pub trait IsPrime {
// Required method
fn is_prime(&self) -> bool;
}
Required Methods§
Implementations on Foreign Types§
Source§impl IsPrime for u8
impl IsPrime for u8
Source§fn is_prime(&self) -> bool
fn is_prime(&self) -> bool
Determine an unsigned integer is prime number or not.
§Examples
use primality_test::IsPrime;
assert!(998244353u32.is_prime());
assert!(!561u16.is_prime());
let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);
Source§impl IsPrime for u16
impl IsPrime for u16
Source§fn is_prime(&self) -> bool
fn is_prime(&self) -> bool
Determine an unsigned integer is prime number or not.
§Examples
use primality_test::IsPrime;
assert!(998244353u32.is_prime());
assert!(!561u16.is_prime());
let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);
Source§impl IsPrime for u32
impl IsPrime for u32
Source§fn is_prime(&self) -> bool
fn is_prime(&self) -> bool
Determine an unsigned integer is prime number or not.
§Examples
use primality_test::IsPrime;
assert!(998244353u32.is_prime());
assert!(!561u16.is_prime());
let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);
Source§impl IsPrime for u64
impl IsPrime for u64
Source§fn is_prime(&self) -> bool
fn is_prime(&self) -> bool
Determine an unsigned integer is prime number or not.
§Examples
use primality_test::IsPrime;
assert!(998244353u32.is_prime());
assert!(!561u16.is_prime());
let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);
Source§impl IsPrime for usize
impl IsPrime for usize
Source§fn is_prime(&self) -> bool
fn is_prime(&self) -> bool
Determine an unsigned integer is prime number or not.
§Examples
use primality_test::IsPrime;
assert!(998244353u32.is_prime());
assert!(!561u16.is_prime());
let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);