and not on this source text. The result of this function is a best
518    /// effort to be used for diagnostics only.
519    pub fn source_text(&self) -> Option<String> {
520        self.inner.source_text()
521    }
522}
523
524/// Prints a span in a form convenient for debugging.
525impl Debug for Span {
526    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
527        Debug::fmt(&self.inner, f)
528    }
529}
530
531/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
532#[derive(Clone)]
533pub enum TokenTree {
534    /// A token stream surrounded by bracket delimiters.
535    Group(Group),
536    /// An identifier.
537    Ident(Ident),
538    /// A single punctuation character (`+`, `,`, `$`, etc.).
539    Punct(Punct),
540    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
541    Literal(Literal),
542}
543
544impl TokenTree {
545    /// Returns the span of this tree, delegating to the `span` method of
546    /// the contained token or a delimited stream.
547    pub fn span(&self) -> Span {
548        match self {
549            TokenTree::Group(t) => t.span(),
550            TokenTree::Ident(t) => t.span(),
551            TokenTree::Punct(t) => t.span(),
552            TokenTree::Literal(t) => t.span(),
553        }
554    }
555
556    /// Configures the span for *only this token*.
557    ///
558    /// Note that if this token is a `Group` then this method will not configure
559    /// the span of each of the internal tokens, this will simply delegate to
560    /// the `set_span` method of each variant.
561    pub fn set_span(&mut self, span: Span) {
562        match self {
563            TokenTree::Group(t) => t.set_span(span),
564            TokenTree::Ident(t) => t.set_span(span),
565            TokenTree::Punct(t) => t.set_span(span),
566            TokenTree::Literal(t) => t.set_span(span),
567        }
568    }
569}
570
571impl From<Group> for TokenTree {
572    fn from(g: Group) -> Self {
573        TokenTree::Group(g)
574    }
575}
576
577impl From<Ident> for TokenTree {
578    fn from(g: Ident) -> Self {
579        TokenTree::Ident(g)
580    }
581}
582
583impl From<Punct> for TokenTree {
584    fn from(g: Punct) -> Self {
585        TokenTree::Punct(g)
586    }
587}
588
589impl From<Literal> for TokenTree {
590    fn from(g: Literal) -> Self {
591        TokenTree::Literal(g)
592    }
593}
594
595/// Prints the token tree as a string that is supposed to be losslessly
596/// convertible back into the same token tree (modulo spans), except for
597/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
598/// numeric literals.
599impl Display for TokenTree {
600    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
601        match self {
602            TokenTree::Group(t) => Display::fmt(t, f),
603            TokenTree::Ident(t) => Display::fmt(t, f),
604            TokenTree::Punct(t) => Display::fmt(t, f),
605            TokenTree::Literal(t) => Display::fmt(t, f),
606        }
607    }
608}
609
610/// Prints token tree in a form convenient for debugging.
611impl Debug for TokenTree {
612    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
613        // Each of these has the name in the struct type in the derived debug,
614        // so don't bother with an extra layer of indirection
615        match self {
616            TokenTree::Group(t) => Debug::fmt(t, f),
617            TokenTree::Ident(t) => {
618                let mut debug = f.debug_struct("Ident");
619                debug.field("sym", &format_args!("{}", t));
620                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
621                debug.finish()
622            }
623            TokenTree::Punct(t) => Debug::fmt(t, f),
624            TokenTree::Literal(t) => Debug::fmt(t, f),
625        }
626    }
627}
628
629/// A delimited token stream.
630///
631/// A `Group` internally contains a `TokenStream` which is surrounded by
632/// `Delimiter`s.
633#[derive(Clone)]
634pub struct Group {
635    inner: imp::Group,
636}
637
638/// Describes how a sequence of token trees is delimited.
639#[derive(Copy, Clone, Debug, Eq, PartialEq)]
640pub enum Delimiter {
641    /// `( ... )`
642    Parenthesis,
643    /// `{ ... }`
644    Brace,
645    /// `[ ... ]`
646    Bracket,
647    /// `∅ ... ∅`
648    ///
649    /// An invisible delimiter, that may, for example, appear around tokens
650    /// coming from a "macro variable" `$var`. It is important to preserve
651    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
652    /// Invisible delimiters may not survive roundtrip of a token stream through
653    /// a string.
654    ///
655    /// <div class="warning">
656    ///
657    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
658    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
659    /// of a proc_macro macro are preserved, and only in very specific circumstances.
