proc_macro2/
lib.rs

1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! - **Bring proc-macro-like functionality to other contexts like build.rs and
13//!   main.rs.** Types from `proc_macro` are entirely specific to procedural
14//!   macros and cannot ever exist in code outside of a procedural macro.
15//!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
16//!   By developing foundational libraries like [syn] and [quote] against
17//!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
18//!   becomes easily applicable to many other use cases and we avoid
19//!   reimplementing non-macro equivalents of those libraries.
20//!
21//! - **Make procedural macros unit testable.** As a consequence of being
22//!   specific to procedural macros, nothing that uses `proc_macro` can be
23//!   executed from a unit test. In order for helper libraries or components of
24//!   a macro to be testable in isolation, they must be implemented using
25//!   `proc_macro2`.
26//!
27//! [syn]: https://github.com/dtolnay/syn
28//! [quote]: https://github.com/dtolnay/quote
29//!
30//! # Usage
31//!
32//! The skeleton of a typical procedural macro typically looks like this:
33//!
34//! ```
35//! extern crate proc_macro;
36//!
37//! # const IGNORE: &str = stringify! {
38//! #[proc_macro_derive(MyDerive)]
39//! # };
40//! # #[cfg(wrap_proc_macro)]
41//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
42//!     let input = proc_macro2::TokenStream::from(input);
43//!
44//!     let output: proc_macro2::TokenStream = {
45//!         /* transform input */
46//!         # input
47//!     };
48//!
49//!     proc_macro::TokenStream::from(output)
50//! }
51//! ```
52//!
53//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
54//! propagate parse errors correctly back to the compiler when parsing fails.
55//!
56//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
57//!
58//! # Unstable features
59//!
60//! The default feature set of proc-macro2 tracks the most recent stable
61//! compiler API. Functionality in `proc_macro` that is not yet stable is not
62//! exposed by proc-macro2 by default.
63//!
64//! To opt into the additional APIs available in the most recent nightly
65//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
66//! rustc. We will polyfill those nightly-only APIs back to Rust 1.68.0. As
67//! these are unstable APIs that track the nightly compiler, minor versions of
68//! proc-macro2 may make breaking changes to them at any time.
69//!
70//! ```sh
71//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
72//! ```
73//!
74//! Note that this must not only be done for your crate, but for any crate that
75//! depends on your crate. This infectious nature is intentional, as it serves
76//! as a reminder that you are outside of the normal semver guarantees.
77//!
78//! Semver exempt methods are marked as such in the proc-macro2 documentation.
79//!
80//! # Thread-Safety
81//!
82//! Most types in this crate are `!Sync` because the underlying compiler
83//! types make use of thread-local memory, meaning they cannot be accessed from
84//! a different thread.
85
86// Proc-macro2 types in rustdoc of other crates get linked to here.
87#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.104")]
88#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
89#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
90#![cfg_attr(docsrs, feature(doc_cfg))]
91#![deny(unsafe_op_in_unsafe_fn)]
92#![allow(
93    clippy::cast_lossless,
94    clippy::cast_possible_truncation,
95    clippy::checked_conversions,
96    clippy::doc_markdown,
97    clippy::elidable_lifetime_names,
98    clippy::incompatible_msrv,
99    clippy::items_after_statements,
100    clippy::iter_without_into_iter,
101    clippy::let_underscore_untyped,
102    clippy::manual_assert,
103    clippy::manual_range_contains,
104    clippy::missing_panics_doc,
105    clippy::missing_safety_doc,
106    clippy::must_use_candidate,
107    clippy::needless_doctest_main,
108    clippy::needless_lifetimes,
109    clippy::new_without_default,
110    clippy::return_self_not_must_use,
111    clippy::shadow_unrelated,
112    clippy::trivially_copy_pass_by_ref,
113    clippy::uninlined_format_args,
114    clippy::unnecessary_wraps,
115    clippy::unused_self,
116    clippy::used_underscore_binding,
117    clippy::vec_init_then_push
118)]
119#![allow(unknown_lints, mismatched_lifetime_syntaxes)]
120
121#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
122compile_error! {"\
123    Something is not right. If you've tried to turn on \
124    procmacro2_semver_exempt, you need to ensure that it \
125    is turned on for the compilation of the proc-macro2 \
126    build script as well.
127"}
128
129#[cfg(all(
130    procmacro2_nightly_testing,
131    feature = "proc-macro",
132    not(proc_macro_span)
133))]
134compile_error! {"\
135    Build script probe failed to compile.
136"}
137
138extern crate alloc;
139
140#[cfg(feature = "proc-macro")]
141extern crate proc_macro;
142
143mod marker;
144mod parse;
145mod probe;
146mod rcvec;
147
148#[cfg(wrap_proc_macro)]
149mod detection;
150
151// Public for proc_macro2::fallback::force() and unforce(), but those are quite
152// a niche use case so we omit it from rustdoc.
153#[doc(hidden)]
154pub mod fallback;
155
156pub mod extra;
157
158#[cfg(not(wrap_proc_macro))]
159use crate::fallback as imp;
160#[path = "wrapper.rs"]
161#[cfg(wrap_proc_macro)]
162mod imp;
163
164#[cfg(span_locations)]
165mod location;
166
167#[cfg(procmacro2_semver_exempt)]
168mod num;
169#[cfg(procmacro2_semver_exempt)]
170#[allow(dead_code)]
171mod rustc_literal_escaper;
172
173use crate::extra::DelimSpan;
174use crate::marker::{ProcMacroAutoTraits, MARKER};
175#[cfg(procmacro2_semver_exempt)]
176use crate::rustc_literal_escaper::MixedUnit;
177use core::cmp::Ordering;
178use core::fmt::{self, Debug, Display};
179use core::hash::{Hash, Hasher};
180#[cfg(span_locations)]
181use core::ops::Range;
182use core::ops::RangeBounds;
183use core::str::FromStr;
184use std::error::Error;
185use std::ffi::CStr;
186#[cfg(span_locations)]
187use std::path::PathBuf;
188
189#[cfg(span_locations)]
190#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
191pub use crate::location::LineColumn;
192
193#[cfg(procmacro2_semver_exempt)]
194#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
195pub use crate::rustc_literal_escaper::EscapeError;
196
197/// An abstract stream of tokens, or more concretely a sequence of token trees.
198///
199/// This type provides interfaces for iterating over token trees and for
200/// collecting token trees into one stream.
201///
202/// Token stream is both the input and output of `#[proc_macro]`,
203/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
204#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenStream {
    #[inline]
    fn clone(&self) -> TokenStream {
        TokenStream {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
205pub struct TokenStream {
206    inner: imp::TokenStream,
207    _marker: ProcMacroAutoTraits,
208}
209
210/// Error returned from `TokenStream::from_str`.
