pub struct JointPrefixMap<P, T>where
P: JointPrefix,{
pub t1: PrefixMap<P::P1, T>,
pub t2: PrefixMap<P::P2, T>,
}Expand description
A Joint prefix map, implemented as two separate prefix trees.
Fields§
§t1: PrefixMap<P::P1, T>PrefixMap that corresponds to the first prefix type
t2: PrefixMap<P::P2, T>PrefixMap that corresponds to the second prefix type
Implementations§
Source§impl<P: JointPrefix, T> JointPrefixMap<P, T>
impl<P: JointPrefix, T> JointPrefixMap<P, T>
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements stored in self.
let mut map: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::default();
map.insert("192.168.1.0/24".parse()?, 1u32);
map.insert("192.168.1.0/25".parse()?, 2u32);
map.insert("2001::1:0:0/96".parse()?, 3u32);
assert_eq!(map.len(), 3);Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the map contains no elements.
let mut map: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
assert!(map.is_empty());
map.insert("2001::1:0:0/96".parse()?, 1u32);
assert!(!map.is_empty());Sourcepub fn get<'a>(&'a self, prefix: &P) -> Option<&'a T>
pub fn get<'a>(&'a self, prefix: &P) -> Option<&'a T>
Get the value of an element by matching exactly on the prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
pm.insert("2001::1:0:0/96".parse()?, 2);
assert_eq!(pm.get(&"192.168.1.0/24".parse()?), Some(&1));
assert_eq!(pm.get(&"192.168.2.0/24".parse()?), None);
assert_eq!(pm.get(&"192.168.0.0/23".parse()?), None);
assert_eq!(pm.get(&"192.168.1.128/25".parse()?), None);
assert_eq!(pm.get(&"2001::1:0:0/96".parse()?), Some(&2));
assert_eq!(pm.get(&"0ca8:1::/24".parse()?), None);Sourcepub fn get_mut<'a>(&'a mut self, prefix: &P) -> Option<&'a mut T>
pub fn get_mut<'a>(&'a mut self, prefix: &P) -> Option<&'a mut T>
Get a mutable reference to a value of an element by matching exactly on the prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let prefix = "2001::/32".parse()?;
pm.insert(prefix, 1);
assert_eq!(pm.get(&prefix), Some(&1));
*pm.get_mut(&prefix).unwrap() += 1;
assert_eq!(pm.get(&prefix), Some(&2));Sourcepub fn get_key_value<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
pub fn get_key_value<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
Get the value of an element by matching exactly on the prefix. Notice, that the returned prefix may differ from the one provided in the host-part of the address.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let prefix = "2001::/32".parse()?;
pm.insert(prefix, 1);
assert_eq!(pm.get_key_value(&prefix), Some((prefix, &1)));Sourcepub fn get_lpm<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
pub fn get_lpm<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
Get a value of an element by using longest prefix matching
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
assert_eq!(pm.get_lpm(&"192.168.1.1/32".parse()?), Some(("192.168.1.0/24".parse()?, &1)));
assert_eq!(pm.get_lpm(&"192.168.1.0/24".parse()?), Some(("192.168.1.0/24".parse()?, &1)));
assert_eq!(pm.get_lpm(&"192.168.0.0/24".parse()?), Some(("192.168.0.0/23".parse()?, &2)));
assert_eq!(pm.get_lpm(&"192.168.2.0/24".parse()?), None);Sourcepub fn get_lpm_mut<'a>(&'a mut self, prefix: &P) -> Option<(P, &'a mut T)>
pub fn get_lpm_mut<'a>(&'a mut self, prefix: &P) -> Option<(P, &'a mut T)>
Get a mutable reference to a value of an element by using longest prefix matching
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
assert_eq!(pm.get_lpm(&"192.168.1.1/32".parse()?), Some(("192.168.1.0/24".parse()?, &1)));
*pm.get_lpm_mut(&"192.168.1.64/26".parse()?).unwrap().1 += 1;
