pub struct ChunkedArray<T: PolarsDataType> { /* private fields */ }
Expand description

ChunkedArray

Every Series contains a ChunkedArray<T>. Unlike Series, ChunkedArray’s are typed. This allows us to apply closures to the data and collect the results to a ChunkedArray of the same type T. Below we use an apply to use the cosine function to the values of a ChunkedArray.

fn apply_cosine(ca: &Float32Chunked) -> Float32Chunked {
    ca.apply(|v| v.cos())
}

If we would like to cast the result we could use a Rust Iterator instead of an apply method. Note that Iterators are slightly slower as the null values aren’t ignored implicitly.

fn apply_cosine_and_cast(ca: &Float32Chunked) -> Float64Chunked {
    ca.into_iter()
        .map(|opt_v| {
        opt_v.map(|v| v.cos() as f64)
    }).collect()
}

Another option is to first cast and then use an apply.

fn apply_cosine_and_cast(ca: &Float32Chunked) -> Float64Chunked {
    ca.apply_cast_numeric(|v| v.cos() as f64)
}

Conversion between Series and ChunkedArray’s

Conversion from a Series to a ChunkedArray is effortless.

fn to_chunked_array(series: &Series) -> PolarsResult<&Int32Chunked>{
    series.i32()
}

fn to_series(ca: Int32Chunked) -> Series {
    ca.into_series()
}

Iterators

ChunkedArrays fully support Rust native Iterator and DoubleEndedIterator traits, thereby giving access to all the excellent methods available for Iterators.


fn iter_forward(ca: &Float32Chunked) {
    ca.into_iter()
        .for_each(|opt_v| println!("{:?}", opt_v))
}

fn iter_backward(ca: &Float32Chunked) {
    ca.into_iter()
        .rev()
        .for_each(|opt_v| println!("{:?}", opt_v))
}

Memory layout

ChunkedArray’s use Apache Arrow as backend for the memory layout. Arrows memory is immutable which makes it possible to make multiple zero copy (sub)-views from a single array.

To be able to append data, Polars uses chunks to append new memory locations, hence the ChunkedArray<T> data structure. Appends are cheap, because it will not lead to a full reallocation of the whole array (as could be the case with a Rust Vec).

However, multiple chunks in a ChunkArray will slow down many operations that need random access because we have an extra indirection and indexes need to be mapped to the proper chunk. Arithmetic may also be slowed down by this. When multiplying two ChunkArray's with different chunk sizes they cannot utilize SIMD for instance.

If you want to have predictable performance (no unexpected re-allocation of memory), it is advised to call the ChunkedArray::rechunk after multiple append operations.

See also ChunkedArray::extend for appends within a chunk.

Implementations§

Convert all values to their absolute/positive value.

Examples found in repository?
src/series/mod.rs (line 810)
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    pub fn abs(&self) -> PolarsResult<Series> {
        let a = self.to_physical_repr();
        use DataType::*;
        let out = match a.dtype() {
            #[cfg(feature = "dtype-i8")]
            Int8 => a.i8().unwrap().abs().into_series(),
            #[cfg(feature = "dtype-i16")]
            Int16 => a.i16().unwrap().abs().into_series(),
            Int32 => a.i32().unwrap().abs().into_series(),
            Int64 => a.i64().unwrap().abs().into_series(),
            UInt8 | UInt16 | UInt32 | UInt64 => self.clone(),
            Float32 => a.f32().unwrap().abs().into_series(),
            Float64 => a.f64().unwrap().abs().into_series(),
            dt => {
                return Err(PolarsError::InvalidOperation(
                    format!("abs not supported for series of type {dt:?}").into(),
                ));
            }
        };
        Ok(out)
    }

Append in place. This is done by adding the chunks of other to this ChunkedArray.

See also extend for appends to the underlying memory

Examples found in repository?
src/frame/mod.rs (line 3185)
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
    pub fn hash_rows(
        &mut self,
        hasher_builder: Option<RandomState>,
    ) -> PolarsResult<UInt64Chunked> {
        let dfs = split_df(self, POOL.current_num_threads())?;
        let (cas, _) = df_rows_to_hashes_threaded(&dfs, hasher_builder)?;

        let mut iter = cas.into_iter();
        let mut acc_ca = iter.next().unwrap();
        for ca in iter {
            acc_ca.append(&ca);
        }
        Ok(acc_ca.rechunk())
    }
More examples
Hide additional examples
src/chunked_array/ops/extend.rs (line 41)
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    pub fn extend(&mut self, other: &Self) {
        // all to a single chunk
        if self.chunks.len() > 1 {
            self.append(other);
            *self = self.rechunk();
            return;
        }
        // Depending on the state of the underlying arrow array we
        // might be able to get a `MutablePrimitiveArray`
        //
        // This is only possible if the reference count of the array and its buffers are 1
        // So the logic below is needed to keep the reference count 1 if it is

        // First we must obtain an owned version of the array
        let arr = self.downcast_iter().next().unwrap();

        // increments 1
        let arr = arr.clone();

        // now we drop our owned ArrayRefs so that
        // decrements 1
        {
            self.chunks.clear();
        }

        use Either::*;

        match arr.into_mut() {
            Left(immutable) => {
                extend_immutable(&immutable, &mut self.chunks, &other.chunks);
            }
            Right(mut mutable) => {
                for arr in other.downcast_iter() {
                    match arr.null_count() {
                        0 => mutable.extend_from_slice(arr.values()),
                        _ => mutable.extend_trusted_len(arr.into_iter()),
                    }
                }
                let arr: PrimitiveArray<T::Native> = mutable.into();
                self.chunks.push(Box::new(arr) as ArrayRef)
            }
        }
        self.compute_len();
        self.set_sorted2(IsSorted::Not);
    }

Cast a numeric array to another numeric data type and apply a function in place. This saves an allocation.