660    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
661    /// operator priorities as indicated above. The other `Delimiter` variants should be used
662    /// instead in this context. This is a rustc bug. For details, see
663    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
664    ///
665    /// </div>
666    None,
667}
668
669impl Group {
670    fn _new(inner: imp::Group) -> Self {
671        Group { inner }
672    }
673
674    fn _new_fallback(inner: fallback::Group) -> Self {
675        Group {
676            inner: imp::Group::from(inner),
677        }
678    }
679
680    /// Creates a new `Group` with the given delimiter and token stream.
681    ///
682    /// This constructor will set the span for this group to
683    /// `Span::call_site()`. To change the span you can use the `set_span`
684    /// method below.
685    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
686        Group {
687            inner: imp::Group::new(delimiter, stream.inner),
688        }
689    }
690
691    /// Returns the punctuation used as the delimiter for this group: a set of
692    /// parentheses, square brackets, or curly braces.
693    pub fn delimiter(&self) -> Delimiter {
694        self.inner.delimiter()
695    }
696
697    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
698    ///
699    /// Note that the returned token stream does not include the delimiter
700    /// returned above.
701    pub fn stream(&self) -> TokenStream {
702        TokenStream::_new(self.inner.stream())
703    }
704
705    /// Returns the span for the delimiters of this token stream, spanning the
706    /// entire `Group`.
707    ///
708    /// ```text
709    /// pub fn span(&self) -> Span {
710    ///            ^^^^^^^
711    /// ```
712    pub fn span(&self) -> Span {
713        Span::_new(self.inner.span())
714    }
715
716    /// Returns the span pointing to the opening delimiter of this group.
717    ///
718    /// ```text
719    /// pub fn span_open(&self) -> Span {
720    ///                 ^
721    /// ```
722    pub fn span_open(&self) -> Span {
723        Span::_new(self.inner.span_open())
724    }
725
726    /// Returns the span pointing to the closing delimiter of this group.
727    ///
728    /// ```text
729    /// pub fn span_close(&self) -> Span {
730    ///                        ^
731    /// ```
732    pub fn span_close(&self) -> Span {
733        Span::_new(self.inner.span_close())
734    }
735
736    /// Returns an object that holds this group's `span_open()` and
737    /// `span_close()` together (in a more compact representation than holding
738    /// those 2 spans individually).
739    pub fn delim_span(&self) -> DelimSpan {
740        DelimSpan::new(&self.inner)
741    }
742
743    /// Configures the span for this `Group`'s delimiters, but not its internal
744    /// tokens.
745    ///
746    /// This method will **not** set the span of all the internal tokens spanned
747    /// by this group, but rather it will only set the span of the delimiter
748    /// tokens at the level of the `Group`.
749    pub fn set_span(&mut self, span: Span) {
750        self.inner.set_span(span.inner);
751    }
752}
753
754/// Prints the group as a string that should be losslessly convertible back
755/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
756/// with `Delimiter::None` delimiters.
757impl Display for Group {
758    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
759        Display::fmt(&self.inner, formatter)
760    }
761}
762
763impl Debug for Group {
764    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
765        Debug::fmt(&self.inner, formatter)
766    }
767}
768
769/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
770///
771/// Multicharacter operators like `+=` are represented as two instances of
772/// `Punct` with different forms of `Spacing` returned.
773#[derive(Clone)]
774pub struct Punct {
775    ch: char,
776    spacing: Spacing,
777    span: Span,
778}
779
780/// Whether a `Punct` is followed immediately by another `Punct` or followed by
781/// another token or whitespace.
782#[derive(Copy, Clone, Debug, Eq, PartialEq)]
783pub enum Spacing {
784    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
785    Alone,
786    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
787    ///
788    /// Additionally, single quote `'` can join with identifiers to form
789    /// lifetimes `'ident`.
790    Joint,
791}
792
793impl Punct {
794    /// Creates a new `Punct` from the given character and spacing.
795    ///
796    /// The `ch` argument must be a valid punctuation character permitted by the
797    /// language, otherwise the function will panic.
798    ///
799    /// The returned `Punct` will have the default span of `Span::call_site()`
800    /// which can be further configured with the `set_span` method below.
801    pub fn new(ch: char, spacing: Spacing) -> Self {
802        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
803        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
804        {
805            Punct {
806                ch,
807                spacing,
808                span: Span::call_site(),
809            }
810        } else {
811            panic!("unsupported proc macro punctuation character {:?}", ch);
812        }
813    }
814
815    /// Returns the value of this punctuation character as `char`.