assert_eq!(pm.get_lpm(&"192.168.1.1/32".parse()?), Some(("192.168.1.0/24".parse()?, &2)));Sourcepub fn contains_key(&self, prefix: &P) -> bool
pub fn contains_key(&self, prefix: &P) -> bool
Check if a key is present in the datastructure.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
assert!(pm.contains_key(&"192.168.1.0/24".parse()?));
assert!(!pm.contains_key(&"192.168.2.0/24".parse()?));
assert!(!pm.contains_key(&"192.168.0.0/23".parse()?));
assert!(!pm.contains_key(&"192.168.1.128/25".parse()?));Sourcepub fn get_lpm_prefix(&self, prefix: &P) -> Option<P>
pub fn get_lpm_prefix(&self, prefix: &P) -> Option<P>
Get the longest prefix in the datastructure that matches the given prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
assert_eq!(pm.get_lpm_prefix(&"192.168.1.1/32".parse()?), Some("192.168.1.0/24".parse()?));
assert_eq!(pm.get_lpm_prefix(&"192.168.1.0/24".parse()?), Some("192.168.1.0/24".parse()?));
assert_eq!(pm.get_lpm_prefix(&"192.168.0.0/24".parse()?), Some("192.168.0.0/23".parse()?));
assert_eq!(pm.get_lpm_prefix(&"192.168.2.0/24".parse()?), None);Sourcepub fn get_spm<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
pub fn get_spm<'a>(&'a self, prefix: &P) -> Option<(P, &'a T)>
Get a value of an element by using shortest prefix matching.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
assert_eq!(pm.get_spm(&"192.168.1.1/32".parse()?), Some(("192.168.0.0/23".parse()?, &2)));
assert_eq!(pm.get_spm(&"192.168.1.0/24".parse()?), Some(("192.168.0.0/23".parse()?, &2)));
assert_eq!(pm.get_spm(&"192.168.0.0/23".parse()?), Some(("192.168.0.0/23".parse()?, &2)));
assert_eq!(pm.get_spm(&"192.168.2.0/24".parse()?), None);Sourcepub fn get_spm_prefix(&self, prefix: &P) -> Option<P>
pub fn get_spm_prefix(&self, prefix: &P) -> Option<P>
Get the shortest prefix in the datastructure that contains the given prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.1/24".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
assert_eq!(pm.get_spm_prefix(&"192.168.1.1/32".parse()?), Some("192.168.0.0/23".parse()?));
assert_eq!(pm.get_spm_prefix(&"192.168.1.0/24".parse()?), Some("192.168.0.0/23".parse()?));
assert_eq!(pm.get_spm_prefix(&"192.168.0.0/23".parse()?), Some("192.168.0.0/23".parse()?));
assert_eq!(pm.get_spm_prefix(&"192.168.2.0/24".parse()?), None);Sourcepub fn insert(&mut self, prefix: P, value: T) -> Option<T>
pub fn insert(&mut self, prefix: P, value: T) -> Option<T>
Insert a new item into the prefix-map. This function may return any value that existed before.
In case the node already exists in the tree, its prefix will be replaced by the provided argument. This allows you to store additional information in the host part of the prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
assert_eq!(pm.insert("192.168.0.0/23".parse()?, 1), None);
assert_eq!(pm.insert("192.168.1.0/24".parse()?, 2), None);
assert_eq!(pm.insert("192.168.1.0/24".parse()?, 3), Some(2));
assert_eq!(pm.insert("2001::1:0:0/96".parse()?, 4), None);
assert_eq!(pm.insert("2001::1:0:0/97".parse()?, 5), None);
assert_eq!(pm.insert("2001::1:0:0/97".parse()?, 6), Some(5));Sourcepub fn entry(&mut self, prefix: P) -> Entry<'_, P, T>
pub fn entry(&mut self, prefix: P) -> Entry<'_, P, T>
Gets the given key’s corresponding entry in the map for in-place manipulation. In case you eventually insert an element into the map, this operation will also replace the prefix in the node with the existing one. That is if you store additional information in the host part of the address (the one that is masked out).