211pub struct LexError {
212    inner: imp::LexError,
213    _marker: ProcMacroAutoTraits,
214}
215
216impl TokenStream {
217    fn _new(inner: imp::TokenStream) -> Self {
218        TokenStream {
219            inner,
220            _marker: MARKER,
221        }
222    }
223
224    fn _new_fallback(inner: fallback::TokenStream) -> Self {
225        TokenStream {
226            inner: imp::TokenStream::from(inner),
227            _marker: MARKER,
228        }
229    }
230
231    /// Returns an empty `TokenStream` containing no token trees.
232    pub fn new() -> Self {
233        TokenStream::_new(imp::TokenStream::new())
234    }
235
236    /// Checks if this `TokenStream` is empty.
237    pub fn is_empty(&self) -> bool {
238        self.inner.is_empty()
239    }
240}
241
242/// `TokenStream::default()` returns an empty stream,
243/// i.e. this is equivalent with `TokenStream::new()`.
244impl Default for TokenStream {
245    fn default() -> Self {
246        TokenStream::new()
247    }
248}
249
250/// Attempts to break the string into tokens and parse those tokens into a token
251/// stream.
252///
253/// May fail for a number of reasons, for example, if the string contains
254/// unbalanced delimiters or characters not existing in the language.
255///
256/// NOTE: Some errors may cause panics instead of returning `LexError`. We
257/// reserve the right to change these errors into `LexError`s later.
258impl FromStr for TokenStream {
259    type Err = LexError;
260
261    fn from_str(src: &str) -> Result<TokenStream, LexError> {
262        match imp::TokenStream::from_str_checked(src) {
263            Ok(tokens) => Ok(TokenStream::_new(tokens)),
264            Err(lex) => Err(LexError {
265                inner: lex,
266                _marker: MARKER,
267            }),
268        }
269    }
270}
271
272#[cfg(feature = "proc-macro")]
273#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
274impl From<proc_macro::TokenStream> for TokenStream {
275    fn from(inner: proc_macro::TokenStream) -> Self {
276        TokenStream::_new(imp::TokenStream::from(inner))
277    }
278}
279
280#[cfg(feature = "proc-macro")]
281#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
282impl From<TokenStream> for proc_macro::TokenStream {
283    fn from(inner: TokenStream) -> Self {
284        proc_macro::TokenStream::from(inner.inner)
285    }
286}
287
288impl From<TokenTree> for TokenStream {
289    fn from(token: TokenTree) -> Self {
290        TokenStream::_new(imp::TokenStream::from(token))
291    }
292}
293
294impl Extend<TokenTree> for TokenStream {
295    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, tokens: I) {
296        self.inner.extend(tokens);
297    }
298}
299
300impl Extend<TokenStream> for TokenStream {
301    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
302        self.inner
303            .extend(streams.into_iter().map(|stream| stream.inner));
304    }
305}
306
307impl Extend<Group> for TokenStream {
308    fn extend<I: IntoIterator<Item = Group>>(&mut self, tokens: I) {
309        self.inner.extend(tokens.into_iter().map(TokenTree::Group));
310    }
311}
312
313impl Extend<Ident> for TokenStream {
314    fn extend<I: IntoIterator<Item = Ident>>(&mut self, tokens: I) {
315        self.inner.extend(tokens.into_iter().map(TokenTree::Ident));
316    }
317}
318
319impl Extend<Punct> for TokenStream {
320    fn extend<I: IntoIterator<Item = Punct>>(&mut self, tokens: I) {
321        self.inner.extend(tokens.into_iter().map(TokenTree::Punct));
322    }
323}
324
325impl Extend<Literal> for TokenStream {
326    fn extend<I: IntoIterator<Item = Literal>>(&mut self, tokens: I) {
327        self.inner
328            .extend(tokens.into_iter().map(TokenTree::Literal));
329    }
330}
331
332/// Collects a number of token trees into a single stream.
333impl FromIterator<TokenTree> for TokenStream {
334    fn from_iter<I: IntoIterator<Item = TokenTree>>(tokens: I) -> Self {
335        TokenStream::_new(tokens.into_iter().collect())
336    }
337}
338
339impl FromIterator<TokenStream> for TokenStream {
340    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
341        TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
342    }
343}
344
345/// Prints the token stream as a string that is supposed to be losslessly
346/// convertible back into the same token stream (modulo spans), except for
347/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
348/// numeric literals.
349impl Display for TokenStream {
350    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
351        Display::fmt(&self.inner, f)
352    }
353}
354
355/// Prints token in a form convenient for debugging.
356impl Debug for TokenStream {
357    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
358        Debug::fmt(&self.inner, f)
359    }
360}
361
362impl LexError {
363    pub fn span(&self) -> Span {
364        Span::_new(self.inner.span())
365    }
366}
367
368impl Debug for LexError {
369    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
370        Debug::fmt(&self.inner, f)
371    }
372}
373
374impl Display for LexError {
375    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
376        Display::fmt(&self.inner, f)
377    }
378}
379
380impl Error for LexError {}
381
382/// A region of source code, along with macro expansion information.
383#[derive(#[automatically_derived]
impl ::core::marker::Copy for Span { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Span {
    #[inline]
    fn clone(&self) -> Span {
        let _: ::core::clone::AssertParamIsClone<imp::Span>;
        let _: ::core::clone::AssertParamIsClone<ProcMacroAutoTraits>;
        *self
    }
}Clone)]
384pub struct Span {
385    inner: imp::Span,
386    _marker: ProcMacroAutoTraits,
387}
388
389impl Span {
390    fn _new(inner: imp::Span) -> Self {
391        Span {
392            inner,
393            _marker: MARKER,
394        }
395    }
396
397    fn _new_fallback(inner: fallback::Span) -> Self {
398        Span {
399            inner: imp::Span::from(inner),
400            _marker: MARKER,
401        }
402    }
403
404    /// The span of the invocation of the current procedural macro.
405    ///
406    /// Identifiers created with this span will be resolved as if they were
407    /// written directly at the macro call location (call-site hygiene) and
408    /// other code at the macro call site will be able to refer to them as well.
409    pub fn call_site() -> Self {
410        Span::_new(imp::Span::call_site())
411    }
412
413    /// The span located at the invocation of the procedural macro, but with
414    /// local variables, labels, and `$crate` resolved at the definition site
415    /// of the macro. This is the same hygiene behavior as `macro_rules`.
416    pub fn mixed_site() -> Self {
417        Span::_new(imp::Span::mixed_site())
418    }
419
420    /// A span that resolves at the macro definition site.
421    ///
422    /// This method is semver exempt and not exposed by default.