816    pub fn as_char(&self) -> char {
817        self.ch
818    }
819
820    /// Returns the spacing of this punctuation character, indicating whether
821    /// it's immediately followed by another `Punct` in the token stream, so
822    /// they can potentially be combined into a multicharacter operator
823    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
824    /// so the operator has certainly ended.
825    pub fn spacing(&self) -> Spacing {
826        self.spacing
827    }
828
829    /// Returns the span for this punctuation character.
830    pub fn span(&self) -> Span {
831        self.span
832    }
833
834    /// Configure the span for this punctuation character.
835    pub fn set_span(&mut self, span: Span) {
836        self.span = span;
837    }
838}
839
840/// Prints the punctuation character as a string that should be losslessly
841/// convertible back into the same character.
842impl Display for Punct {
843    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
844        Display::fmt(&self.ch, f)
845    }
846}
847
848impl Debug for Punct {
849    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
850        let mut debug = fmt.debug_struct("Punct");
851        debug.field("char", &self.ch);
852        debug.field("spacing", &self.spacing);
853        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
854        debug.finish()
855    }
856}
857
858/// A word of Rust code, which may be a keyword or legal variable name.
859///
860/// An identifier consists of at least one Unicode code point, the first of
861/// which has the XID_Start property and the rest of which have the XID_Continue
862/// property.
863///
864/// - The empty string is not an identifier. Use `Option<Ident>`.
865/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
866///
867/// An identifier constructed with `Ident::new` is permitted to be a Rust
868/// keyword, though parsing one through its [`Parse`] implementation rejects
869/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
870/// behaviour of `Ident::new`.
871///
872/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
873///
874/// # Examples
875///
876/// A new ident can be created from a string using the `Ident::new` function.
877/// A span must be provided explicitly which governs the name resolution
878/// behavior of the resulting identifier.
879///
880/// ```
881/// use proc_macro2::{Ident, Span};
882///
883/// fn main() {
884///     let call_ident = Ident::new("calligraphy", Span::call_site());
885///
886///     println!("{}", call_ident);
887/// }
888/// ```
889///
890/// An ident can be interpolated into a token stream using the `quote!` macro.
891///
892/// ```
893/// use proc_macro2::{Ident, Span};
894/// use quote::quote;
895///
896/// fn main() {
897///     let ident = Ident::new("demo", Span::call_site());
898///
899///     // Create a variable binding whose name is this ident.
900///     let expanded = quote! { let #ident = 10; };
901///
902///     // Create a variable binding with a slightly different name.
903///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
904///     let expanded = quote! { let #temp_ident = 10; };
905/// }
906/// ```
907///
908/// A string representation of the ident is available through the `to_string()`
909/// method.
910///
911/// ```
912/// # use proc_macro2::{Ident, Span};
913/// #
914/// # let ident = Ident::new("another_identifier", Span::call_site());
915/// #
916/// // Examine the ident as a string.
917/// let ident_string = ident.to_string();
918/// if ident_string.len() > 60 {
919///     println!("Very long identifier: {}", ident_string)
920/// }
921/// ```
922#[derive(Clone)]
923pub struct Ident {
924    inner: imp::Ident,
925    _marker: ProcMacroAutoTraits,
926}
927
928impl Ident {
929    fn _new(inner: imp::Ident) -> Self {
930        Ident {
931            inner,
932            _marker: MARKER,
933        }
934    }
935
936    fn _new_fallback(inner: fallback::Ident) -> Self {
937        Ident {
938            inner: imp::Ident::from(inner),
939            _marker: MARKER,
940        }
941    }
942
943    /// Creates a new `Ident` with the given `string` as well as the specified
944    /// `span`.
945    ///
946    /// The `string` argument must be a valid identifier permitted by the
947    /// language, otherwise the function will panic.
948    ///
949    /// Note that `span`, currently in rustc, configures the hygiene information
950    /// for this identifier.
951    ///
952    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
953    /// hygiene meaning that identifiers created with this span will be resolved
954    /// as if they were written directly at the location of the macro call, and
955    /// other code at the macro call site will be able to refer to them as well.
956    ///
957    /// Later spans like `Span::def_site()` will allow to opt-in to
958    /// "definition-site" hygiene meaning that identifiers created with this
959    /// span will be resolved at the location of the macro definition and other
960    /// code at the macro call site will not be able to refer to them.