Examples found in repository?
src/chunked_array/arithmetic.rs (line 130)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
fn arithmetic_helper_owned<T, Kernel, F>(
    mut lhs: ChunkedArray<T>,
    mut rhs: ChunkedArray<T>,
    kernel: Kernel,
    operation: F,
) -> ChunkedArray<T>
where
    T: PolarsNumericType,
    Kernel: Fn(&mut PrimitiveArray<T::Native>, &mut PrimitiveArray<T::Native>),
    F: Fn(T::Native, T::Native) -> T::Native,
{
    let ca = match (lhs.len(), rhs.len()) {
        (a, b) if a == b => {
            let (mut lhs, mut rhs) = align_chunks_binary_owned(lhs, rhs);
            // safety, we do no t change the lengths
            unsafe {
                lhs.downcast_iter_mut()
                    .zip(rhs.downcast_iter_mut())
                    .for_each(|(lhs, rhs)| kernel(lhs, rhs));
            }
            lhs.set_sorted2(IsSorted::Not);
            lhs
        }
        // broadcast right path
        (_, 1) => {
            let opt_rhs = rhs.get(0);
            match opt_rhs {
                None => ChunkedArray::full_null(lhs.name(), lhs.len()),
                Some(rhs) => {
                    lhs.apply_mut(|lhs| operation(lhs, rhs));
                    lhs
                }
            }
        }
        (1, _) => {
            let opt_lhs = lhs.get(0);
            match opt_lhs {
                None => ChunkedArray::full_null(lhs.name(), rhs.len()),
                Some(lhs_val) => {
                    rhs.apply_mut(|rhs| operation(lhs_val, rhs));
                    rhs.rename(lhs.name());
                    rhs
                }
            }
        }
        _ => panic!("Cannot apply operation on arrays of different lengths"),
    };
    ca
}

// Operands on ChunkedArray & ChunkedArray

impl<T> Add for &ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn add(self, rhs: Self) -> Self::Output {
        arithmetic_helper(self, rhs, basic::add, |lhs, rhs| lhs + rhs)
    }
}

impl<T> Div for &ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn div(self, rhs: Self) -> Self::Output {
        arithmetic_helper(self, rhs, basic::div, |lhs, rhs| lhs / rhs)
    }
}

impl<T> Mul for &ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn mul(self, rhs: Self) -> Self::Output {
        arithmetic_helper(self, rhs, basic::mul, |lhs, rhs| lhs * rhs)
    }
}

impl<T> Rem for &ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn rem(self, rhs: Self) -> Self::Output {
        arithmetic_helper(self, rhs, basic::rem, |lhs, rhs| lhs % rhs)
    }
}

impl<T> Sub for &ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn sub(self, rhs: Self) -> Self::Output {
        arithmetic_helper(self, rhs, basic::sub, |lhs, rhs| lhs - rhs)
    }
}

impl<T> Add for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        arithmetic_helper_owned(
            self,
            rhs,
            |a, b| arity_assign::binary(a, b, |a, b| a + b),
            |lhs, rhs| lhs + rhs,
        )
    }
}

impl<T> Div for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = Self;

    fn div(self, rhs: Self) -> Self::Output {
        arithmetic_helper_owned(
            self,
            rhs,
            |a, b| arity_assign::binary(a, b, |a, b| a / b),
            |lhs, rhs| lhs / rhs,
        )
    }
}

impl<T> Mul for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        arithmetic_helper_owned(
            self,
            rhs,
            |a, b| arity_assign::binary(a, b, |a, b| a * b),
            |lhs, rhs| lhs * rhs,
        )
    }
}

impl<T> Sub for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        arithmetic_helper_owned(
            self,
            rhs,
            |a, b| arity_assign::binary(a, b, |a, b| a - b),
            |lhs, rhs| lhs - rhs,
        )
    }
}

impl<T> Rem for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    type Output = ChunkedArray<T>;

    fn rem(self, rhs: Self) -> Self::Output {
        (&self).rem(&rhs)
    }
}

// Operands on ChunkedArray & Num

impl<T, N> Add<N> for &ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn add(self, rhs: N) -> Self::Output {
        let adder: T::Native = NumCast::from(rhs).unwrap();
        self.apply(|val| val + adder)
    }
}

impl<T, N> Sub<N> for &ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn sub(self, rhs: N) -> Self::Output {
        let subber: T::Native = NumCast::from(rhs).unwrap();
        self.apply(|val| val - subber)
    }
}

impl<T, N> Div<N> for &ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn div(self, rhs: N) -> Self::Output {
        let rhs: T::Native = NumCast::from(rhs).expect("could not cast");
        self.apply_kernel(&|arr| Box::new(basic::div_scalar(arr, &rhs)))
    }
}

impl<T, N> Mul<N> for &ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn mul(self, rhs: N) -> Self::Output {
        let multiplier: T::Native = NumCast::from(rhs).unwrap();
        self.apply(|val| val * multiplier)
    }
}

impl<T, N> Rem<N> for &ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn rem(self, rhs: N) -> Self::Output {
        let rhs: T::Native = NumCast::from(rhs).expect("could not cast");
        self.apply_kernel(&|arr| Box::new(basic::rem_scalar(arr, &rhs)))
    }
}

impl<T, N> Add<N> for ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn add(mut self, rhs: N) -> Self::Output {
        if std::env::var("ASSIGN").is_ok() {
            let adder: T::Native = NumCast::from(rhs).unwrap();
            self.apply_mut(|val| val + adder);
            self
        } else {
            (&self).add(rhs)
        }
    }
}

impl<T, N> Sub<N> for ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn sub(mut self, rhs: N) -> Self::Output {
        if std::env::var("ASSIGN").is_ok() {
            let subber: T::Native = NumCast::from(rhs).unwrap();
            self.apply_mut(|val| val - subber);
            self
        } else {
            (&self).sub(rhs)
        }
    }
}

impl<T, N> Div<N> for ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn div(self, rhs: N) -> Self::Output {
        (&self).div(rhs)
    }
}

impl<T, N> Mul<N> for ChunkedArray<T>
where
    T: PolarsNumericType,
    N: Num + ToPrimitive,
{
    type Output = ChunkedArray<T>;

    fn mul(mut self, rhs: N) -> Self::Output {
        if std::env::var("ASSIGN").is_ok() {
            let multiplier: T::Native = NumCast::from(rhs).unwrap();
            self.apply_mut(|val| val * multiplier);
            self
        } else {
            (&self).mul(rhs)
        }
    }

Get the length of the ChunkedArray

Examples found in repository?
src/series/implementations/boolean.rs (line 236)
235
236
237
    fn len(&self) -> usize {
        self.0.len()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 146)
145
146
147
    fn len(&self) -> usize {
        self.0.len()
    }
src/series/implementations/utf8.rs (line 222)
221
222
223
    fn len(&self) -> usize {
        self.0.len()
    }
src/chunked_array/logical/categorical/mod.rs (line 34)
33
34
35
    pub fn len(&self) -> usize {
        self.logical.len()
    }
src/chunked_array/ops/chunkops.rs (line 63)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Compute the length
    pub(crate) fn compute_len(&mut self) {
        fn inner(chunks: &[ArrayRef]) -> usize {
            match chunks.len() {
                // fast path
                1 => chunks[0].len(),
                _ => chunks.iter().fold(0, |acc, arr| acc + arr.len()),
            }
        }
        self.length = inner(&self.chunks) as IdxSize
    }

    pub fn rechunk(&self) -> Self {
        match self.dtype() {
            #[cfg(feature = "object")]
            DataType::Object(_) => {
                panic!("implementation error")
            }
            _ => {
                fn inner_rechunk(chunks: &[ArrayRef]) -> Vec<ArrayRef> {
                    vec![concatenate::concatenate(
                        chunks.iter().map(|a| &**a).collect::<Vec<_>>().as_slice(),
                    )
                    .unwrap()]
                }

                if self.chunks.len() == 1 {
                    self.clone()
                } else {
                    let chunks = inner_rechunk(&self.chunks);
                    self.copy_with_chunks(chunks, true)
                }
            }
        }
    }