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.1.0/24".parse()?, vec![1]);
pm.entry("192.168.1.0/24".parse()?).or_default().push(2);
pm.entry("192.168.1.0/25".parse()?).or_default().push(3);
pm.entry("c0a8:1::/24".parse()?).or_default().push(4);
assert_eq!(pm.get(&"192.168.1.0/24".parse()?), Some(&vec![1, 2]));
assert_eq!(pm.get(&"192.168.1.0/25".parse()?), Some(&vec![3]));
assert_eq!(pm.get(&"c0a8:1::/24".parse()?), Some(&vec![4]));Sourcepub fn remove(&mut self, prefix: &P) -> Option<T>
pub fn remove(&mut self, prefix: &P) -> Option<T>
Removes a key from the map, returning the value at the key if the key was previously in the
map. In contrast to Self::remove_keep_tree, this operation will modify the tree
structure. As a result, this operation takes longer than remove_keep_tree, as does
inserting the same element again. However, future reads may be faster as less nodes need to
be traversed. Further, it reduces the memory footprint to its minimum.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let prefix = "192.168.1.0/24".parse()?;
pm.insert(prefix, 1);
assert_eq!(pm.get(&prefix), Some(&1));
assert_eq!(pm.remove(&prefix), Some(1));
assert_eq!(pm.get(&prefix), None);Sourcepub fn remove_keep_tree(&mut self, prefix: &P) -> Option<T>
pub fn remove_keep_tree(&mut self, prefix: &P) -> Option<T>
Removes a key from the map, returning the value at the key if the key was previously in the
map. In contrast to Self::remove, his operation will keep the tree structure as is, but
only remove the element from it. This allows any future insert on the same prefix to be
faster. However future reads from the tree might be a bit slower because they need to
traverse more nodes.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let prefix = "192.168.1.0/24".parse()?;
pm.insert(prefix, 1);
assert_eq!(pm.get(&prefix), Some(&1));
assert_eq!(pm.remove_keep_tree(&prefix), Some(1));
assert_eq!(pm.get(&prefix), None);
// future inserts of the same key are now faster!
pm.insert(prefix, 1);Sourcepub fn remove_children(&mut self, prefix: &P)
pub fn remove_children(&mut self, prefix: &P)
Remove all entries that are contained within prefix. This will change the tree
structure. This operation is O(n), as the entries must be freed up one-by-one.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.0.0/24".parse()?, 3);
pm.insert("192.168.2.0/23".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
pm.remove_children(&"192.168.0.0/23".parse()?);
assert_eq!(pm.get(&"192.168.0.0/23".parse()?), None);
assert_eq!(pm.get(&"192.168.0.0/24".parse()?), None);
assert_eq!(pm.get(&"192.168.2.0/23".parse()?), Some(&4));
assert_eq!(pm.get(&"192.168.2.0/24".parse()?), Some(&5));Sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clear the map but keep the allocated memory.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/24".parse()?, 1);
pm.insert("192.168.1.0/24".parse()?, 2);
pm.insert("2001::1:0:0/96".parse()?, 3);
pm.clear();
assert_eq!(pm.get(&"192.168.0.0/24".parse()?), None);
assert_eq!(pm.get(&"192.168.1.0/24".parse()?), None);
assert_eq!(pm.get(&"2001::1:0:0/96".parse()?), None);Sourcepub fn retain<F>(&mut self, f: F)
pub fn retain<F>(&mut self, f: F)
Keep only the elements in the map that satisfy the given condition f.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/24".parse()?, 1);
pm.insert("192.168.1.0/24".parse()?, 2);
pm.insert("192.168.2.0/24".parse()?, 3);
pm.insert("192.168.2.0/25".parse()?, 4);
pm.insert("2001::1:0:0/24".parse()?, 5);
pm.insert("2001::1:0:0/25".parse()?, 6);
pm.retain(|_, t| *t % 2 == 0); // only keep the even values.
assert_eq!(pm.get(&"192.168.0.0/24".parse()?), None);
assert_eq!(pm.get(&"192.168.1.0/24".parse()?), Some(&2));
assert_eq!(pm.get(&"192.168.2.0/24".parse()?), None);
assert_eq!(pm.get(&"192.168.2.0/25".parse()?), Some(&4));
assert_eq!(pm.get(&"2001::1:0:0/24".parse()?), None);
assert_eq!(pm.get(&"2001::1:0:0/25".parse()?), Some(&6));Sourcepub fn cover<'a, 'p>(&'a self, prefix: &'p P) -> Cover<'a, 'p, P, T> ⓘ
pub fn cover<'a, 'p>(&'a self, prefix: &'p P) -> Cover<'a, 'p, P, T> ⓘ
Iterate over all entries in the map that covers the given prefix (including prefix
itself if that is present in the map). The returned iterator yields (&'a P, &'a T).
