1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
use std::sync::Arc;

use polars_core::frame::group_by::GroupsProxy;
use polars_core::prelude::*;
use polars_core::POOL;
#[cfg(feature = "round_series")]
use polars_ops::prelude::floor_div_series;

use crate::physical_plan::state::ExecutionState;
use crate::prelude::*;

pub struct BinaryExpr {
    left: Arc<dyn PhysicalExpr>,
    op: Operator,
    right: Arc<dyn PhysicalExpr>,
    expr: Expr,
    has_literal: bool,
}

impl BinaryExpr {
    pub fn new(
        left: Arc<dyn PhysicalExpr>,
        op: Operator,
        right: Arc<dyn PhysicalExpr>,
        expr: Expr,
        has_literal: bool,
    ) -> Self {
        Self {
            left,
            op,
            right,
            expr,
            has_literal,
        }
    }
}

/// Can partially do operations in place.
fn apply_operator_owned(left: Series, right: Series, op: Operator) -> PolarsResult<Series> {
    match op {
        Operator::Plus => Ok(left + right),
        Operator::Minus => Ok(left - right),
        Operator::Multiply => Ok(left * right),
        _ => apply_operator(&left, &right, op),
    }
}

pub fn apply_operator(left: &Series, right: &Series, op: Operator) -> PolarsResult<Series> {
    use DataType::*;
    match op {
        Operator::Gt => ChunkCompare::gt(left, right).map(|ca| ca.into_series()),
        Operator::GtEq => ChunkCompare::gt_eq(left, right).map(|ca| ca.into_series()),
        Operator::Lt => ChunkCompare::lt(left, right).map(|ca| ca.into_series()),
        Operator::LtEq => ChunkCompare::lt_eq(left, right).map(|ca| ca.into_series()),
        Operator::Eq => ChunkCompare::equal(left, right).map(|ca| ca.into_series()),
        Operator::NotEq => ChunkCompare::not_equal(left, right).map(|ca| ca.into_series()),
        Operator::Plus => Ok(left + right),
        Operator::Minus => Ok(left - right),
        Operator::Multiply => Ok(left * right),
        Operator::Divide => Ok(left / right),
        Operator::TrueDivide => match left.dtype() {
            #[cfg(feature = "dtype-decimal")]
            Decimal(_, _) => Ok(left / right),
            Date | Datetime(_, _) | Float32 | Float64 => Ok(left / right),
            _ => Ok(&left.cast(&Float64)? / &right.cast(&Float64)?),
        },
        Operator::FloorDivide => {
            #[cfg(feature = "round_series")]
            {
                floor_div_series(left, right)
            }
            #[cfg(not(feature = "round_series"))]
            {
                panic!("activate 'round_series' feature")
            }
        },
        Operator::And => left.bitand(right),
        Operator::Or => left.bitor(right),
        Operator::Xor => left.bitxor(right),
        Operator::Modulus => Ok(left % right),
        Operator::EqValidity => left.equal_missing(right).map(|ca| ca.into_series()),
        Operator::NotEqValidity => left.not_equal_missing(right).map(|ca| ca.into_series()),
    }
}

impl BinaryExpr {
    fn apply_elementwise<'a>(
        &self,
        mut ac_l: AggregationContext<'a>,
        ac_r: AggregationContext,
        aggregated: bool,
    ) -> PolarsResult<AggregationContext<'a>> {
        // We want to be able to mutate in place, so we take the lhs to make sure that we drop.
        let lhs = ac_l.series().clone();
        let rhs = ac_r.series().clone();

        // Drop lhs so that we might operate in place.
        drop(ac_l.take());

        let out = apply_operator_owned(lhs, rhs, self.op)?;
        ac_l.with_series(out, aggregated, Some(&self.expr))?;
        Ok(ac_l)
    }

    fn apply_all_literal<'a>(
        &self,
        mut ac_l: AggregationContext<'a>,
        mut ac_r: AggregationContext<'a>,
    ) -> PolarsResult<AggregationContext<'a>> {
        let name = ac_l.series().name().to_string();
        ac_l.groups();
        ac_r.groups();
        polars_ensure!(ac_l.groups.len() == ac_r.groups.len(), ComputeError: "lhs and rhs should have same group length");
        let left_s = ac_l.series().rechunk();
        let right_s = ac_r.series().rechunk();
        let res_s = apply_operator(&left_s, &right_s, self.op)?;
        ac_l.with_update_groups(UpdateGroups::WithSeriesLen);
        let res_s = if res_s.len() == 1 {
            res_s.new_from_index(0, ac_l.groups.len())
        } else {
            ListChunked::full(&name, &res_s, ac_l.groups.len()).into_series()
        };
        ac_l.with_series(res_s, true, Some(&self.expr))?;
        Ok(ac_l)
    }