423    #[cfg(procmacro2_semver_exempt)]
424    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
425    pub fn def_site() -> Self {
426        Span::_new(imp::Span::def_site())
427    }
428
429    /// Creates a new span with the same line/column information as `self` but
430    /// that resolves symbols as though it were at `other`.
431    pub fn resolved_at(&self, other: Span) -> Span {
432        Span::_new(self.inner.resolved_at(other.inner))
433    }
434
435    /// Creates a new span with the same name resolution behavior as `self` but
436    /// with the line/column information of `other`.
437    pub fn located_at(&self, other: Span) -> Span {
438        Span::_new(self.inner.located_at(other.inner))
439    }
440
441    /// Convert `proc_macro2::Span` to `proc_macro::Span`.
442    ///
443    /// This method is available when building with a nightly compiler, or when
444    /// building with rustc 1.29+ *without* semver exempt features.
445    ///
446    /// # Panics
447    ///
448    /// Panics if called from outside of a procedural macro. Unlike
449    /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
450    /// the context of a procedural macro invocation.
451    #[cfg(wrap_proc_macro)]
452    pub fn unwrap(self) -> proc_macro::Span {
453        self.inner.unwrap()
454    }
455
456    // Soft deprecated. Please use Span::unwrap.
457    #[cfg(wrap_proc_macro)]
458    #[doc(hidden)]
459    pub fn unstable(self) -> proc_macro::Span {
460        self.unwrap()
461    }
462
463    /// Returns the span's byte position range in the source file.
464    ///
465    /// This method requires the `"span-locations"` feature to be enabled.
466    ///
467    /// When executing in a procedural macro context, the returned range is only
468    /// accurate if compiled with a nightly toolchain. The stable toolchain does
469    /// not have this information available. When executing outside of a
470    /// procedural macro, such as main.rs or build.rs, the byte range is always
471    /// accurate regardless of toolchain.
472    #[cfg(span_locations)]
473    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
474    pub fn byte_range(&self) -> Range<usize> {
475        self.inner.byte_range()
476    }
477
478    /// Get the starting line/column in the source file for this span.
479    ///
480    /// This method requires the `"span-locations"` feature to be enabled.
481    ///
482    /// When executing in a procedural macro context, the returned line/column
483    /// are only meaningful if compiled with a nightly toolchain. The stable
484    /// toolchain does not have this information available. When executing
485    /// outside of a procedural macro, such as main.rs or build.rs, the
486    /// line/column are always meaningful regardless of toolchain.
487    #[cfg(span_locations)]
488    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
489    pub fn start(&self) -> LineColumn {
490        self.inner.start()
491    }
492
493    /// Get the ending line/column in the source file for this span.
494    ///
495    /// This method requires the `"span-locations"` feature to be enabled.
496    ///
497    /// When executing in a procedural macro context, the returned line/column
498    /// are only meaningful if compiled with a nightly toolchain. The stable
499    /// toolchain does not have this information available. When executing
500    /// outside of a procedural macro, such as main.rs or build.rs, the
501    /// line/column are always meaningful regardless of toolchain.
502    #[cfg(span_locations)]
503    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
504    pub fn end(&self) -> LineColumn {
505        self.inner.end()
506    }
507
508    /// The path to the source file in which this span occurs, for display
509    /// purposes.
510    ///
511    /// This might not correspond to a valid file system path. It might be
512    /// remapped, or might be an artificial path such as `"<macro expansion>"`.
513    #[cfg(span_locations)]
514    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
515    pub fn file(&self) -> String {
516        self.inner.file()
517    }
518
519    /// The path to the source file in which this span occurs on disk.
520    ///
521    /// This is the actual path on disk. It is unaffected by path remapping.
522    ///
523    /// This path should not be embedded in the output of the macro; prefer
524    /// `file()` instead.
525    #[cfg(span_locations)]
526    #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
527    pub fn local_file(&self) -> Option<PathBuf> {
528        self.inner.local_file()
529    }
530
531    /// Create a new span encompassing `self` and `other`.
532    ///
533    /// Returns `None` if `self` and `other` are from different files.
534    ///
535    /// Warning: the underlying [`proc_macro::Span::join`] method is
536    /// nightly-only. When called from within a procedural macro not using a
537    /// nightly compiler, this method will always return `None`.
538    pub fn join(&self, other: Span) -> Option<Span> {
539        self.inner.join(other.inner).map(Span::_new)
540    }
541
542    /// Compares two spans to see if they're equal.
543    ///
544    /// This method is semver exempt and not exposed by default.
545    #[cfg(procmacro2_semver_exempt)]
546    #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
547    pub fn eq(&self, other: &Span) -> bool {
548        self.inner.eq(&other.inner)
549    }
550
551    /// Returns the source text behind a span. This preserves the original
552    /// source code, including spaces and comments. It only returns a result if
553    /// the span corresponds to real source code.
554    ///
555    /// Note: The observable result of a macro should only rely on the tokens
556    /// and not on this source text. The result of this function is a best
557    /// effort to be used for diagnostics only.
558    pub fn source_text(&self) -> Option<String> {
559        self.inner.source_text()
560    }
561}
562
563/// Prints a span in a form convenient for debugging.
564impl Debug for Span {
565    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
566        Debug::fmt(&self.inner, f)
567    }
568}
569
570/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
571#[derive(#[automatically_derived]
impl ::core::clone::Clone for TokenTree {
    #[inline]
    fn clone(&self) -> TokenTree {
        match self {
            TokenTree::Group(__self_0) =>
                TokenTree::Group(::core::clone::Clone::clone(__self_0)),
            TokenTree::Ident(__self_0) =>
                TokenTree::Ident(::core::clone::Clone::clone(__self_0)),
            TokenTree::Punct(__self_0) =>
                TokenTree::Punct(::core::clone::Clone::clone(__self_0)),
            TokenTree::Literal(__self_0) =>
                TokenTree::Literal(::core::clone::Clone::clone(__self_0)),
        }
    }
}Clone)]
572pub enum TokenTree {
573    /// A token stream surrounded by bracket delimiters.
574    Group(Group),
575    /// An identifier.
576    Ident(Ident),
577    /// A single punctuation character (`+`, `,`, `$`, etc.).
578    Punct(Punct),
579    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
580    Literal(Literal),
581}
582
583impl TokenTree {
584    /// Returns the span of this tree, delegating to the `span` method of
585    /// the contained token or a delimited stream.
586    pub fn span(&self) -> Span {
587        match self {
588            TokenTree::Group(t) => t.span(),
589            TokenTree::Ident(t) => t.span(),
590            TokenTree::Punct(t) => t.span(),
591            TokenTree::Literal(t) => t.span(),
592        }
593    }
594
595    /// Configures the span for *only this token*.