    /// Slice the array. The chunks are reallocated the underlying data slices are zero copy.
    ///
    /// When offset is negative it will be counted from the end of the array.
    /// This method will never error,
    /// and will slice the best match when offset, or length is out of bounds
    #[inline]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        let (chunks, len) = slice(&self.chunks, offset, length, self.len());
        let mut out = self.copy_with_chunks(chunks, true);
        out.length = len as IdxSize;
        out
    }

    /// Take a view of top n elements
    #[must_use]
    pub fn limit(&self, num_elements: usize) -> Self
    where
        Self: Sized,
    {
        self.slice(0, num_elements)
    }

    /// Get the head of the ChunkedArray
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self
    where
        Self: Sized,
    {
        match length {
            Some(len) => self.slice(0, std::cmp::min(len, self.len())),
            None => self.slice(0, std::cmp::min(10, self.len())),
        }
    }

    /// Get the tail of the ChunkedArray
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self
    where
        Self: Sized,
    {
        let len = match length {
            Some(len) => std::cmp::min(len, self.len()),
            None => std::cmp::min(10, self.len()),
        };
        self.slice(-(len as i64), len)
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> ObjectChunked<T> {
    pub(crate) fn rechunk_object(&self) -> Self {
        if self.chunks.len() == 1 {
            self.clone()
        } else {
            let mut builder = ObjectChunkedBuilder::new(self.name(), self.len());
            let chunks = self.downcast_iter();

            // todo! use iterators once implemented
            // no_null path
            if !self.has_validity() {
                for arr in chunks {
                    for idx in 0..arr.len() {
                        builder.append_value(arr.value(idx).clone())
                    }
                }
            } else {
                for arr in chunks {
                    for idx in 0..arr.len() {
                        if arr.is_valid(idx) {
                            builder.append_value(arr.value(idx).clone())
                        } else {
                            builder.append_null()
                        }
                    }
                }
            }
            builder.finish()
        }
    }
src/series/implementations/object.rs (line 155)
154
155
156
    fn len(&self) -> usize {
        ObjectChunked::len(&self.0)
    }

Check if ChunkedArray is empty.

Examples found in repository?
src/chunked_array/mod.rs (line 211)
210
211
212
213
214
215
216
    pub fn first_non_null(&self) -> Option<usize> {
        if self.is_empty() {
            None
        } else {
            first_non_null(self.iter_validities())
        }
    }
More examples
Hide additional examples
src/chunked_array/builder/list.rs (line 384)
383
384
385
386
387
388
389
390
    pub(crate) fn append(&mut self, ca: &BooleanChunked) {
        if ca.is_empty() {
            self.fast_explode = false;
        }
        let value_builder = self.builder.mut_values();
        value_builder.extend(ca);
        self.builder.try_push_valid().unwrap();
    }
src/chunked_array/object/extension/list.rs (line 49)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    fn append_series(&mut self, s: &Series) {
        let arr = s
            .as_any()
            .downcast_ref::<ObjectChunked<T>>()
            .expect("series of type object");

        for v in arr.into_iter() {
            self.values_builder.append_option(v.cloned())
        }
        if arr.is_empty() {
            self.fast_explode = false;
        }
        let len_so_far = self.offsets[self.offsets.len() - 1];
        self.offsets.push(len_so_far + arr.len() as i64);
    }
src/chunked_array/ops/apply.rs (line 672)
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(Series) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply!(self, &mut function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    fn try_apply<F>(&'a self, f: F) -> PolarsResult<Self>
    where
        F: Fn(Series) -> PolarsResult<Series> + Copy,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }

        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if let Ok(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let ca: PolarsResult<ListChunked> = try_apply!(self, &mut function);
        let mut ca = ca?;
        if fast_explode {
            ca.set_fast_explode()
        }
        Ok(ca)
    }

    fn apply_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn(Option<Series>) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        self.into_iter().map(f).collect_trusted()
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Series)) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |(idx, s)| {
            let out = f((idx, s));
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply_enumerate!(self, function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Option<Series>)) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let function = |(idx, s)| {
            let out = f((idx, s));
            if let Some(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let mut ca: ListChunked = self.into_iter().enumerate().map(function).collect_trusted();
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }
src/chunked_array/ops/aggregate.rs (line 539)
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    fn sum(&self) -> Option<IdxSize> {
        if self.is_empty() {
            None
        } else {
            Some(
                self.downcast_iter()
                    .map(|arr| match arr.validity() {
                        Some(validity) => {
                            (arr.len() - (validity & arr.values()).unset_bits()) as IdxSize
                        }
                        None => (arr.len() - arr.values().unset_bits()) as IdxSize,
                    })
                    .sum(),
            )
        }
    }

    fn min(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.all() {
            Some(1)
        } else {
            Some(0)
        }
    }

    fn max(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.any() {
            Some(1)
        } else {
            Some(0)
        }
    }
    fn mean(&self) -> Option<f64> {
        self.sum()
            .map(|sum| sum as f64 / (self.len() - self.null_count()) as f64)
    }
}

// Needs the same trait bounds as the implementation of ChunkedArray<T> of dyn Series
impl<T> ChunkAggSeries for ChunkedArray<T>
where
    T: PolarsNumericType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
    ChunkedArray<T>: IntoSeries,
{
    fn sum_as_series(&self) -> Series {
        let v = self.sum();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = self.max();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = self.min();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

    fn prod_as_series(&self) -> Series {
        let mut prod = None;
        for opt_v in self.into_iter() {
            match (prod, opt_v) {
                (_, None) => return Self::full_null(self.name(), 1).into_series(),
                (None, Some(v)) => prod = Some(v),
                (Some(p), Some(v)) => prod = Some(p * v),
            }
        }
        Self::from_slice_options(self.name(), &[prod]).into_series()
    }
}

macro_rules! impl_as_series {
    ($self:expr, $agg:ident, $ty: ty) => {{
        let v = $self.$agg();
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
    ($self:expr, $agg:ident, $arg:expr, $ty: ty) => {{
        let v = $self.$agg($arg);
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
}

impl<T> VarAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

impl VarAggSeries for Float32Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float32Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float32Chunked)
    }
}