    fn apply_group_aware<'a>(
        &self,
        mut ac_l: AggregationContext<'a>,
        mut ac_r: AggregationContext<'a>,
    ) -> PolarsResult<AggregationContext<'a>> {
        let name = ac_l.series().name().to_string();
        // SAFETY: unstable series never lives longer than the iterator.
        let ca = unsafe {
            ac_l.iter_groups(false)
                .zip(ac_r.iter_groups(false))
                .map(|(l, r)| Some(apply_operator(l?.as_ref(), r?.as_ref(), self.op)))
                .map(|opt_res| opt_res.transpose())
                .collect::<PolarsResult<ListChunked>>()?
                .with_name(&name)
        };

        ac_l.with_update_groups(UpdateGroups::WithSeriesLen);
        ac_l.with_agg_state(AggState::AggregatedList(ca.into_series()));
        Ok(ac_l)
    }
}

impl PhysicalExpr for BinaryExpr {
    fn as_expression(&self) -> Option<&Expr> {
        Some(&self.expr)
    }

    fn evaluate(&self, df: &DataFrame, state: &ExecutionState) -> PolarsResult<Series> {
        // Window functions may set a global state that determine their output
        // state, so we don't let them run in parallel as they race
        // they also saturate the thread pool by themselves, so that's fine.
        let has_window = state.has_window();

        // Streaming takes care of parallelism, don't parallelize here, as it
        // increases contention.
        #[cfg(feature = "streaming")]
        let in_streaming = state.in_streaming_engine();

        #[cfg(not(feature = "streaming"))]
        let in_streaming = false;

        let (lhs, rhs);
        if has_window {
            let mut state = state.split();
            state.remove_cache_window_flag();
            lhs = self.left.evaluate(df, &state)?;
            rhs = self.right.evaluate(df, &state)?;
        } else if in_streaming || self.has_literal {
            // Literals are free, don't pay par cost.
            lhs = self.left.evaluate(df, state)?;
            rhs = self.right.evaluate(df, state)?;
        } else {
            let (opt_lhs, opt_rhs) = POOL.install(|| {
                rayon::join(
                    || self.left.evaluate(df, state),
                    || self.right.evaluate(df, state),
                )
            });
            (lhs, rhs) = (opt_lhs?, opt_rhs?);
        };
        polars_ensure!(
            lhs.len() == rhs.len() || lhs.len() == 1 || rhs.len() == 1,
            expr = self.expr,
            ComputeError: "cannot evaluate two Series of different lengths ({} and {})",
            lhs.len(), rhs.len(),
        );
        apply_operator_owned(lhs, rhs, self.op)
    }

    #[allow(clippy::ptr_arg)]
    fn evaluate_on_groups<'a>(
        &self,
        df: &DataFrame,
        groups: &'a GroupsProxy,
        state: &ExecutionState,
    ) -> PolarsResult<AggregationContext<'a>> {
        let (result_a, result_b) = POOL.install(|| {
            rayon::join(
                || self.left.evaluate_on_groups(df, groups, state),
                || self.right.evaluate_on_groups(df, groups, state),
            )
        });
        let mut ac_l = result_a?;
        let ac_r = result_b?;

        match (ac_l.agg_state(), ac_r.agg_state()) {
            (AggState::Literal(s), AggState::NotAggregated(_))
            | (AggState::NotAggregated(_), AggState::Literal(s)) => match s.len() {
                1 => self.apply_elementwise(ac_l, ac_r, false),
                _ => self.apply_group_aware(ac_l, ac_r),
            },
            (AggState::Literal(_), AggState::Literal(_)) => self.apply_all_literal(ac_l, ac_r),
            (AggState::NotAggregated(_), AggState::NotAggregated(_)) => {
                self.apply_elementwise(ac_l, ac_r, false)
            },
            (
                AggState::AggregatedScalar(_) | AggState::Literal(_),
                AggState::AggregatedScalar(_) | AggState::Literal(_),
            ) => self.apply_elementwise(ac_l, ac_r, true),
            (AggState::AggregatedScalar(_), AggState::NotAggregated(_))
            | (AggState::NotAggregated(_), AggState::AggregatedScalar(_)) => {
                self.apply_group_aware(ac_l, ac_r)
            },
            (AggState::AggregatedList(lhs), AggState::AggregatedList(rhs)) => {
                let lhs = lhs.list().unwrap();
                let rhs = rhs.list().unwrap();
                let out =
                    lhs.apply_to_inner(&|lhs| apply_operator(&lhs, &rhs.get_inner(), self.op))?;
                ac_l.with_series(out.into_series(), true, Some(&self.expr))?;
                Ok(ac_l)
            },
            _ => self.apply_group_aware(ac_l, ac_r),
        }
    }