596    ///
597    /// Note that if this token is a `Group` then this method will not configure
598    /// the span of each of the internal tokens, this will simply delegate to
599    /// the `set_span` method of each variant.
600    pub fn set_span(&mut self, span: Span) {
601        match self {
602            TokenTree::Group(t) => t.set_span(span),
603            TokenTree::Ident(t) => t.set_span(span),
604            TokenTree::Punct(t) => t.set_span(span),
605            TokenTree::Literal(t) => t.set_span(span),
606        }
607    }
608}
609
610impl From<Group> for TokenTree {
611    fn from(g: Group) -> Self {
612        TokenTree::Group(g)
613    }
614}
615
616impl From<Ident> for TokenTree {
617    fn from(g: Ident) -> Self {
618        TokenTree::Ident(g)
619    }
620}
621
622impl From<Punct> for TokenTree {
623    fn from(g: Punct) -> Self {
624        TokenTree::Punct(g)
625    }
626}
627
628impl From<Literal> for TokenTree {
629    fn from(g: Literal) -> Self {
630        TokenTree::Literal(g)
631    }
632}
633
634/// Prints the token tree as a string that is supposed to be losslessly
635/// convertible back into the same token tree (modulo spans), except for
636/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
637/// numeric literals.
638impl Display for TokenTree {
639    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
640        match self {
641            TokenTree::Group(t) => Display::fmt(t, f),
642            TokenTree::Ident(t) => Display::fmt(t, f),
643            TokenTree::Punct(t) => Display::fmt(t, f),
644            TokenTree::Literal(t) => Display::fmt(t, f),
645        }
646    }
647}
648
649/// Prints token tree in a form convenient for debugging.
650impl Debug for TokenTree {
651    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
652        // Each of these has the name in the struct type in the derived debug,
653        // so don't bother with an extra layer of indirection
654        match self {
655            TokenTree::Group(t) => Debug::fmt(t, f),
656            TokenTree::Ident(t) => {
657                let mut debug = f.debug_struct("Ident");
658                debug.field("sym", &format_args!("{0}", t)format_args!("{}", t));
659                imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
660                debug.finish()
661            }
662            TokenTree::Punct(t) => Debug::fmt(t, f),
663            TokenTree::Literal(t) => Debug::fmt(t, f),
664        }
665    }
666}
667
668/// A delimited token stream.
669///
670/// A `Group` internally contains a `TokenStream` which is surrounded by
671/// `Delimiter`s.
672#[derive(#[automatically_derived]
impl ::core::clone::Clone for Group {
    #[inline]
    fn clone(&self) -> Group {
        Group { inner: ::core::clone::Clone::clone(&self.inner) }
    }
}Clone)]
673pub struct Group {
674    inner: imp::Group,
675}
676
677/// Describes how a sequence of token trees is delimited.
678#[derive(#[automatically_derived]
impl ::core::marker::Copy for Delimiter { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Delimiter {
    #[inline]
    fn clone(&self) -> Delimiter { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Delimiter {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Delimiter::Parenthesis => "Parenthesis",
                Delimiter::Brace => "Brace",
                Delimiter::Bracket => "Bracket",
                Delimiter::None => "None",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Delimiter {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Delimiter {
    #[inline]
    fn eq(&self, other: &Delimiter) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
679pub enum Delimiter {
680    /// `( ... )`
681    Parenthesis,
682    /// `{ ... }`
683    Brace,
684    /// `[ ... ]`
685    Bracket,
686    /// `∅ ... ∅`
687    ///
688    /// An invisible delimiter, that may, for example, appear around tokens
689    /// coming from a "macro variable" `$var`. It is important to preserve
690    /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
691    /// Invisible delimiters may not survive roundtrip of a token stream through
692    /// a string.
693    ///
694    /// <div class="warning">
695    ///
696    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
697    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
698    /// of a proc_macro macro are preserved, and only in very specific circumstances.
699    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
700    /// operator priorities as indicated above. The other `Delimiter` variants should be used
701    /// instead in this context. This is a rustc bug. For details, see
702    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
703    ///
704    /// </div>
705    None,
706}
707
708impl Group {
709    fn _new(inner: imp::Group) -> Self {
710        Group { inner }
711    }
712
713    fn _new_fallback(inner: fallback::Group) -> Self {
714        Group {
715            inner: imp::Group::from(inner),
716        }
717    }
718
719    /// Creates a new `Group` with the given delimiter and token stream.
720    ///
721    /// This constructor will set the span for this group to
722    /// `Span::call_site()`. To change the span you can use the `set_span`
723    /// method below.
724    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
725        Group {
726            inner: imp::Group::new(delimiter, stream.inner),
727        }
728    }
729
730    /// Returns the punctuation used as the delimiter for this group: a set of
731    /// parentheses, square brackets, or curly braces.
732    pub fn delimiter(&self) -> Delimiter {
733        self.inner.delimiter()
734    }
735
736    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
737    ///
738    /// Note that the returned token stream does not include the delimiter
739    /// returned above.
740    pub fn stream(&self) -> TokenStream {
741        TokenStream::_new(self.inner.stream())
742    }
743
744    /// Returns the span for the delimiters of this token stream, spanning the
745    /// entire `Group`.
746    ///
747    /// ```text
748    /// pub fn span(&self) -> Span {
749    ///            ^^^^^^^
750    /// ```
751    pub fn span(&self) -> Span {
752        Span::_new(self.inner.span())
753    }
754
755    /// Returns the span pointing to the opening delimiter of this group.
756    ///
757    /// ```text
758    /// pub fn span_open(&self) -> Span {
759    ///                 ^
760    /// ```
761    pub fn span_open(&self) -> Span {
762        Span::_new(self.inner.span_open())
763    }
764
765    /// Returns the span pointing to the closing delimiter of this group.
766    ///
767    /// ```text
768    /// pub fn span_close(&self) -> Span {
769    ///                        ^
770    /// ```
771    pub fn span_close(&self) -> Span {
772        Span::_new(self.inner.span_close())
773    }
774
775    /// Returns an object that holds this group's `span_open()` and
776    /// `span_close()` together (in a more compact representation than holding
777    /// those 2 spans individually).
778    pub fn delim_span(&self) -> DelimSpan {
779        DelimSpan::new(&self.inner)
780    }
781
782    /// Configures the span for this `Group`'s delimiters, but not its internal
783    /// tokens.
784    ///
785    /// This method will **not** set the span of all the internal tokens spanned
786    /// by this group, but rather it will only set the span of the delimiter
787    /// tokens at the level of the `Group`.
788    pub fn set_span(&mut self, span: Span) {
789        self.inner.set_span(span.inner);
790    }
791}
792
793/// Prints the group as a string that should be losslessly convertible back
794/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
795/// with `Delimiter::None` delimiters.