The iterator will always yield elements ordered by their prefix length, i.e., their depth in the tree.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let p0 = "10.0.0.0/8".parse()?;
let p1 = "10.1.0.0/16".parse()?;
let p2 = "10.1.1.0/24".parse()?;
pm.insert(p0, 0);
pm.insert(p1, 1);
pm.insert(p2, 2);
pm.insert("10.1.2.0/24".parse()?, 3); // disjoint prefixes are not covered
pm.insert("10.1.1.0/25".parse()?, 4); // more specific prefixes are not covered
pm.insert("11.0.0.0/8".parse()?, 5); // Branch points that don't contain values are skipped
assert_eq!(
pm.cover(&p2).collect::<Vec<_>>(),
vec![(p0, &0), (p1, &1), (p2, &2)]
);This function also yields the root note if it is part of the map:
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let root = "0.0.0.0/0".parse()?;
pm.insert(root, 0);
assert_eq!(pm.cover(&"10.0.0.0/8".parse()?).collect::<Vec<_>>(), vec![(root, &0)]);Sourcepub fn cover_keys<'a, 'p>(&'a self, prefix: &'p P) -> CoverKeys<'a, 'p, P, T> ⓘ
pub fn cover_keys<'a, 'p>(&'a self, prefix: &'p P) -> CoverKeys<'a, 'p, P, T> ⓘ
Iterate over all keys (prefixes) in the map that covers the given prefix (including
prefix itself if that is present in the map). The returned iterator yields &'a P.
The iterator will always yield elements ordered by their prefix length, i.e., their depth in the tree.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let p0 = "10.0.0.0/8".parse()?;
let p1 = "10.1.0.0/16".parse()?;
let p2 = "10.1.1.0/24".parse()?;
pm.insert(p0, 0);
pm.insert(p1, 1);
pm.insert(p2, 2);
pm.insert("10.1.2.0/24".parse()?, 3); // disjoint prefixes are not covered
pm.insert("10.1.1.0/25".parse()?, 4); // more specific prefixes are not covered
pm.insert("11.0.0.0/8".parse()?, 5); // Branch points that don't contain values are skipped
assert_eq!(pm.cover_keys(&p2).collect::<Vec<_>>(), vec![p0, p1, p2]);Sourcepub fn cover_values<'a, 'p>(
&'a self,
prefix: &'p P,
) -> CoverValues<'a, 'p, P, T> ⓘ
pub fn cover_values<'a, 'p>( &'a self, prefix: &'p P, ) -> CoverValues<'a, 'p, P, T> ⓘ
Iterate over all values in the map that covers the given prefix (including prefix
itself if that is present in the map). The returned iterator yields &'a T.
The iterator will always yield elements ordered by their prefix length, i.e., their depth in the tree.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
let p0 = "10.0.0.0/8".parse()?;
let p1 = "10.1.0.0/16".parse()?;
let p2 = "10.1.1.0/24".parse()?;
pm.insert(p0, 0);
pm.insert(p1, 1);
pm.insert(p2, 2);
pm.insert("10.1.2.0/24".parse()?, 3); // disjoint prefixes are not covered
pm.insert("10.1.1.0/25".parse()?, 4); // more specific prefixes are not covered
pm.insert("11.0.0.0/8".parse()?, 5); // Branch points that don't contain values are skipped
assert_eq!(pm.cover_values(&p2).collect::<Vec<_>>(), vec![&0, &1, &2]);Source§impl<P: JointPrefix, T> JointPrefixMap<P, T>
impl<P: JointPrefix, T> JointPrefixMap<P, T>
Sourcepub fn iter(&self) -> Iter<'_, P, T> ⓘ
pub fn iter(&self) -> Iter<'_, P, T> ⓘ
An iterator visiting all key-value pairs in lexicographic order. The iterator element type
is (&P, &T). Elements of the first prefix are yielded before those of the second prefix.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(
pm.iter().collect::<Vec<_>>(),
vec![
("192.168.0.0/22".parse()?, &1),
("192.168.0.0/23".parse()?, &2),