    fn to_field(&self, input_schema: &Schema) -> PolarsResult<Field> {
        self.expr.to_field(input_schema, Context::Default)
    }

    fn as_partitioned_aggregator(&self) -> Option<&dyn PartitionedAggregation> {
        Some(self)
    }

    #[cfg(feature = "parquet")]
    fn as_stats_evaluator(&self) -> Option<&dyn polars_io::predicates::StatsEvaluator> {
        Some(self)
    }
}

#[cfg(feature = "parquet")]
mod stats {
    use polars_io::predicates::{BatchStats, StatsEvaluator};

    use super::*;

    fn apply_operator_stats_eq(min_max: &Series, literal: &Series) -> bool {
        use ChunkCompare as C;
        // Literal is greater than max, don't need to read.
        if C::gt(literal, min_max).map(|s| s.all()).unwrap_or(false) {
            return false;
        }

        // Literal is smaller than min, don't need to read.
        if C::lt(literal, min_max).map(|s| s.all()).unwrap_or(false) {
            return false;
        }

        true
    }

    fn apply_operator_stats_neq(min_max: &Series, literal: &Series) -> bool {
        if min_max.len() < 2 || min_max.null_count() > 0 {
            return true;
        }
        use ChunkCompare as C;

        // First check proofs all values are the same (e.g. min/max is the same)
        // Second check proofs all values are equal, so we can skip as we search
        // for non-equal values.
        if min_max.get(0).unwrap() == min_max.get(1).unwrap()
            && C::equal(literal, min_max).map(|s| s.all()).unwrap_or(false)
        {
            return false;
        }
        true
    }

    fn apply_operator_stats_rhs_lit(min_max: &Series, literal: &Series, op: Operator) -> bool {
        use ChunkCompare as C;
        match op {
            Operator::Eq => apply_operator_stats_eq(min_max, literal),
            Operator::NotEq => apply_operator_stats_neq(min_max, literal),
            // col > lit
            // e.g.
            // [min, max] > 0
            //
            // [-1, 2] > 0
            //
            // [false, true] -> true -> read
            Operator::Gt => {
                // Literal is bigger than max value, selection needs all rows.
                C::gt(min_max, literal).map(|s| s.any()).unwrap_or(false)
            },
            // col >= lit
            Operator::GtEq => {
                // Literal is bigger than max value, selection needs all rows.
                C::gt_eq(min_max, literal).map(|s| s.any()).unwrap_or(false)
            },
            // col < lit
            Operator::Lt => {
                // Literal is smaller than min value, selection needs all rows.
                C::lt(min_max, literal).map(|s| s.any()).unwrap_or(false)
            },
            // col <= lit
            Operator::LtEq => {
                // Literal is smaller than min value, selection needs all rows.
                C::lt_eq(min_max, literal).map(|s| s.any()).unwrap_or(false)
            },
            // Default: read the file
            _ => true,
        }
    }

    fn apply_operator_stats_lhs_lit(literal: &Series, min_max: &Series, op: Operator) -> bool {
        use ChunkCompare as C;
        match op {
            Operator::Eq => apply_operator_stats_eq(min_max, literal),
            Operator::NotEq => apply_operator_stats_eq(min_max, literal),
            Operator::Gt => {
                // Literal is bigger than max value, selection needs all rows.
                C::gt(literal, min_max).map(|ca| ca.any()).unwrap_or(false)
            },
            Operator::GtEq => {
                // Literal is bigger than max value, selection needs all rows.
                C::gt_eq(literal, min_max)
                    .map(|ca| ca.any())
                    .unwrap_or(false)
            },
            Operator::Lt => {
                // Literal is smaller than min value, selection needs all rows.
                C::lt(literal, min_max).map(|ca| ca.any()).unwrap_or(false)
            },
            Operator::LtEq => {
                // Literal is smaller than min value, selection needs all rows.
                C::lt_eq(literal, min_max)
                    .map(|ca| ca.any())
                    .unwrap_or(false)
            },
            // Default: read the file.
            _ => true,
        }
    }