796impl Display for Group {
797    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
798        Display::fmt(&self.inner, formatter)
799    }
800}
801
802impl Debug for Group {
803    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
804        Debug::fmt(&self.inner, formatter)
805    }
806}
807
808/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
809///
810/// Multicharacter operators like `+=` are represented as two instances of
811/// `Punct` with different forms of `Spacing` returned.
812#[derive(#[automatically_derived]
impl ::core::clone::Clone for Punct {
    #[inline]
    fn clone(&self) -> Punct {
        Punct {
            ch: ::core::clone::Clone::clone(&self.ch),
            spacing: ::core::clone::Clone::clone(&self.spacing),
            span: ::core::clone::Clone::clone(&self.span),
        }
    }
}Clone)]
813pub struct Punct {
814    ch: char,
815    spacing: Spacing,
816    span: Span,
817}
818
819/// Whether a `Punct` is followed immediately by another `Punct` or followed by
820/// another token or whitespace.
821#[derive(#[automatically_derived]
impl ::core::marker::Copy for Spacing { }Copy, #[automatically_derived]
impl ::core::clone::Clone for Spacing {
    #[inline]
    fn clone(&self) -> Spacing { *self }
}Clone, #[automatically_derived]
impl ::core::fmt::Debug for Spacing {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::write_str(f,
            match self {
                Spacing::Alone => "Alone",
                Spacing::Joint => "Joint",
            })
    }
}Debug, #[automatically_derived]
impl ::core::cmp::Eq for Spacing {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {}
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for Spacing {
    #[inline]
    fn eq(&self, other: &Spacing) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr
    }
}PartialEq)]
822pub enum Spacing {
823    /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
824    Alone,
825    /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
826    ///
827    /// Additionally, single quote `'` can join with identifiers to form
828    /// lifetimes `'ident`.
829    Joint,
830}
831
832impl Punct {
833    /// Creates a new `Punct` from the given character and spacing.
834    ///
835    /// The `ch` argument must be a valid punctuation character permitted by the
836    /// language, otherwise the function will panic.
837    ///
838    /// The returned `Punct` will have the default span of `Span::call_site()`
839    /// which can be further configured with the `set_span` method below.
840    pub fn new(ch: char, spacing: Spacing) -> Self {
841        if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
842        | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
843        {
844            Punct {
845                ch,
846                spacing,
847                span: Span::call_site(),
848            }
849        } else {
850            {
    ::core::panicking::panic_fmt(format_args!("unsupported proc macro punctuation character {0:?}",
            ch));
};panic!("unsupported proc macro punctuation character {:?}", ch);
851        }
852    }
853
854    /// Returns the value of this punctuation character as `char`.
855    pub fn as_char(&self) -> char {
856        self.ch
857    }
858
859    /// Returns the spacing of this punctuation character, indicating whether
860    /// it's immediately followed by another `Punct` in the token stream, so
861    /// they can potentially be combined into a multicharacter operator
862    /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
863    /// so the operator has certainly ended.
864    pub fn spacing(&self) -> Spacing {
865        self.spacing
866    }
867
868    /// Returns the span for this punctuation character.
869    pub fn span(&self) -> Span {
870        self.span
871    }
872
873    /// Configure the span for this punctuation character.
874    pub fn set_span(&mut self, span: Span) {
875        self.span = span;
876    }
877}
878
879/// Prints the punctuation character as a string that should be losslessly
880/// convertible back into the same character.
881impl Display for Punct {
882    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
883        Display::fmt(&self.ch, f)
884    }
885}
886
887impl Debug for Punct {
888    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
889        let mut debug = fmt.debug_struct("Punct");
890        debug.field("char", &self.ch);
891        debug.field("spacing", &self.spacing);
892        imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
893        debug.finish()
894    }
895}
896
897/// A word of Rust code, which may be a keyword or legal variable name.
898///
899/// An identifier consists of at least one Unicode code point, the first of
900/// which has the XID_Start property and the rest of which have the XID_Continue
901/// property.
902///
903/// - The empty string is not an identifier. Use `Option<Ident>`.
904/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
905///
906/// An identifier constructed with `Ident::new` is permitted to be a Rust
907/// keyword, though parsing one through its [`Parse`] implementation rejects
908/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
909/// behaviour of `Ident::new`.
910///
911/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
912///
913/// # Examples
914///
915/// A new ident can be created from a string using the `Ident::new` function.
916/// A span must be provided explicitly which governs the name resolution
917/// behavior of the resulting identifier.
918///
919/// ```
920/// use proc_macro2::{Ident, Span};
921///
922/// fn main() {
923///     let call_ident = Ident::new("calligraphy", Span::call_site());
924///
925///     println!("{}", call_ident);
926/// }
927/// ```
928///
929/// An ident can be interpolated into a token stream using the `quote!` macro.
930///
931/// ```
932/// use proc_macro2::{Ident, Span};
933/// use quote::quote;
934///
935/// fn main() {
936///     let ident = Ident::new("demo", Span::call_site());
937///
938///     // Create a variable binding whose name is this ident.
939///     let expanded = quote! { let #ident = 10; };
940///
941///     // Create a variable binding with a slightly different name.
942///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
943///     let expanded = quote! { let #temp_ident = 10; };
944/// }
945/// ```
946///
947/// A string representation of the ident is available through the `to_string()`
948/// method.
949///
950/// ```
951/// # use proc_macro2::{Ident, Span};
952/// #
953/// # let ident = Ident::new("another_identifier", Span::call_site());
954/// #
955/// // Examine the ident as a string.
956/// let ident_string = ident.to_string();
957/// if ident_string.len() > 60 {
958///     println!("Very long identifier: {}", ident_string)
959/// }
960/// ```
961#[derive(#[automatically_derived]
impl ::core::clone::Clone for Ident {
    #[inline]
    fn clone(&self) -> Ident {
        Ident {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
962pub struct Ident {
963    inner: imp::Ident,
964    _marker: ProcMacroAutoTraits,
965}
966
967impl Ident {
968    fn _new(inner: imp::Ident) -> Self {
969        Ident {
970            inner,
971            _marker: MARKER,
972        }
973    }
974
975    fn _new_fallback(inner: fallback::Ident) -> Self {
976        Ident {
977            inner: imp::Ident::from(inner),
978            _marker: MARKER,
979        }
980    }
981
982    /// Creates a new `Ident` with the given `string` as well as the specified
983    /// `span`.
984    ///
985    /// The `string` argument must be a valid identifier permitted by the
986    /// language, otherwise the function will panic.
987    ///
988    /// Note that `span`, currently in rustc, configures the hygiene information
989    /// for this identifier.
990    ///
991    /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
992    /// hygiene meaning that identifiers created with this span will be resolved
993    /// as if they were written directly at the location of the macro call, and
994    /// other code at the macro call site will be able to refer to them as well.