("192.168.0.0/24".parse()?, &4),
("192.168.2.0/23".parse()?, &3),
("192.168.2.0/24".parse()?, &5),
("2001::1:0:0/96".parse()?, &7),
("2001::1:0:0/97".parse()?, &6),
]
);Sourcepub fn iter_mut(&mut self) -> IterMut<'_, P, T> ⓘ
pub fn iter_mut(&mut self) -> IterMut<'_, P, T> ⓘ
Get a mutable iterator over all key-value pairs. The order of this iterator is lexicographic.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
pm.iter_mut().for_each(|(_, v)| *v += 1);
assert_eq!(
pm.iter().collect::<Vec<_>>(),
vec![
("192.168.0.0/22".parse()?, &2),
("192.168.0.0/23".parse()?, &3),
("192.168.0.0/24".parse()?, &5),
("192.168.2.0/23".parse()?, &4),
("192.168.2.0/24".parse()?, &6),
("2001::1:0:0/96".parse()?, &8),
("2001::1:0:0/97".parse()?, &7),
]
);Sourcepub fn keys(&self) -> Keys<'_, P, T> ⓘ
pub fn keys(&self) -> Keys<'_, P, T> ⓘ
An iterator visiting all keys in lexicographic order. The iterator element type is
&P. Elements of the first prefix are yielded before those of the second one.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(
pm.keys().collect::<Vec<_>>(),
vec![
"192.168.0.0/22".parse()?,
"192.168.0.0/23".parse()?,
"192.168.0.0/24".parse()?,
"192.168.2.0/23".parse()?,
"192.168.2.0/24".parse()?,
"2001::1:0:0/96".parse()?,
"2001::1:0:0/97".parse()?,
]
);Sourcepub fn into_keys(self) -> IntoKeys<P, T> ⓘ
pub fn into_keys(self) -> IntoKeys<P, T> ⓘ
Creates a consuming iterator visiting all keys in lexicographic order. The iterator element
type is P.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(
pm.into_keys().collect::<Vec<_>>(),
vec![
"192.168.0.0/22".parse()?,
"192.168.0.0/23".parse()?,
"192.168.0.0/24".parse()?,
"192.168.2.0/23".parse()?,
"192.168.2.0/24".parse()?,
"2001::1:0:0/96".parse()?,
"2001::1:0:0/97".parse()?,
]
);Sourcepub fn values(&self) -> Values<'_, P, T> ⓘ
pub fn values(&self) -> Values<'_, P, T> ⓘ
An iterator visiting all values in lexicographic order. The iterator element type is
&P. Elements of the first prefix are yielded before those of the second one.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(pm.values().collect::<Vec<_>>(), vec![&1, &2, &4, &3, &5, &7, &6]);Sourcepub fn into_values(self) -> IntoValues<P, T> ⓘ
pub fn into_values(self) -> IntoValues<P, T> ⓘ
Creates a consuming iterator visiting all values in lexicographic order. The iterator
element type is P.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(pm.into_values().collect::<Vec<_>>(), vec![1, 2, 4, 3, 5, 7, 6]);Sourcepub fn values_mut(&mut self) -> ValuesMut<'_, P, T> ⓘ
pub fn values_mut(&mut self) -> ValuesMut<'_, P, T> ⓘ
Get a mutable iterator over all values. The order of this iterator is lexicographic.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::1:0:0/97".parse()?, 6);
pm.insert("2001::1:0:0/96".parse()?, 7);
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
pm.values_mut().for_each(|v| *v += 1);
assert_eq!(pm.values().collect::<Vec<_>>(), vec![&2, &3, &5, &4, &6, &8, &7]);Sourcepub fn children<'a>(&'a self, prefix: &P) -> Iter<'a, P, T> ⓘ
pub fn children<'a>(&'a self, prefix: &P) -> Iter<'a, P, T> ⓘ
Get an iterator over the node itself and all children. All elements returned have a prefix
that is contained within prefix itself (or are the same). The iterator yields references
to both keys and values, i.e., type (&'a P, &'a T). The iterator yields elements in
lexicographic order.