961    ///
962    /// Due to the current importance of hygiene this constructor, unlike other
963    /// tokens, requires a `Span` to be specified at construction.
964    ///
965    /// # Panics
966    ///
967    /// Panics if the input string is neither a keyword nor a legal variable
968    /// name. If you are not sure whether the string contains an identifier and
969    /// need to handle an error case, use
970    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
971    ///   style="padding-right:0;">syn::parse_str</code></a><code
972    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
973    /// rather than `Ident::new`.
974    #[track_caller]
975    pub fn new(string: &str, span: Span) -> Self {
976        Ident::_new(imp::Ident::new_checked(string, span.inner))
977    }
978
979    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
980    /// `string` argument must be a valid identifier permitted by the language
981    /// (including keywords, e.g. `fn`). Keywords which are usable in path
982    /// segments (e.g. `self`, `super`) are not supported, and will cause a
983    /// panic.
984    #[track_caller]
985    pub fn new_raw(string: &str, span: Span) -> Self {
986        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
987    }
988
989    /// Returns the span of this `Ident`.
990    pub fn span(&self) -> Span {
991        Span::_new(self.inner.span())
992    }
993
994    /// Configures the span of this `Ident`, possibly changing its hygiene
995    /// context.
996    pub fn set_span(&mut self, span: Span) {
997        self.inner.set_span(span.inner);
998    }
999}
1000
1001impl PartialEq for Ident {
1002    fn eq(&self, other: &Ident) -> bool {
1003        self.inner == other.inner
1004    }
1005}
1006
1007impl<T> PartialEq<T> for Ident
1008where
1009    T: ?Sized + AsRef<str>,
1010{
1011    fn eq(&self, other: &T) -> bool {
1012        self.inner == other
1013    }
1014}
1015
1016impl Eq for Ident {}
1017
1018impl PartialOrd for Ident {
1019    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1020        Some(self.cmp(other))
1021    }
1022}
1023
1024impl Ord for Ident {
1025    fn cmp(&self, other: &Ident) -> Ordering {
1026        self.to_string().cmp(&other.to_string())
1027    }
1028}
1029
1030impl Hash for Ident {
1031    fn hash<H: Hasher>(&self, hasher: &mut H) {
1032        self.to_string().hash(hasher);
1033    }
1034}
1035
1036/// Prints the identifier as a string that should be losslessly convertible back
1037/// into the same identifier.
1038impl Display for Ident {
1039    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1040        Display::fmt(&self.inner, f)
1041    }
1042}
1043
1044impl Debug for Ident {
1045    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1046        Debug::fmt(&self.inner, f)
1047    }
1048}
1049
1050/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1051/// byte character (`b'a'`), an integer or floating point number with or without
1052/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1053///
1054/// Boolean literals like `true` and `false` do not belong here, they are
1055/// `Ident`s.
1056#[derive(Clone)]
1057pub struct Literal {
1058    inner: imp::Literal,
1059    _marker: ProcMacroAutoTraits,
1060}
1061
1062macro_rules! suffixed_int_literals {
1063    ($($name:ident => $kind:ident,)*) => ($(
1064        /// Creates a new suffixed integer literal with the specified value.
1065        ///
1066        /// This function will create an integer like `1u32` where the integer
1067        /// value specified is the first part of the token and the integral is
1068        /// also suffixed at the end. Literals created from negative numbers may
1069        /// not survive roundtrips through `TokenStream` or strings and may be
1070        /// broken into two tokens (`-` and positive literal).
1071        ///
1072        /// Literals created through this method have the `Span::call_site()`
1073        /// span by default, which can be configured with the `set_span` method
1074        /// below.
1075        pub fn $name(n: $kind) -> Literal {
1076            Literal::_new(imp::Literal::$name(n))
1077        }
1078    )*)
1079}
1080
1081macro_rules! unsuffixed_int_literals {
1082    ($($name:ident => $kind:ident,)*) => ($(
1083        /// Creates a new unsuffixed integer literal with the specified value.
1084        ///
1085        /// This function will create an integer like `1` where the integer
1086        /// value specified is the first part of the token. No suffix is
1087        /// specified on this token, meaning that invocations like
1088        /// `Literal::i8_unsuffixed(1)` are equivalent to
1089        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1090        /// may not survive roundtrips through `TokenStream` or strings and may
1091        /// be broken into two tokens (`-` and positive literal).