impl VarAggSeries for Float64Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

macro_rules! impl_quantile_as_series {
    ($self:expr, $agg:ident, $ty: ty, $qtl:expr, $opt:expr) => {{
        let v = $self.$agg($qtl, $opt)?;
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        Ok(ca.into_series())
    }};
}

impl<T> QuantileAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl QuantileAggSeries for Float32Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float32Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float32Chunked)
    }
}

impl QuantileAggSeries for Float64Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl ChunkAggSeries for BooleanChunked {
    fn sum_as_series(&self) -> Series {
        let v = ChunkAgg::sum(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = ChunkAgg::max(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = ChunkAgg::min(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
}

impl Utf8Chunked {
    pub(crate) fn max_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(self.len() - 1),
            IsSorted::Descending => self.get(0),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_string)
                .fold_first_(|acc, v| if acc > v { acc } else { v }),
        }
    }
    pub(crate) fn min_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(0),
            IsSorted::Descending => self.get(self.len() - 1),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_string)
                .fold_first_(|acc, v| if acc < v { acc } else { v }),
        }
    }
}

impl ChunkAggSeries for Utf8Chunked {
    fn sum_as_series(&self) -> Series {
        Utf8Chunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(self.name(), &[self.max_str()])
    }
    fn min_as_series(&self) -> Series {
        Series::new(self.name(), &[self.min_str()])
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkAggSeries for BinaryChunked {
    fn sum_as_series(&self) -> Series {
        BinaryChunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::max_binary)
                .fold_first_(|acc, v| if acc > v { acc } else { v })],
        )
    }
    fn min_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::min_binary)
                .fold_first_(|acc, v| if acc < v { acc } else { v })],
        )
    }
}

impl ChunkAggSeries for ListChunked {
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkAggSeries for ObjectChunked<T> {}

impl<T> ArgAgg for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn arg_min(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(0),
            IsSorted::Descending => Some(self.len()),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 > val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
    fn arg_max(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(self.len()),
            IsSorted::Descending => Some(0),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 < val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
}

impl ArgAgg for BooleanChunked {
    fn arg_min(&self) -> Option<usize> {
        if self.is_empty() || self.null_count() == self.len() {
            None
        } else if self.all() {
            Some(0)
        } else {
            self.into_iter()
                .position(|opt_val| matches!(opt_val, Some(false)))
        }
    }
    fn arg_max(&self) -> Option<usize> {
        if self.is_empty() || self.null_count() == self.len() {
            None
        } else if self.any() {
            self.into_iter()
                .position(|opt_val| matches!(opt_val, Some(true)))
        } else {
            Some(0)
        }
    }
src/chunked_array/list/iterator.rs (line 129)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    pub fn apply_amortized<'a, F>(&'a self, mut f: F) -> Self
    where
        F: FnMut(UnstableSeries<'a>) -> Series,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v.map(|v| {
                    let out = f(v);
                    if out.is_empty() {
                        fast_explode = false;
                    }
                    out
                })
            })
            .collect_trusted();

        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        ca
    }

    pub fn try_apply_amortized<'a, F>(&'a self, mut f: F) -> PolarsResult<Self>
    where
        F: FnMut(UnstableSeries<'a>) -> PolarsResult<Series>,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v
                    .map(|v| {
                        let out = f(v);
                        if let Ok(out) = &out {
                            if out.is_empty() {
                                fast_explode = false
                            }
                        };
                        out
                    })
                    .transpose()
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        Ok(ca)
    }
Examples found in repository?
src/series/implementations/boolean.rs (line 198)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        Ok(ChunkTake::take(&self.0, (&*indices).into())?.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.0.take_every(n).into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };
        Ok(ChunkTake::take_unchecked(&self.0, (&*idx).into()).into_series())
    }

    unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    #[cfg(feature = "take_opt_iter")]
    fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn rechunk(&self) -> Series {
        self.0.rechunk().into_series()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 108)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        Ok(ChunkTake::take(&self.0, (&*indices).into())?.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.0.take_every(n).into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };
        Ok(ChunkTake::take_unchecked(&self.0, (&*idx).into()).into_series())
    }

    unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    #[cfg(feature = "take_opt_iter")]
    fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn rechunk(&self) -> Series {
        self.0.rechunk().into_series()
    }
src/series/implementations/utf8.rs (line 177)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        Ok(ChunkTake::take(&self.0, (&*indices).into())?.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.0.take_every(n).into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };

        let mut out = ChunkTake::take_unchecked(&self.0, (&*idx).into());

        if self.0.is_sorted() && (idx.is_sorted() || idx.is_sorted_reverse()) {
            out.set_sorted2(idx.is_sorted2())
        }

        Ok(out.into_series())
    }

    unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    #[cfg(feature = "take_opt_iter")]
    fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn rechunk(&self) -> Series {
        self.0.rechunk().into_series()
    }
src/series/implementations/object.rs (line 138)
136
137
138
139
140
141
142
143
    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };
        Ok(ChunkTake::take_unchecked(&self.0, (&*idx).into()).into_series())
    }
src/series/implementations/categorical.rs (line 226)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        self.try_with_state(false, |cats| cats.take((&*indices).into()))
            .map(|ca| ca.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        let cats = self.0.logical().take(iter.into())?;
        Ok(self.finish_with_state(false, cats).into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.with_state(true, |cats| cats.take_every(n))
            .into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        let cats = self.0.logical().take_unchecked(iter.into());
        self.finish_with_state(false, cats).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };
        Ok(self
            .with_state(false, |cats| cats.take_unchecked((&*idx).into()))
            .into_series())
    }

    unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
        let cats = self.0.logical().take_unchecked(iter.into());
        self.finish_with_state(false, cats).into_series()
    }

    #[cfg(feature = "take_opt_iter")]
    fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        let cats = self.0.logical().take(iter.into())?;
        Ok(self.finish_with_state(false, cats).into_series())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn rechunk(&self) -> Series {
        self.with_state(true, |ca| ca.rechunk()).into_series()
    }
src/chunked_array/iterator/par/list.rs (line 34)
33
34
35
36
37
38
39
40
41
    pub fn par_iter_indexed(&mut self) -> impl IndexedParallelIterator<Item = Option<Series>> + '_ {
        *self = self.rechunk();
        let arr = self.downcast_iter().next().unwrap();

        let dtype = self.inner_dtype();
        (0..arr.len())
            .into_par_iter()
            .map(move |idx| unsafe { idx_to_array(idx, arr, &dtype) })
    }

Slice the array. The chunks are reallocated the underlying data slices are zero copy.