Note: Consider using crate::AsView::view_at as an alternative.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(
pm.children(&"192.168.0.0/23".parse()?).collect::<Vec<_>>(),
vec![
("192.168.0.0/23".parse()?, &2),
("192.168.0.0/24".parse()?, &4),
]
);If the prefix is not present in the tree, and there are no children, the iterator will be empty:
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::/32".parse()?, 1);
pm.insert("2001::/48".parse()?, 2);
assert_eq!(
pm.children(&"2001::/24".parse()?).collect::<Vec<_>>(),
vec![
("2001::/32".parse()?, &1),
("2001::/48".parse()?, &2),
]
);
assert_eq!(pm.children(&"2001::/96".parse()?).collect::<Vec<_>>(), vec![]);
assert_eq!(pm.children(&"1111::/24".parse()?).collect::<Vec<_>>(), vec![]);Sourcepub fn children_mut<'a>(&'a mut self, prefix: &P) -> IterMut<'a, P, T> ⓘ
pub fn children_mut<'a>(&'a mut self, prefix: &P) -> IterMut<'a, P, T> ⓘ
Get an iterator of mutable references of the node itself and all its children. All elements
returned have a prefix that is contained within prefix itself (or are the same). The
iterator yields references to the keys, and mutable references to the values, i.e., type
(&'a P, &'a mut T). The iterator yields elements in lexicographic order.
Note: Consider using crate::AsViewMut::view_mut_at as an alternative.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.0.0/24".parse()?, 3);
pm.insert("192.168.2.0/23".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
pm.children_mut(&"192.168.0.0/23".parse()?).for_each(|(_, x)| *x *= 10);
assert_eq!(
pm.into_iter().collect::<Vec<_>>(),
vec![
("192.168.0.0/22".parse()?, 1),
("192.168.0.0/23".parse()?, 20),
("192.168.0.0/24".parse()?, 30),
("192.168.2.0/23".parse()?, 4),
("192.168.2.0/24".parse()?, 5),
]
);If the prefix is not present in the tree, and there are no children, the iterator will be empty:
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::/32".parse()?, 1);
pm.insert("2001::/48".parse()?, 2);
assert_eq!(pm.children_mut(&"2001::/96".parse()?).collect::<Vec<_>>(), vec![]);
assert_eq!(pm.children_mut(&"1111::/24".parse()?).collect::<Vec<_>>(), vec![]);Sourcepub fn into_children(self, prefix: &P) -> IntoIter<P, T> ⓘ
pub fn into_children(self, prefix: &P) -> IntoIter<P, T> ⓘ
Get an iterator over the node itself and all children with a value. All elements returned
have a prefix that is contained within prefix itself (or are the same). This function will
consume self, returning an iterator over all owned children.
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("192.168.0.0/22".parse()?, 1);
pm.insert("192.168.0.0/23".parse()?, 2);
pm.insert("192.168.2.0/23".parse()?, 3);
pm.insert("192.168.0.0/24".parse()?, 4);
pm.insert("192.168.2.0/24".parse()?, 5);
assert_eq!(
pm.into_children(&"192.168.0.0/23".parse()?).collect::<Vec<_>>(),
vec![
("192.168.0.0/23".parse()?, 2),
("192.168.0.0/24".parse()?, 4),
]
);If the prefix is not present in the tree, and there are no children, the iterator will be empty:
let mut pm: JointPrefixMap<ipnet::IpNet, _> = JointPrefixMap::new();
pm.insert("2001::/32".parse()?, 1);
pm.insert("2001::/48".parse()?, 2);
assert_eq!(
pm.clone().into_children(&"2001::/24".parse()?).collect::<Vec<_>>(),
vec![
("2001::/32".parse()?, 1),
("2001::/48".parse()?, 2),
]
);
assert_eq!(pm.clone().into_children(&"2001::/96".parse()?).collect::<Vec<_>>(), vec![]);
assert_eq!(pm.clone().into_children(&"1111::/24".parse()?).collect::<Vec<_>>(), vec![]);Sourcepub fn union<'a, R>(
&'a self,
other: &'a JointPrefixMap<P, R>,
) -> Union<'a, P, T, R> ⓘ
pub fn union<'a, R>( &'a self, other: &'a JointPrefixMap<P, R>, ) -> Union<'a, P, T, R> ⓘ
Iterate over the union of two joint prefix maps. This is roughly equivalent to calling
self.t1.view().union(&other.t1).chain(self.t2.view().union(&other.t2)).