995    ///
996    /// Later spans like `Span::def_site()` will allow to opt-in to
997    /// "definition-site" hygiene meaning that identifiers created with this
998    /// span will be resolved at the location of the macro definition and other
999    /// code at the macro call site will not be able to refer to them.
1000    ///
1001    /// Due to the current importance of hygiene this constructor, unlike other
1002    /// tokens, requires a `Span` to be specified at construction.
1003    ///
1004    /// # Panics
1005    ///
1006    /// Panics if the input string is neither a keyword nor a legal variable
1007    /// name. If you are not sure whether the string contains an identifier and
1008    /// need to handle an error case, use
1009    /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
1010    ///   style="padding-right:0;">syn::parse_str</code></a><code
1011    ///   style="padding-left:0;">::&lt;Ident&gt;</code>
1012    /// rather than `Ident::new`.
1013    #[track_caller]
1014    pub fn new(string: &str, span: Span) -> Self {
1015        Ident::_new(imp::Ident::new_checked(string, span.inner))
1016    }
1017
1018    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
1019    /// `string` argument must be a valid identifier permitted by the language
1020    /// (including keywords, e.g. `fn`). Keywords which are usable in path
1021    /// segments (e.g. `self`, `super`) are not supported, and will cause a
1022    /// panic.
1023    #[track_caller]
1024    pub fn new_raw(string: &str, span: Span) -> Self {
1025        Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1026    }
1027
1028    /// Returns the span of this `Ident`.
1029    pub fn span(&self) -> Span {
1030        Span::_new(self.inner.span())
1031    }
1032
1033    /// Configures the span of this `Ident`, possibly changing its hygiene
1034    /// context.
1035    pub fn set_span(&mut self, span: Span) {
1036        self.inner.set_span(span.inner);
1037    }
1038}
1039
1040impl PartialEq for Ident {
1041    fn eq(&self, other: &Ident) -> bool {
1042        self.inner == other.inner
1043    }
1044}
1045
1046impl<T> PartialEq<T> for Ident
1047where
1048    T: ?Sized + AsRef<str>,
1049{
1050    fn eq(&self, other: &T) -> bool {
1051        self.inner == other
1052    }
1053}
1054
1055impl Eq for Ident {}
1056
1057impl PartialOrd for Ident {
1058    fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1059        Some(self.cmp(other))
1060    }
1061}
1062
1063impl Ord for Ident {
1064    fn cmp(&self, other: &Ident) -> Ordering {
1065        self.to_string().cmp(&other.to_string())
1066    }
1067}
1068
1069impl Hash for Ident {
1070    fn hash<H: Hasher>(&self, hasher: &mut H) {
1071        self.to_string().hash(hasher);
1072    }
1073}
1074
1075/// Prints the identifier as a string that should be losslessly convertible back
1076/// into the same identifier.
1077impl Display for Ident {
1078    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1079        Display::fmt(&self.inner, f)
1080    }
1081}
1082
1083impl Debug for Ident {
1084    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1085        Debug::fmt(&self.inner, f)
1086    }
1087}
1088
1089/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1090/// byte character (`b'a'`), an integer or floating point number with or without
1091/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1092///
1093/// Boolean literals like `true` and `false` do not belong here, they are
1094/// `Ident`s.
1095#[derive(#[automatically_derived]
impl ::core::clone::Clone for Literal {
    #[inline]
    fn clone(&self) -> Literal {
        Literal {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1096pub struct Literal {
1097    inner: imp::Literal,
1098    _marker: ProcMacroAutoTraits,
1099}
1100
1101macro_rules! suffixed_int_literals {
1102    ($($name:ident => $kind:ident,)*) => ($(
1103        /// Creates a new suffixed integer literal with the specified value.
1104        ///
1105        /// This function will create an integer like `1u32` where the integer
1106        /// value specified is the first part of the token and the integral is
1107        /// also suffixed at the end. Literals created from negative numbers may
1108        /// not survive roundtrips through `TokenStream` or strings and may be
1109        /// broken into two tokens (`-` and positive literal).
1110        ///
1111        /// Literals created through this method have the `Span::call_site()`
1112        /// span by default, which can be configured with the `set_span` method
1113        /// below.
1114        pub fn $name(n: $kind) -> Literal {
1115            Literal::_new(imp::Literal::$name(n))
1116        }
1117    )*)
1118}
1119
1120macro_rules! unsuffixed_int_literals {
1121    ($($name:ident => $kind:ident,)*) => ($(
1122        /// Creates a new unsuffixed integer literal with the specified value.
1123        ///
1124        /// This function will create an integer like `1` where the integer
1125        /// value specified is the first part of the token. No suffix is
1126        /// specified on this token, meaning that invocations like
1127        /// `Literal::i8_unsuffixed(1)` are equivalent to
1128        /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1129        /// may not survive roundtrips through `TokenStream` or strings and may
1130        /// be broken into two tokens (`-` and positive literal).
1131        ///
1132        /// Literals created through this method have the `Span::call_site()`
1133        /// span by default, which can be configured with the `set_span` method
1134        /// below.
1135        pub fn $name(n: $kind) -> Literal {
1136            Literal::_new(imp::Literal::$name(n))
1137        }
1138    )*)
1139}
1140
1141impl Literal {
1142    fn _new(inner: imp::Literal) -> Self {
1143        Literal {
1144            inner,
1145            _marker: MARKER,
1146        }
1147    }
1148
1149    fn _new_fallback(inner: fallback::Literal) -> Self {
1150        Literal {
1151            inner: imp::Literal::from(inner),
1152            _marker: MARKER,
1153        }
1154    }
1155
1156    n
Literal
Literal::_new(imp::Literal::isize_suffixed(n));suffixed_int_literals! {
1157        u8_suffixed => u8,
1158        u16_suffixed => u16,
1159        u32_suffixed => u32,
1160        u64_suffixed => u64,
1161        u128_suffixed => u128,
1162        usize_suffixed => usize,
1163        i8_suffixed => i8,
1164        i16_suffixed => i16,
1165        i32_suffixed => i32,
1166        i64_suffixed => i64,
1167        i128_suffixed => i128,
1168        isize_suffixed => isize,
1169    }
1170
1171    n
Literal
Literal::_new(imp::Literal::isize_unsuffixed(n));unsuffixed_int_literals! {
1172        u8_unsuffixed => u8,
1173        u16_unsuffixed => u16,
1174        u32_unsuffixed => u32,
1175        u64_unsuffixed => u64,
1176        u128_unsuffixed => u128,
1177        usize_unsuffixed => usize,
1178        i8_unsuffixed => i8,
1179        i16_unsuffixed => i16,
1180        i32_unsuffixed => i32,
1181        i64_unsuffixed => i64,
1182        i128_unsuffixed => i128,
1183        isize_unsuffixed => isize,
1184    }
1185
1186    /// Creates a new unsuffixed floating-point literal.
