Skip to main content

AccessVector

Enum AccessVector 

Source
pub enum AccessVector {
    Local,
    AdjacentNetwork,
    Network,
}
Expand description

Metric::AccessVector (AV) values.

§Description

This metric reflects how the vulnerability is exploited. The more remote an attacker can be to attack a host, the greater the vulnerability score.

§Properties

§Examples

Parse string as metric and check it:

// parse string as metric
let metric: Metric = "AV:N".parse()?;

// check result
assert_eq!(metric, Metric::AccessVector(AccessVector::Network));

Convert metric to string:

// convert metric to string
let s = Metric::AccessVector(AccessVector::AdjacentNetwork).to_string();

// check result
assert_eq!(s, "AV:A");

Get metric name:

// get metric name
let name = Name::from(Metric::AccessVector(AccessVector::Local));

// check result
assert_eq!(name, Name::AccessVector);

Variants§

§

Local

Local (L)

A vulnerability exploitable with only local access requires the attacker to have either physical access to the vulnerable system or a local (shell) account. Examples of locally exploitable vulnerabilities are peripheral attacks such as Firewire/USB DMA attacks, and local privilege escalations (e.g., sudo).

§

AdjacentNetwork

Adjacent Network (A)

A vulnerability exploitable with adjacent network access requires the attacker to have access to either the broadcast or collision domain of the vulnerable software. Examples of local networks include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet segment.

§

Network

Network (N)

A vulnerability exploitable with network access means the vulnerable software is bound to the network stack and the attacker does not require local network access or local access. Such a vulnerability is often termed “remotely exploitable”. An example of a network attack is an RPC buffer overflow.

Trait Implementations§

Source§

impl Clone for AccessVector

Source§

fn clone(&self) -> AccessVector

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for AccessVector

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for AccessVector

Source§

fn eq(&self, other: &AccessVector) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Copy for AccessVector

Source§

impl Eq for AccessVector

Source§

impl StructuralPartialEq for AccessVector

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.