If a prefix is present in both trees, the iterator will yield both elements. Otherwise, the
iterator will yield the element of one map together with the longest prefix match in
the other map. Elements are of type UnionItem.
macro_rules! net { ($x:literal) => {$x.parse::<ipnet::IpNet>().unwrap()}; }
let mut map_a: JointPrefixMap<ipnet::IpNet, usize> = JointPrefixMap::from_iter([
(net!("2001::1:0:0/96"), 1),
(net!("192.168.0.0/22"), 2),
(net!("192.168.0.0/24"), 3),
]);
let mut map_b: JointPrefixMap<ipnet::IpNet, &'static str> = JointPrefixMap::from_iter([
(net!("192.168.0.0/22"), "a"),
(net!("192.168.0.0/23"), "b"),
]);
assert_eq!(
map_a.union(&map_b).collect::<Vec<_>>(),
vec![
UnionItem::Both{
prefix: net!("192.168.0.0/22"),
left: &2,
right: &"a",
},
UnionItem::Right{
prefix: net!("192.168.0.0/23"),
left: Some((net!("192.168.0.0/22"), &2)),
right: &"b",
},
UnionItem::Left{
prefix: net!("192.168.0.0/24"),
left: &3,
right: Some((net!("192.168.0.0/23"), &"b")),
},
UnionItem::Left{
prefix: net!("2001::1:0:0/96"),
left: &1,
right: None,
},
]
);Sourcepub fn intersection<'a, R>(
&'a self,
other: &'a JointPrefixMap<P, R>,
) -> Intersection<'a, P, T, R> ⓘ
pub fn intersection<'a, R>( &'a self, other: &'a JointPrefixMap<P, R>, ) -> Intersection<'a, P, T, R> ⓘ
Iterate over the intersection of two joint prefix maps. This is roughly equivalent to
calling self.t1.view().intersection(&other.t1).chain(self.t2.view().intersection(&other.t2)).
macro_rules! net { ($x:literal) => {$x.parse::<ipnet::IpNet>().unwrap()}; }
let mut map_a: JointPrefixMap<ipnet::IpNet, usize> = JointPrefixMap::from_iter([
(net!("192.168.0.0/20"), 1),
(net!("192.168.0.0/22"), 2),
(net!("192.168.0.0/24"), 3),
(net!("192.168.2.0/23"), 4),
(net!("2001::1:0:0/96"), 5),
(net!("2001::1:0:0/97"), 6),
]);
let mut map_b: JointPrefixMap<ipnet::IpNet, &'static str> = JointPrefixMap::from_iter([
(net!("192.168.0.0/20"), "a"),
(net!("192.168.0.0/22"), "b"),
(net!("192.168.0.0/23"), "c"),
(net!("192.168.0.0/24"), "d"),
(net!("192.168.2.0/24"), "e"),
(net!("2001::1:0:0/96"), "f"),
(net!("2001::0:0:0/97"), "g"),
]);
assert_eq!(
map_a.intersection(&map_b).collect::<Vec<_>>(),
vec![
(net!("192.168.0.0/20"), &1, &"a"),
(net!("192.168.0.0/22"), &2, &"b"),
(net!("192.168.0.0/24"), &3, &"d"),
(net!("2001::1:0:0/96"), &5, &"f"),
]
);Sourcepub fn difference<'a, R>(
&'a self,
other: &'a JointPrefixMap<P, R>,
) -> Difference<'a, P, T, R> ⓘ
pub fn difference<'a, R>( &'a self, other: &'a JointPrefixMap<P, R>, ) -> Difference<'a, P, T, R> ⓘ
Iterate over the all elements in self that are not present in other. Each item will
return a reference to the prefix and value in self, as well as the longest prefix match of
other.