    impl BinaryExpr {
        fn impl_should_read(&self, stats: &BatchStats) -> PolarsResult<bool> {
            // See: #5864 for the rationale behind this.
            use Expr::*;
            use Operator::*;
            if !self.expr.into_iter().all(|e| match e {
                BinaryExpr { op, .. } => {
                    !matches!(op, Multiply | Divide | TrueDivide | FloorDivide | Modulus)
                },
                Column(_) | Literal(_) | Alias(_, _) => true,
                _ => false,
            }) {
                return Ok(true);
            }
            let schema = stats.schema();
            let Some(fld_l) = self.left.to_field(schema).ok() else {
                return Ok(true);
            };
            let Some(fld_r) = self.right.to_field(schema).ok() else {
                return Ok(true);
            };

            #[cfg(debug_assertions)]
            {
                match (fld_l.data_type(), fld_r.data_type()) {
                    #[cfg(feature = "dtype-categorical")]
                    (DataType::Utf8, DataType::Categorical(_)) => {},
                    #[cfg(feature = "dtype-categorical")]
                    (DataType::Categorical(_), DataType::Utf8) => {},
                    (l, r) if l != r => panic!("implementation error: {l:?}, {r:?}"),
                    _ => {},
                }
            }

            let dummy = DataFrame::new_no_checks(vec![]);
            let state = ExecutionState::new();

            let out = match (self.left.is_literal(), self.right.is_literal()) {
                (false, true) => {
                    let l = stats.get_stats(fld_l.name())?;
                    match l.to_min_max() {
                        None => Ok(true),
                        Some(min_max_s) => {
                            // will be incorrect if not
                            debug_assert_eq!(min_max_s.null_count(), 0);
                            let lit_s = self.right.evaluate(&dummy, &state).unwrap();
                            Ok(apply_operator_stats_rhs_lit(&min_max_s, &lit_s, self.op))
                        },
                    }
                },
                (true, false) => {
                    let r = stats.get_stats(fld_r.name())?;
                    match r.to_min_max() {
                        None => Ok(true),
                        Some(min_max_s) => {
                            // will be incorrect if not
                            debug_assert_eq!(min_max_s.null_count(), 0);
                            let lit_s = self.left.evaluate(&dummy, &state).unwrap();
                            Ok(apply_operator_stats_lhs_lit(&lit_s, &min_max_s, self.op))
                        },
                    }
                },
                // Default: read the file
                _ => Ok(true),
            };
            out.map(|read| {
                if state.verbose() && read {
                    eprintln!("parquet file must be read, statistics not sufficient for predicate.")
                } else if state.verbose() && !read {
                    eprintln!("parquet file can be skipped, the statistics were sufficient to apply the predicate.")
                };
                read
            })
        }
    }

    impl StatsEvaluator for BinaryExpr {
        fn should_read(&self, stats: &BatchStats) -> PolarsResult<bool> {
            if std::env::var("POLARS_NO_PARQUET_STATISTICS").is_ok() {
                return Ok(true);
            }

            match (
                self.left.as_stats_evaluator(),
                self.right.as_stats_evaluator(),
            ) {
                (Some(l), Some(r)) => match self.op {
                    Operator::And => Ok(l.should_read(stats)? && r.should_read(stats)?),
                    Operator::Or => Ok(l.should_read(stats)? || r.should_read(stats)?),
                    _ => Ok(true),
                },
                _ => self.impl_should_read(stats),
            }
        }
    }
}

impl PartitionedAggregation for BinaryExpr {
    fn evaluate_partitioned(
        &self,
        df: &DataFrame,
        groups: &GroupsProxy,
        state: &ExecutionState,
    ) -> PolarsResult<Series> {
        let left = self.left.as_partitioned_aggregator().unwrap();
        let right = self.right.as_partitioned_aggregator().unwrap();
        let left = left.evaluate_partitioned(df, groups, state)?;
        let right = right.evaluate_partitioned(df, groups, state)?;
        apply_operator(&left, &right, self.op)
    }

    fn finalize(
        &self,
        partitioned: Series,
        _groups: &GroupsProxy,
        _state: &ExecutionState,
    ) -> PolarsResult<Series> {
        Ok(partitioned)
    }
}