1187    ///
1188    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1189    /// the float's value is emitted directly into the token but no suffix is
1190    /// used, so it may be inferred to be a `f64` later in the compiler.
1191    /// Literals created from negative numbers may not survive round-trips
1192    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1193    /// and positive literal).
1194    ///
1195    /// # Panics
1196    ///
1197    /// This function requires that the specified float is finite, for example
1198    /// if it is infinity or NaN this function will panic.
1199    pub fn f64_unsuffixed(f: f64) -> Literal {
1200        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1201        Literal::_new(imp::Literal::f64_unsuffixed(f))
1202    }
1203
1204    /// Creates a new suffixed floating-point literal.
1205    ///
1206    /// This constructor will create a literal like `1.0f64` where the value
1207    /// specified is the preceding part of the token and `f64` is the suffix of
1208    /// the token. This token will always be inferred to be an `f64` in the
1209    /// compiler. Literals created from negative numbers may not survive
1210    /// round-trips through `TokenStream` or strings and may be broken into two
1211    /// tokens (`-` and positive literal).
1212    ///
1213    /// # Panics
1214    ///
1215    /// This function requires that the specified float is finite, for example
1216    /// if it is infinity or NaN this function will panic.
1217    pub fn f64_suffixed(f: f64) -> Literal {
1218        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1219        Literal::_new(imp::Literal::f64_suffixed(f))
1220    }
1221
1222    /// Creates a new unsuffixed floating-point literal.
1223    ///
1224    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1225    /// the float's value is emitted directly into the token but no suffix is
1226    /// used, so it may be inferred to be a `f64` later in the compiler.
1227    /// Literals created from negative numbers may not survive round-trips
1228    /// through `TokenStream` or strings and may be broken into two tokens (`-`
1229    /// and positive literal).
1230    ///
1231    /// # Panics
1232    ///
1233    /// This function requires that the specified float is finite, for example
1234    /// if it is infinity or NaN this function will panic.
1235    pub fn f32_unsuffixed(f: f32) -> Literal {
1236        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1237        Literal::_new(imp::Literal::f32_unsuffixed(f))
1238    }
1239
1240    /// Creates a new suffixed floating-point literal.
1241    ///
1242    /// This constructor will create a literal like `1.0f32` where the value
1243    /// specified is the preceding part of the token and `f32` is the suffix of
1244    /// the token. This token will always be inferred to be an `f32` in the
1245    /// compiler. Literals created from negative numbers may not survive
1246    /// round-trips through `TokenStream` or strings and may be broken into two
1247    /// tokens (`-` and positive literal).
1248    ///
1249    /// # Panics
1250    ///
1251    /// This function requires that the specified float is finite, for example
1252    /// if it is infinity or NaN this function will panic.
1253    pub fn f32_suffixed(f: f32) -> Literal {
1254        if !f.is_finite() {
    ::core::panicking::panic("assertion failed: f.is_finite()")
};assert!(f.is_finite());
1255        Literal::_new(imp::Literal::f32_suffixed(f))
1256    }
1257
1258    /// String literal.
1259    pub fn string(string: &str) -> Literal {
1260        Literal::_new(imp::Literal::string(string))
1261    }
1262
1263    /// Character literal.
1264    pub fn character(ch: char) -> Literal {
1265        Literal::_new(imp::Literal::character(ch))
1266    }
1267
1268    /// Byte character literal.
1269    pub fn byte_character(byte: u8) -> Literal {
1270        Literal::_new(imp::Literal::byte_character(byte))
1271    }
1272
1273    /// Byte string literal.
1274    pub fn byte_string(bytes: &[u8]) -> Literal {
1275        Literal::_new(imp::Literal::byte_string(bytes))
1276    }
1277
1278    /// C string literal.
1279    pub fn c_string(string: &CStr) -> Literal {
1280        Literal::_new(imp::Literal::c_string(string))
1281    }
1282
1283    /// Returns the span encompassing this literal.
1284    pub fn span(&self) -> Span {
1285        Span::_new(self.inner.span())
1286    }
1287
1288    /// Configures the span associated for this literal.
1289    pub fn set_span(&mut self, span: Span) {
1290        self.inner.set_span(span.inner);
1291    }
1292
1293    /// Returns a `Span` that is a subset of `self.span()` containing only
1294    /// the source bytes in range `range`. Returns `None` if the would-be
1295    /// trimmed span is outside the bounds of `self`.
1296    ///
1297    /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1298    /// nightly-only. When called from within a procedural macro not using a
1299    /// nightly compiler, this method will always return `None`.
1300    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1301        self.inner.subspan(range).map(Span::_new)
1302    }
1303
1304    /// Returns the unescaped string value if this is a string literal.
1305    #[cfg(procmacro2_semver_exempt)]
1306    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1307        let repr = self.to_string();
1308
1309        if repr.starts_with('"') && repr[1..].ends_with('"') {
1310            let quoted = &repr[1..repr.len() - 1];
1311            let mut value = String::with_capacity(quoted.len());
1312            let mut error = None;
1313            rustc_literal_escaper::unescape_str(quoted, |_range, res| match res {
1314                Ok(ch) => value.push(ch),
1315                Err(err) => {
1316                    if err.is_fatal() {
1317                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1318                    }
1319                }
1320            });
1321            return match error {
1322                Some(error) => Err(error),
1323                None => Ok(value),
1324            };
1325        }
1326
1327        if repr.starts_with('r') {
1328            if let Some(raw) = get_raw(&repr[1..]) {
1329                return Ok(raw.to_owned());
1330            }
1331        }
1332
1333        Err(ConversionErrorKind::InvalidLiteralKind)
1334    }
1335
1336    /// Returns the unescaped string value (including nul terminator) if this is
1337    /// a c-string literal.
1338    #[cfg(procmacro2_semver_exempt)]
1339    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1340        let repr = self.to_string();
1341
1342        if repr.starts_with("c\"") && repr[2..].ends_with('"') {
1343            let quoted = &repr[2..repr.len() - 1];
1344            let mut value = Vec::with_capacity(quoted.len());
1345            let mut error = None;
1346            rustc_literal_escaper::unescape_c_str(quoted, |_range, res| match res {
1347                Ok(MixedUnit::Char(ch)) => {
1348                    value.extend_from_slice(ch.get().encode_utf8(&mut [0; 4]).as_bytes());
1349                }
1350                Ok(MixedUnit::HighByte(byte)) => value.push(byte.get()),
1351                Err(err) => {
1352                    if err.is_fatal() {
1353                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1354                    }
1355                }
1356            });
1357            return match error {
1358                Some(error) => Err(error),
1359                None => {
1360                    value.push(b'\0');
1361                    Ok(value)
1362                }
1363            };
1364        }
1365
1366        if repr.starts_with("cr") {
1367            if let Some(raw) = get_raw(&repr[2..]) {
1368                let mut value = Vec::with_capacity(raw.len() + 1);
1369                value.extend_from_slice(raw.as_bytes());
1370                value.push(b'\0');
1371                return Ok(value);
1372            }
1373        }
1374
1375        Err(ConversionErrorKind::InvalidLiteralKind)
1376    }
1377
1378    /// Returns the unescaped string value if this is a byte string literal.