When offset is negative it will be counted from the end of the array. This method will never error, and will slice the best match when offset, or length is out of bounds

Examples found in repository?
src/series/implementations/boolean.rs (line 153)
152
153
154
    fn slice(&self, offset: i64, length: usize) -> Series {
        self.0.slice(offset, length).into_series()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 70)
69
70
71
    fn slice(&self, offset: i64, length: usize) -> Series {
        self.0.slice(offset, length).into_series()
    }
src/series/implementations/utf8.rs (line 135)
134
135
136
    fn slice(&self, offset: i64, length: usize) -> Series {
        self.0.slice(offset, length).into_series()
    }
src/chunked_array/ops/chunkops.rs (line 121)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    pub fn limit(&self, num_elements: usize) -> Self
    where
        Self: Sized,
    {
        self.slice(0, num_elements)
    }

    /// Get the head of the ChunkedArray
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self
    where
        Self: Sized,
    {
        match length {
            Some(len) => self.slice(0, std::cmp::min(len, self.len())),
            None => self.slice(0, std::cmp::min(10, self.len())),
        }
    }

    /// Get the tail of the ChunkedArray
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self
    where
        Self: Sized,
    {
        let len = match length {
            Some(len) => std::cmp::min(len, self.len()),
            None => std::cmp::min(10, self.len()),
        };
        self.slice(-(len as i64), len)
    }
src/series/implementations/object.rs (line 92)
91
92
93
    fn slice(&self, offset: i64, length: usize) -> Series {
        ObjectChunked::slice(&self.0, offset, length).into_series()
    }
src/series/implementations/categorical.rs (line 178)
177
178
179
180
    fn slice(&self, offset: i64, length: usize) -> Series {
        self.with_state(false, |cats| cats.slice(offset, length))
            .into_series()
    }

Take a view of top n elements

Get the head of the ChunkedArray

Get the tail of the ChunkedArray

Extend the memory backed by this array with the values from other.

Different from ChunkedArray::append which adds chunks to this ChunkedArray extend appends the data from other to the underlying PrimitiveArray and thus may cause a reallocation.

However if this does not cause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.

Prefer extend over append when you want to do a query after a single append. For instance during online operations where you add n rows and rerun a query.

Prefer append over extend when you want to append many times before doing a query. For instance when you read in multiple files and when to store them in a single DataFrame. In the latter case finish the sequence of append operations with a rechunk.

Examples found in repository?
src/series/implementations/categorical.rs (line 194)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            let other = other.categorical()?;
            self.0.logical_mut().extend(other.logical());
            let new_rev_map = self.0.merge_categorical_map(other)?;
            // safety:
            // rev_maps are merged
            unsafe { self.0.set_rev_map(new_rev_map, false) };
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }
Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 815)
814
815
816
817
818
819
820
821
822
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
More examples
Hide additional examples
src/chunked_array/ops/full.rs (line 102)
101
102
103
    fn full_null(name: &str, length: usize) -> ListChunked {
        ListChunked::full_null_with_dtype(name, length, &DataType::Boolean)
    }
src/chunked_array/ops/mod.rs (line 653)
649
650
651
652
653
654
655
    fn new_from_index(&self, index: usize, length: usize) -> ListChunked {
        let opt_val = self.get(index);
        match opt_val {
            Some(val) => ListChunked::full(self.name(), &val, length),
            None => ListChunked::full_null_with_dtype(self.name(), length, &self.inner_dtype()),
        }
    }
src/chunked_array/builder/list.rs (line 575)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    pub fn finish(&mut self) -> ListChunked {
        let slf = std::mem::take(self);
        if slf.builder.is_empty() {
            ListChunked::full_null_with_dtype(&slf.name, 0, &slf.dtype.unwrap_or(DataType::Null))
        } else {
            let dtype = slf.dtype.map(|dt| dt.to_physical().to_arrow());
            let arr = slf.builder.finish(dtype.as_ref()).unwrap();
            let dtype = DataType::from(arr.data_type());
            let mut ca = ListChunked::from_chunks("", vec![Box::new(arr)]);

            if self.fast_explode {
                ca.set_fast_explode();
            }

            ca.field = Arc::new(Field::new(&slf.name, dtype));
            ca
        }
    }
}

pub struct AnonymousOwnedListBuilder {
    name: String,
    builder: AnonymousBuilder<'static>,
    owned: Vec<Series>,
    inner_dtype: Option<DataType>,
    fast_explode: bool,
}

impl Default for AnonymousOwnedListBuilder {
    fn default() -> Self {
        Self::new("", 0, None)
    }
}

impl ListBuilderTrait for AnonymousOwnedListBuilder {
    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.append_empty();
        } else {
            // Safety
            // we deref a raw pointer with a lifetime that is not static
            // it is safe because we also clone Series (Arc +=1) and therefore the &dyn Arrays
            // will not be dropped until the owned series are dropped
            unsafe {
                match s.dtype() {
                    #[cfg(feature = "dtype-struct")]
                    DataType::Struct(_) => {
                        self.builder.push(&*(&**s.array_ref(0) as *const dyn Array))
                    }
                    _ => {
                        self.builder
                            .push_multiple(&*(s.chunks().as_ref() as *const [ArrayRef]));
                    }
                }
            }
            // this make sure that the underlying ArrayRef's are not dropped
            self.owned.push(s.clone());
        }
    }

    #[inline]
    fn append_null(&mut self) {
        self.builder.push_null()
    }

    fn finish(&mut self) -> ListChunked {
        let slf = std::mem::take(self);
        if slf.builder.is_empty() {
            // not really empty, there were empty null list added probably e.g. []
            let real_length = slf.builder.offsets().len() - 1;
            if real_length > 0 {
                let dtype = slf.inner_dtype.unwrap_or(NULL_DTYPE).to_arrow();
                let array = new_null_array(dtype.clone(), real_length);
                let dtype = ListArray::<i64>::default_datatype(dtype);
                let array = ListArray::new(dtype, slf.builder.take_offsets().into(), array, None);
                ListChunked::from_chunks(&slf.name, vec![Box::new(array)])
            } else {
                ListChunked::full_null_with_dtype(
                    &slf.name,
                    0,
                    &slf.inner_dtype.unwrap_or(DataType::Null),
                )
            }
        } else {
            let inner_dtype = slf.inner_dtype.map(|dt| dt.to_physical().to_arrow());
            let arr = slf.builder.finish(inner_dtype.as_ref()).unwrap();
            let dtype = DataType::from(arr.data_type());
            let mut ca = ListChunked::from_chunks("", vec![Box::new(arr)]);