1092        ///
1093        /// Literals created through this method have the `Span::call_site()`
1094        /// span by default, which can be configured with the `set_span` method
1095        /// below.
1096        pub fn $name(n: $kind) -> Literal {
1097            Literal::_new(imp::Literal::$name(n))
1098        }
1099    )*)
1100}
1101
1102impl Literal {
1103    fn _new(inner: imp::Literal) -> Self {
1104        Literal {
1105            inner,
1106            _marker: MARKER,
1107        }
1108    }
1109
1110    fn _new_fallback(inner: fallback::Literal) -> Self {
1111        Literal {
1112            inner: imp::Literal::from(inner),
1113            _marker: MARKER,
1114        }
1115    }
1116
1117    suffixed_int_literals! {
1118        u8_suffixed => u8,
1119        u16_suffixed => u16,
1120        u32_suffixed => u32,
1121        u64_suffixed => u64,
1122        u128_suffixed => u128,
1123        usize_suffixed => usize,
1124        i8_suffixed => i8,
1125        i16_suffixed => i16,
1126        i32_suffixed => i32,
1127        i64_suffixed => i64,
1128        i128_suffixed => i128,
1129        isize_suffixed => isize,
1130    }
1131
1132    unsuffixed_int_literals! {
1133        u8_unsuffixed => u8,
1134        u16_unsuffixed => u16,
1135        u32_unsuffixed => u32,
1136        u64_unsuffixed => u64,
1137        u128_unsuffixed => u128,
1138        usize_unsuffixed => usize,
1139        i8_unsuffixed => i8,
1140        i16_unsuffixed => i16,
1141        i32_unsuffixed => i32,
1142        i64_unsuffixed => i64,
1143        i128_unsuffixed => i128,
1144        isize_unsuffixed => isize,
1145    }
1146
1147    /// Creates a new unsuffixed floating-point literal.
1148    ///
1149    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1150    /// the float's value is emitted directly into the token but no suffix is
1151    /// used, so it may be inferred to be a `f64` later in the compiler.
1152    /// Literals created from negative numbers may not survive round-trips
1153    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1154    /// and positive literal).
1155    ///
1156    /// # Panics
1157    ///
1158    /// This function requires that the specified float is finite, for example
1159    /// if it is infinity or NaN this function will panic.
1160    pub fn f64_unsuffixed(f: f64) -> Literal {
1161        assert!(f.is_finite());
1162        Literal::_new(imp::Literal::f64_unsuffixed(f))
1163    }
1164
1165    /// Creates a new suffixed floating-point literal.
1166    ///
1167    /// This constructor will create a literal like `1.0f64` where the value
1168    /// specified is the preceding part of the token and `f64` is the suffix of
1169    /// the token. This token will always be inferred to be an `f64` in the
1170    /// compiler. Literals created from negative numbers may not survive
1171    /// round-trips through `TokenStream` or strings and may be broken into two
1172    /// tokens (`-` and positive literal).
1173    ///
1174    /// # Panics
1175    ///
1176    /// This function requires that the specified float is finite, for example
1177    /// if it is infinity or NaN this function will panic.
1178    pub fn f64_suffixed(f: f64) -> Literal {
1179        assert!(f.is_finite());
1180        Literal::_new(imp::Literal::f64_suffixed(f))
1181    }
1182
1183    /// Creates a new unsuffixed floating-point literal.
1184    ///
1185    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1186    /// the float's value is emitted directly into the token but no suffix is
1187    /// used, so it may be inferred to be a `f64` later in the compiler.
1188    /// Literals created from negative numbers may not survive round-trips
1189    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1190    /// and positive literal).
1191    ///
1192    /// # Panics
1193    ///
1194    /// This function requires that the specified float is finite, for example
1195    /// if it is infinity or NaN this function will panic.
1196    pub fn f32_unsuffixed(f: f32) -> Literal {
1197        assert!(f.is_finite());
1198        Literal::_new(imp::Literal::f32_unsuffixed(f))
1199    }
1200
1201    /// Creates a new suffixed floating-point literal.
1202    ///
1203    /// This constructor will create a literal like `1.0f32` where the value
1204    /// specified is the preceding part of the token and `f32` is the suffix of
1205    /// the token. This token will always be inferred to be an `f32` in the
1206    /// compiler. Literals created from negative numbers may not survive
1207    /// round-trips through `TokenStream` or strings and may be broken into two
1208    /// tokens (`-` and positive literal).