1379    #[cfg(procmacro2_semver_exempt)]
1380    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1381        let repr = self.to_string();
1382
1383        if repr.starts_with("b\"") && repr[2..].ends_with('"') {
1384            let quoted = &repr[2..repr.len() - 1];
1385            let mut value = Vec::with_capacity(quoted.len());
1386            let mut error = None;
1387            rustc_literal_escaper::unescape_byte_str(quoted, |_range, res| match res {
1388                Ok(byte) => value.push(byte),
1389                Err(err) => {
1390                    if err.is_fatal() {
1391                        error = Some(ConversionErrorKind::FailedToUnescape(err));
1392                    }
1393                }
1394            });
1395            return match error {
1396                Some(error) => Err(error),
1397                None => Ok(value),
1398            };
1399        }
1400
1401        if repr.starts_with("br") {
1402            if let Some(raw) = get_raw(&repr[2..]) {
1403                return Ok(raw.as_bytes().to_owned());
1404            }
1405        }
1406
1407        Err(ConversionErrorKind::InvalidLiteralKind)
1408    }
1409
1410    // Intended for the `quote!` macro to use when constructing a proc-macro2
1411    // token out of a macro_rules $:literal token, which is already known to be
1412    // a valid literal. This avoids reparsing/validating the literal's string
1413    // representation. This is not public API other than for quote.
1414    #[doc(hidden)]
1415    pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1416        Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1417    }
1418}
1419
1420impl FromStr for Literal {
1421    type Err = LexError;
1422
1423    fn from_str(repr: &str) -> Result<Self, LexError> {
1424        match imp::Literal::from_str_checked(repr) {
1425            Ok(lit) => Ok(Literal::_new(lit)),
1426            Err(lex) => Err(LexError {
1427                inner: lex,
1428                _marker: MARKER,
1429            }),
1430        }
1431    }
1432}
1433
1434impl Debug for Literal {
1435    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1436        Debug::fmt(&self.inner, f)
1437    }
1438}
1439
1440impl Display for Literal {
1441    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1442        Display::fmt(&self.inner, f)
1443    }
1444}
1445
1446/// Error when retrieving a string literal's unescaped value.
1447#[cfg(procmacro2_semver_exempt)]
1448#[derive(#[automatically_derived]
impl ::core::fmt::Debug for ConversionErrorKind {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            ConversionErrorKind::FailedToUnescape(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "FailedToUnescape", &__self_0),
            ConversionErrorKind::InvalidLiteralKind =>
                ::core::fmt::Formatter::write_str(f, "InvalidLiteralKind"),
        }
    }
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for ConversionErrorKind {
    #[inline]
    fn eq(&self, other: &ConversionErrorKind) -> bool {
        let __self_discr = ::core::intrinsics::discriminant_value(self);
        let __arg1_discr = ::core::intrinsics::discriminant_value(other);
        __self_discr == __arg1_discr &&
            match (self, other) {
                (ConversionErrorKind::FailedToUnescape(__self_0),
                    ConversionErrorKind::FailedToUnescape(__arg1_0)) =>
                    __self_0 == __arg1_0,
                _ => true,
            }
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for ConversionErrorKind {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) -> () {
        let _: ::core::cmp::AssertParamIsEq<EscapeError>;
    }
}Eq)]
1449pub enum ConversionErrorKind {
1450    /// The literal is of the right string kind, but its contents are malformed
1451    /// in a way that cannot be unescaped to a value.
1452    FailedToUnescape(EscapeError),
1453    /// The literal is not of the string kind whose value was requested, for
1454    /// example byte string vs UTF-8 string.
1455    InvalidLiteralKind,
1456}
1457
1458// ###"..."### -> ...
1459#[cfg(procmacro2_semver_exempt)]
1460fn get_raw(repr: &str) -> Option<&str> {
1461    let pounds = repr.len() - repr.trim_start_matches('#').len();
1462    if repr.len() >= pounds + 1 + 1 + pounds
1463        && repr[pounds..].starts_with('"')
1464        && repr.trim_end_matches('#').len() + pounds == repr.len()
1465        && repr[..repr.len() - pounds].ends_with('"')
1466    {
1467        Some(&repr[pounds + 1..repr.len() - pounds - 1])
1468    } else {
1469        None
1470    }
1471}
1472
1473/// Public implementation details for the `TokenStream` type, such as iterators.
1474pub mod token_stream {
1475    use crate::marker::{ProcMacroAutoTraits, MARKER};
1476    use crate::{imp, TokenTree};
1477    use core::fmt::{self, Debug};
1478
1479    pub use crate::TokenStream;
1480
1481    /// An iterator over `TokenStream`'s `TokenTree`s.
1482    ///
1483    /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1484    /// delimited groups, and returns whole groups as token trees.
1485    #[derive(#[automatically_derived]
impl ::core::clone::Clone for IntoIter {
    #[inline]
    fn clone(&self) -> IntoIter {
        IntoIter {
            inner: ::core::clone::Clone::clone(&self.inner),
            _marker: ::core::clone::Clone::clone(&self._marker),
        }
    }
}Clone)]
1486    pub struct IntoIter {
1487        inner: imp::TokenTreeIter,
1488        _marker: ProcMacroAutoTraits,
1489    }
1490
1491    impl Iterator for IntoIter {
1492        type Item = TokenTree;
1493
1494        fn next(&mut self) -> Option<TokenTree> {
1495            self.inner.next()
1496        }
1497
1498        fn size_hint(&self) -> (usize, Option<usize>) {
1499            self.inner.size_hint()
1500        }
1501    }
1502
1503    impl Debug for IntoIter {
1504        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1505            f.write_str("TokenStream ")?;
1506            f.debug_list().entries(self.clone()).finish()
1507        }
1508    }
1509
1510    impl IntoIterator for TokenStream {
1511        type Item = TokenTree;
1512        type IntoIter = IntoIter;
1513
1514        fn into_iter(self) -> IntoIter {
1515            IntoIter {
1516                inner: self.inner.into_iter(),
1517                _marker: MARKER,
1518            }
1519        }
1520    }
1521}