            if self.fast_explode {
                ca.set_fast_explode();
            }

            ca.field = Arc::new(Field::new(&slf.name, dtype));
            ca
        }
    }
src/chunked_array/ops/shift.rs (line 96)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    fn shift_and_fill(&self, periods: i64, fill_value: Option<&Series>) -> ListChunked {
        // This has its own implementation because a ListChunked cannot have a full-null without
        // knowing the inner type
        let periods = clamp(periods, -(self.len() as i64), self.len() as i64);
        let slice_offset = (-periods).max(0);
        let length = self.len() - abs(periods) as usize;
        let mut slice = self.slice(slice_offset, length);

        let fill_length = abs(periods) as usize;
        let mut fill = match fill_value {
            Some(val) => Self::full(self.name(), val, fill_length),
            None => {
                ListChunked::full_null_with_dtype(self.name(), fill_length, &self.inner_dtype())
            }
        };

        if periods < 0 {
            slice.append(&fill).unwrap();
            slice
        } else {
            fill.append(&slice).unwrap();
            fill
        }
    }
src/chunked_array/upstream_traits.rs (line 564)
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    fn from_par_iter<I>(iter: I) -> Self
    where
        I: IntoParallelIterator<Item = Option<Series>>,
    {
        let mut dtype = None;
        let vectors = collect_into_linked_list(iter);

        let list_capacity: usize = get_capacity_from_par_results(&vectors);
        let value_capacity = vectors
            .iter()
            .map(|list| {
                list.iter()
                    .map(|opt_s| {
                        opt_s
                            .as_ref()
                            .map(|s| {
                                if dtype.is_none() && !matches!(s.dtype(), DataType::Null) {
                                    dtype = Some(s.dtype().clone())
                                }
                                s.len()
                            })
                            .unwrap_or(0)
                    })
                    .sum::<usize>()
            })
            .sum::<usize>();

        match &dtype {
            #[cfg(feature = "object")]
            Some(DataType::Object(_)) => {
                let s = vectors
                    .iter()
                    .flatten()
                    .find_map(|opt_s| opt_s.as_ref())
                    .unwrap();
                let mut builder = s.get_list_builder("collected", value_capacity, list_capacity);

                for v in vectors {
                    for val in v {
                        builder.append_opt_series(val.as_ref());
                    }
                }
                builder.finish()
            }
            Some(dtype) => {
                let mut builder =
                    get_list_builder(dtype, value_capacity, list_capacity, "collected").unwrap();
                for v in &vectors {
                    for val in v {
                        builder.append_opt_series(val.as_ref());
                    }
                }
                builder.finish()
            }
            None => ListChunked::full_null_with_dtype("collected", list_capacity, &DataType::Null),
        }
    }

Apply a rolling custom function. This is pretty slow because of dynamic dispatch.

Check if all values are true

Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 559)
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    fn min(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.all() {
            Some(1)
        } else {
            Some(0)
        }
    }

    fn max(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.any() {
            Some(1)
        } else {
            Some(0)
        }
    }
    fn mean(&self) -> Option<f64> {
        self.sum()
            .map(|sum| sum as f64 / (self.len() - self.null_count()) as f64)
    }
}

// Needs the same trait bounds as the implementation of ChunkedArray<T> of dyn Series
impl<T> ChunkAggSeries for ChunkedArray<T>
where
    T: PolarsNumericType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
    ChunkedArray<T>: IntoSeries,
{
    fn sum_as_series(&self) -> Series {
        let v = self.sum();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = self.max();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = self.min();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

    fn prod_as_series(&self) -> Series {
        let mut prod = None;
        for opt_v in self.into_iter() {
            match (prod, opt_v) {
                (_, None) => return Self::full_null(self.name(), 1).into_series(),
                (None, Some(v)) => prod = Some(v),
                (Some(p), Some(v)) => prod = Some(p * v),
            }
        }
        Self::from_slice_options(self.name(), &[prod]).into_series()
    }
}

macro_rules! impl_as_series {
    ($self:expr, $agg:ident, $ty: ty) => {{
        let v = $self.$agg();
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
    ($self:expr, $agg:ident, $arg:expr, $ty: ty) => {{
        let v = $self.$agg($arg);
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
}

impl<T> VarAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

impl VarAggSeries for Float32Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float32Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float32Chunked)
    }
}

impl VarAggSeries for Float64Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

macro_rules! impl_quantile_as_series {
    ($self:expr, $agg:ident, $ty: ty, $qtl:expr, $opt:expr) => {{
        let v = $self.$agg($qtl, $opt)?;
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        Ok(ca.into_series())
    }};
}

impl<T> QuantileAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl QuantileAggSeries for Float32Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float32Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float32Chunked)
    }
}

impl QuantileAggSeries for Float64Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl ChunkAggSeries for BooleanChunked {
    fn sum_as_series(&self) -> Series {
        let v = ChunkAgg::sum(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = ChunkAgg::max(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = ChunkAgg::min(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
}

impl Utf8Chunked {
    pub(crate) fn max_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(self.len() - 1),
            IsSorted::Descending => self.get(0),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_string)
                .fold_first_(|acc, v| if acc > v { acc } else { v }),
        }
    }
    pub(crate) fn min_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(0),
            IsSorted::Descending => self.get(self.len() - 1),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_string)
                .fold_first_(|acc, v| if acc < v { acc } else { v }),
        }
    }
}

impl ChunkAggSeries for Utf8Chunked {
    fn sum_as_series(&self) -> Series {
        Utf8Chunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(self.name(), &[self.max_str()])
    }
    fn min_as_series(&self) -> Series {
        Series::new(self.name(), &[self.min_str()])
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkAggSeries for BinaryChunked {
    fn sum_as_series(&self) -> Series {
        BinaryChunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::max_binary)
                .fold_first_(|acc, v| if acc > v { acc } else { v })],
        )
    }
    fn min_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::min_binary)
                .fold_first_(|acc, v| if acc < v { acc } else { v })],
        )
    }
}

impl ChunkAggSeries for ListChunked {
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkAggSeries for ObjectChunked<T> {}

impl<T> ArgAgg for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn arg_min(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(0),
            IsSorted::Descending => Some(self.len()),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 > val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
    fn arg_max(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(self.len()),
            IsSorted::Descending => Some(0),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 < val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
}

impl ArgAgg for BooleanChunked {
    fn arg_min(&self) -> Option<usize> {
        if self.is_empty() || self.null_count() == self.len() {
            None
        } else if self.all() {
            Some(0)
        } else {
            self.into_iter()
                .position(|opt_val| matches!(opt_val, Some(false)))
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/is_in.rs (line 335)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if self.dtype() == &**dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    // safety: we know the iterators len
                    unsafe {
                        other
                            .list()?
                            .amortized_iter()
                            .map(|opt_s| {
                                opt_s.map(|s| {
                                    let ca = s.as_ref().unpack::<BooleanType>().unwrap();
                                    ca.into_iter().any(|a| a == value)
                                }) == Some(true)
                            })
                            .trust_my_length(other.len())
                            .collect_trusted()
                    }
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BooleanType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Boolean => {
                let other = other.bool().unwrap();
                let has_true = other.any();
                let has_false = !other.all();
                Ok(self.apply(|v| if v { has_true } else { has_false }))
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }

Check if any value is true

Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 570)
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    fn max(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.any() {
            Some(1)
        } else {
            Some(0)
        }
    }
    fn mean(&self) -> Option<f64> {
        self.sum()
            .map(|sum| sum as f64 / (self.len() - self.null_count()) as f64)
    }
}

// Needs the same trait bounds as the implementation of ChunkedArray<T> of dyn Series
impl<T> ChunkAggSeries for ChunkedArray<T>
where
    T: PolarsNumericType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
    ChunkedArray<T>: IntoSeries,
{
    fn sum_as_series(&self) -> Series {
        let v = self.sum();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = self.max();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = self.min();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

    fn prod_as_series(&self) -> Series {
        let mut prod = None;
        for opt_v in self.into_iter() {
            match (prod, opt_v) {
                (_, None) => return Self::full_null(self.name(), 1).into_series(),
                (None, Some(v)) => prod = Some(v),
                (Some(p), Some(v)) => prod = Some(p * v),
            }
        }
        Self::from_slice_options(self.name(), &[prod]).into_series()
    }
}

macro_rules! impl_as_series {
    ($self:expr, $agg:ident, $ty: ty) => {{
        let v = $self.$agg();
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
    ($self:expr, $agg:ident, $arg:expr, $ty: ty) => {{
        let v = $self.$agg($arg);
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
}

impl<T> VarAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

impl VarAggSeries for Float32Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float32Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float32Chunked)
    }
}

impl VarAggSeries for Float64Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

macro_rules! impl_quantile_as_series {
    ($self:expr, $agg:ident, $ty: ty, $qtl:expr, $opt:expr) => {{
        let v = $self.$agg($qtl, $opt)?;
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        Ok(ca.into_series())
    }};
}

impl<T> QuantileAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl QuantileAggSeries for Float32Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float32Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float32Chunked)
    }
}

impl QuantileAggSeries for Float64Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl ChunkAggSeries for BooleanChunked {
    fn sum_as_series(&self) -> Series {
        let v = ChunkAgg::sum(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = ChunkAgg::max(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = ChunkAgg::min(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
}

impl Utf8Chunked {
    pub(crate) fn max_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(self.len() - 1),
            IsSorted::Descending => self.get(0),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_string)
                .fold_first_(|acc, v| if acc > v { acc } else { v }),
        }
    }
    pub(crate) fn min_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(0),
            IsSorted::Descending => self.get(self.len() - 1),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_string)
                .fold_first_(|acc, v| if acc < v { acc } else { v }),
        }
    }
}

impl ChunkAggSeries for Utf8Chunked {
    fn sum_as_series(&self) -> Series {
        Utf8Chunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(self.name(), &[self.max_str()])
    }
    fn min_as_series(&self) -> Series {
        Series::new(self.name(), &[self.min_str()])
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkAggSeries for BinaryChunked {
    fn sum_as_series(&self) -> Series {
        BinaryChunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::max_binary)
                .fold_first_(|acc, v| if acc > v { acc } else { v })],
        )
    }
    fn min_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::min_binary)
                .fold_first_(|acc, v| if acc < v { acc } else { v })],
        )
    }
}

impl ChunkAggSeries for ListChunked {
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkAggSeries for ObjectChunked<T> {}

impl<T> ArgAgg for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn arg_min(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(0),
            IsSorted::Descending => Some(self.len()),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 > val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
    fn arg_max(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(self.len()),
            IsSorted::Descending => Some(0),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 < val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
}

impl ArgAgg for BooleanChunked {
    fn arg_min(&self) -> Option<usize> {
        if self.is_empty() || self.null_count() == self.len() {
            None
        } else if self.all() {
            Some(0)
        } else {
            self.into_iter()
                .position(|opt_val| matches!(opt_val, Some(false)))
        }
    }
    fn arg_max(&self) -> Option<usize> {
        if self.is_empty() || self.null_count() == self.len() {
            None
        } else if self.any() {
            self.into_iter()
                .position(|opt_val| matches!(opt_val, Some(true)))
        } else {
            Some(0)
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/is_in.rs (line 334)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if self.dtype() == &**dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    // safety: we know the iterators len
                    unsafe {
                        other
                            .list()?
                            .amortized_iter()
                            .map(|opt_s| {
                                opt_s.map(|s| {
                                    let ca = s.as_ref().unpack::<BooleanType>().unwrap();
                                    ca.into_iter().any(|a| a == value)
                                }) == Some(true)
                            })
                            .trust_my_length(other.len())
                            .collect_trusted()
                    }
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BooleanType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Boolean => {
                let other = other.bool().unwrap();
                let has_true = other.any();
                let has_false = !other.all();
                Ok(self.apply(|v| if v { has_true } else { has_false }))
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
Examples found in repository?
src/series/mod.rs (line 308)
306
307
308
309
310
311
312
313
314
315
316
317
318
    pub fn is_nan(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_nan()),
            DataType::Float64 => Ok(self.f64().unwrap().is_nan()),
            _ => Err(PolarsError::InvalidOperation(
                format!(
                    "'is_nan' not supported for series with dtype {:?}",
                    self.dtype()
                )
                .into(),
            )),
        }
    }
Examples found in repository?
src/series/mod.rs (line 323)
321
322
323
324
325
326
327
328
329
330
331
332
333
    pub fn is_not_nan(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_not_nan()),
            DataType::Float64 => Ok(self.f64().unwrap().is_not_nan()),
            _ => Err(PolarsError::InvalidOperation(
                format!(
                    "'is_not_nan' not supported for series with dtype {:?}",
                    self.dtype()
                )
                .into(),
            )),
        }
    }
Examples found in repository?
src/series/mod.rs (line 338)
336
337
338
339
340
341
342
343
344
345
346
347
348
    pub fn is_finite(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_finite()),
            DataType::Float64 => Ok(self.f64().unwrap().is_finite()),
            _ => Err(PolarsError::InvalidOperation(
                format!(
                    "'is_finite' not supported for series with dtype {:?}",
                    self.dtype()
                )
                .into(),
            )),
        }
    }
Examples found in repository?
src/series/mod.rs (line 353)
351
352
353
354
355
356
357
358
359
360
361
362
363
    pub fn is_infinite(&self) -> PolarsResult<BooleanChunked> {
        match self.dtype() {
            DataType::Float32 => Ok(self.f32().unwrap().is_infinite()),
            DataType::Float64 => Ok(self.f64().unwrap().is_infinite()),
            _ => Err(PolarsError::InvalidOperation(
                format!(
                    "'is_infinite' not supported for series with dtype {:?}",
                    self.dtype()
                )
                .into(),
            )),
        }
    }

Convert missing values to NaN values.