macro_rules! net { ($x:literal) => {$x.parse::<ipnet::IpNet>().unwrap()}; }
let mut map_a: JointPrefixMap<ipnet::IpNet, usize> = JointPrefixMap::from_iter([
(net!("192.168.0.0/20"), 1),
(net!("192.168.0.0/22"), 2),
(net!("192.168.0.0/24"), 3),
(net!("192.168.2.0/23"), 4),
(net!("2001::1:0:0/96"), 5),
(net!("2001::1:0:0/97"), 6),
]);
let mut map_b: JointPrefixMap<ipnet::IpNet, &'static str> = JointPrefixMap::from_iter([
(net!("192.168.0.0/20"), "a"),
(net!("192.168.0.0/22"), "b"),
(net!("192.168.0.0/23"), "c"),
(net!("192.168.2.0/24"), "d"),
(net!("2001::1:0:0/96"), "e"),
]);
assert_eq!(
map_a.difference(&map_b).collect::<Vec<_>>(),
vec![
DifferenceItem { prefix: net!("192.168.0.0/24"), value: &3, right: Some((net!("192.168.0.0/23"), &"c"))},
DifferenceItem { prefix: net!("192.168.2.0/23"), value: &4, right: Some((net!("192.168.0.0/22"), &"b"))},
DifferenceItem { prefix: net!("2001::1:0:0/97"), value: &6, right: Some((net!("2001::1:0:0/96"), &"e"))},
]
);Sourcepub fn covering_difference<'a, R>(
&'a self,
other: &'a JointPrefixMap<P, R>,
) -> CoveringDifference<'a, P, T, R> ⓘ
pub fn covering_difference<'a, R>( &'a self, other: &'a JointPrefixMap<P, R>, ) -> CoveringDifference<'a, P, T, R> ⓘ
Iterate over the all elements in self that are not covered by other.
macro_rules! net { ($x:literal) => {$x.parse::<ipnet::IpNet>().unwrap()}; }
let mut map_a: JointPrefixMap<ipnet::IpNet, usize> = JointPrefixMap::from_iter([
(net!("192.168.0.0/20"), 1),
(net!("192.168.0.0/22"), 2),
(net!("192.168.0.0/24"), 3),
(net!("192.168.2.0/23"), 4),
(net!("2001::0:0:0/95"), 5),
(net!("2001::1:0:0/96"), 6),
(net!("2001::1:0:0/97"), 7),
]);
let mut map_b: JointPrefixMap<ipnet::IpNet, &'static str> = JointPrefixMap::from_iter([
(net!("192.168.0.0/21"), "a"),
(net!("192.168.0.0/22"), "b"),
(net!("192.168.0.0/23"), "c"),
(net!("192.168.2.0/24"), "d"),
(net!("2001::1:0:0/96"), "e"),
]);
assert_eq!(
map_a.covering_difference(&map_b).collect::<Vec<_>>(),
vec![(net!("192.168.0.0/20"), &1), (net!("2001::0:0:0/95"), &5)]
);Trait Implementations§
Source§impl<P, T: Clone> Clone for JointPrefixMap<P, T>
impl<P, T: Clone> Clone for JointPrefixMap<P, T>
Source§fn clone(&self) -> JointPrefixMap<P, T>
fn clone(&self) -> JointPrefixMap<P, T>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl<P, T: Debug> Debug for JointPrefixMap<P, T>
impl<P, T: Debug> Debug for JointPrefixMap<P, T>
Source§impl<P, T> Default for JointPrefixMap<P, T>where
P: JointPrefix,
impl<P, T> Default for JointPrefixMap<P, T>where
P: JointPrefix,
Source§impl<P: JointPrefix, T> FromIterator<(P, T)> for JointPrefixMap<P, T>
impl<P: JointPrefix, T> FromIterator<(P, T)> for JointPrefixMap<P, T>
Source§impl<'a, P: JointPrefix, T> IntoIterator for &'a JointPrefixMap<P, T>
impl<'a, P: JointPrefix, T> IntoIterator for &'a JointPrefixMap<P, T>
Source§impl<P: JointPrefix, T> IntoIterator for JointPrefixMap<P, T>
impl<P: JointPrefix, T> IntoIterator for JointPrefixMap<P, T>
Source§impl<P, L, R> PartialEq<JointPrefixMap<P, R>> for JointPrefixMap<P, L>
impl<P, L, R> PartialEq<JointPrefixMap<P, R>> for JointPrefixMap<P, L>
impl<P, T> Eq for JointPrefixMap<P, T>
Auto Trait Implementations§
impl<P, T> !Freeze for JointPrefixMap<P, T>
impl<P, T> !RefUnwindSafe for JointPrefixMap<P, T>
impl<P, T> Send for JointPrefixMap<P, T>
impl<P, T> Sync for JointPrefixMap<P, T>
impl<P, T> Unpin for JointPrefixMap<P, T>
impl<P, T> UnwindSafe for JointPrefixMap<P, T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more