1209    ///
1210    /// # Panics
1211    ///
1212    /// This function requires that the specified float is finite, for example
1213    /// if it is infinity or NaN this function will panic.
1214    pub fn f32_suffixed(f: f32) -> Literal {
1215        assert!(f.is_finite());
1216        Literal::_new(imp::Literal::f32_suffixed(f))
1217    }
1218
1219    /// String literal.
1220    pub fn string(string: &str) -> Literal {
1221        Literal::_new(imp::Literal::string(string))
1222    }
1223
1224    /// Character literal.
1225    pub fn character(ch: char) -> Literal {
1226        Literal::_new(imp::Literal::character(ch))
1227    }
1228
1229    /// Byte character literal.
1230    pub fn byte_character(byte: u8) -> Literal {
1231        Literal::_new(imp::Literal::byte_character(byte))
1232    }
1233
1234    /// Byte string literal.
1235    pub fn byte_string(bytes: &[u8]) -> Literal {
1236        Literal::_new(imp::Literal::byte_string(bytes))
1237    }
1238
1239    /// C string literal.
1240    pub fn c_string(string: &CStr) -> Literal {
1241        Literal::_new(imp::Literal::c_string(string))
1242    }
1243
1244    /// Returns the span encompassing this literal.
1245    pub fn span(&self) -> Span {
1246        Span::_new(self.inner.span())
1247    }
1248
1249    /// Configures the span associated for this literal.
1250    pub fn set_span(&mut self, span: Span) {
1251        self.inner.set_span(span.inner);
1252    }
1253
1254    /// Returns a `Span` that is a subset of `self.span()` containing only
1255    /// the source bytes in range `range`. Returns `None` if the would-be
1256    /// trimmed span is outside the bounds of `self`.
1257    ///
1258    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1259    /// nightly-only. When called from within a procedural macro not using a
1260    /// nightly compiler, this method will always return `None`.
1261    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1262        self.inner.subspan(range).map(Span::_new)
1263    }
1264
1265    // Intended for the `quote!` macro to use when constructing a proc-macro2
1266    // token out of a macro_rules $:literal token, which is already known to be
1267    // a valid literal. This avoids reparsing/validating the literal's string
1268    // representation. This is not public API other than for quote.
1269    #[doc(hidden)]
1270    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1271        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1272    }
1273}
1274
1275impl FromStr for Literal {
1276    type Err = LexError;
1277
1278    fn from_str(repr: &str) -> Result<Self, LexError> {
1279        match imp::Literal::from_str_checked(repr) {
1280            Ok(lit) => Ok(Literal::_new(lit)),
1281            Err(lex) => Err(LexError {
1282                inner: lex,
1283                _marker: MARKER,
1284            }),
1285        }
1286    }
1287}
1288
1289impl Debug for Literal {
1290    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1291        Debug::fmt(&self.inner, f)
1292    }
1293}
1294
1295impl Display for Literal {
1296    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1297        Display::fmt(&self.inner, f)
1298    }
1299}
1300
1301/// Public implementation details for the `TokenStream` type, such as iterators.
1302pub mod token_stream {
1303    use crate::marker::{ProcMacroAutoTraits, MARKER};
1304    use crate::{imp, TokenTree};
1305    use core::fmt::{self, Debug};
1306
1307    pub use crate::TokenStream;
1308
1309    /// An iterator over `TokenStream`'s `TokenTree`s.
1310    ///
1311    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1312    /// delimited groups, and returns whole groups as token trees.
1313    #[derive(Clone)]
1314    pub struct IntoIter {
1315        inner: imp::TokenTreeIter,
1316        _marker: ProcMacroAutoTraits,
1317    }
1318
1319    impl Iterator for IntoIter {
1320        type Item = TokenTree;
1321
1322        fn next(&mut self) -> Option<TokenTree> {
1323            self.inner.next()
1324        }
1325
1326        fn size_hint(&self) -> (usize, Option<usize>) {
1327            self.inner.size_hint()
1328        }
1329    }
1330
1331    impl Debug for IntoIter {
1332        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1333            f.write_str("TokenStream ")?;
1334            f.debug_list().entries(self.clone()).finish()
1335        }
1336    }
1337
1338    impl IntoIterator for TokenStream {
1339        type Item = TokenTree;
1340        type IntoIter = IntoIter;
1341
1342        fn into_iter(self) -> IntoIter {
1343            IntoIter {
1344                inner: self.inner.into_iter(),
1345                _marker: MARKER,
1346            }
1347        }
1348    }
1349}