Examples found in repository?
src/chunked_array/ndarray.rs (line 112)
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let columns = self
            .get_columns()
            .par_iter()
            .map(|s| {
                let s = s.cast(&N::get_dtype())?;
                let s = match s.dtype() {
                    DataType::Float32 => {
                        let ca = s.f32().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    DataType::Float64 => {
                        let ca = s.f64().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    _ => s,
                };
                Ok(s.rechunk())
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let shape = self.shape();
        let height = self.height();
        let mut membuf = Vec::with_capacity(shape.0 * shape.1);
        let ptr = membuf.as_ptr() as usize;

        columns.par_iter().enumerate().map(|(col_idx, s)| {
            if s.null_count() != 0 {
                return Err(PolarsError::ComputeError(
                    "Creation of ndarray with null values is not supported. Consider using floats and NaNs".into(),
                ));
            }

            // this is an Arc clone if already of type N
            let s = s.cast(&N::get_dtype())?;
            let ca = s.unpack::<N>()?;
            let vals = ca.cont_slice().unwrap();

            // Safety:
            // we get parallel access to the vector
            // but we make sure that we don't get aliased access by offsetting the column indices + length
            unsafe {
                let offset_ptr = (ptr as *mut N::Native).add(col_idx * height) ;
                // Safety:
                // this is uninitialized memory, so we must never read from this data
                // copy_from_slice does not read
                let buf = std::slice::from_raw_parts_mut(offset_ptr, height);
                buf.copy_from_slice(vals)
            }

            Ok(())
        }).collect::<PolarsResult<Vec<_>>>()?;

        // Safety:
        // we have written all data, so we can now safely set length
        unsafe {
            membuf.set_len(shape.0 * shape.1);
        }
        let ndarr = Array2::from_shape_vec((shape.1, shape.0), membuf).unwrap();
        Ok(ndarr.reversed_axes())
    }
Available on crate feature ndarray only.

If data is aligned in a single chunk and has no Null values a zero copy view is returned as an ndarray

Examples found in repository?
src/chunked_array/ndarray.rs (line 45)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        if self.null_count() != 0 {
            Err(PolarsError::ComputeError(
                "Creation of ndarray with null values is not supported.".into(),
            ))
        } else {
            let mut iter = self.into_no_null_iter();

            let mut ndarray;
            let width;

            // first iteration determine the size
            if let Some(series) = iter.next() {
                width = series.len();

                let mut row_idx = 0;
                ndarray = ndarray::Array::uninit((self.len(), width));

                let series = series.cast(&N::get_dtype())?;
                let ca = series.unpack::<N>()?;
                let a = ca.to_ndarray()?;
                let mut row = ndarray.slice_mut(s![row_idx, ..]);
                a.assign_to(&mut row);
                row_idx += 1;

                for series in iter {
                    if series.len() != width {
                        return Err(PolarsError::ShapeMisMatch(
                            "Could not create a 2D array. Series have different lengths".into(),
                        ));
                    }
                    let series = series.cast(&N::get_dtype())?;
                    let ca = series.unpack::<N>()?;
                    let a = ca.to_ndarray()?;
                    let mut row = ndarray.slice_mut(s![row_idx, ..]);
                    a.assign_to(&mut row);
                    row_idx += 1;
                }

                debug_assert_eq!(row_idx, self.len());
                // Safety:
                // We have assigned to every row and element of the array
                unsafe { Ok(ndarray.assume_init()) }
            } else {
                Err(PolarsError::NoData(
                    "cannot create ndarray of empty ListChunked".into(),
                ))
            }
        }
    }
Available on crate feature ndarray only.

If all nested Series have the same length, a 2 dimensional ndarray::Array is returned.

Create a new ChunkedArray from existing chunks.

Examples found in repository?
src/chunked_array/from.rs (line 96)
94
95
96
97
    pub fn from_vec(name: &str, v: Vec<T::Native>) -> Self {
        let arr = to_array::<T>(v, None);
        Self::from_chunks(name, vec![arr])
    }
More examples
Hide additional examples
src/chunked_array/ops/full.rs (line 26)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(T::get_dtype().to_arrow(), length);
        ChunkedArray::from_chunks(name, vec![arr])
    }
}
impl ChunkFull<bool> for BooleanChunked {
    fn full(name: &str, value: bool, length: usize) -> Self {
        let mut bits = MutableBitmap::with_capacity(length);
        bits.extend_constant(length, value);
        let mut out: BooleanChunked =
            (name, BooleanArray::from_data_default(bits.into(), None)).into();
        out.set_sorted2(IsSorted::Ascending);
        out
    }
}

impl ChunkFullNull for BooleanChunked {
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(DataType::Boolean.to_arrow(), length);
        BooleanChunked::from_chunks(name, vec![arr])
    }
}

impl<'a> ChunkFull<&'a str> for Utf8Chunked {
    fn full(name: &str, value: &'a str, length: usize) -> Self {
        let mut builder = Utf8ChunkedBuilder::new(name, length, length * value.len());

        for _ in 0..length {
            builder.append_value(value);
        }
        let mut out = builder.finish();
        out.set_sorted2(IsSorted::Ascending);
        out
    }
}

impl ChunkFullNull for Utf8Chunked {
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(DataType::Utf8.to_arrow(), length);
        Utf8Chunked::from_chunks(name, vec![arr])
    }
}

#[cfg(feature = "dtype-binary")]
impl<'a> ChunkFull<&'a [u8]> for BinaryChunked {
    fn full(name: &str, value: &'a [u8], length: usize) -> Self {
        let mut builder = BinaryChunkedBuilder::new(name, length, length * value.len());

        for _ in 0..length {
            builder.append_value(value);
        }
        let mut out = builder.finish();
        out.set_sorted2(IsSorted::Ascending);
        out
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkFullNull for BinaryChunked {
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(DataType::Binary.to_arrow(), length);
        BinaryChunked::from_chunks(name, vec![arr])
    }
}

impl ChunkFull<&Series> for ListChunked {
    fn full(name: &str, value: &Series, length: usize) -> ListChunked {
        let mut builder =
            get_list_builder(value.dtype(), value.len() * length, length, name).unwrap();
        for _ in 0..length {
            builder.append_series(value)
        }
        builder.finish()
    }
}

impl ChunkFullNull for ListChunked {
    fn full_null(name: &str, length: usize) -> ListChunked {
        ListChunked::full_null_with_dtype(name, length, &DataType::Boolean)
    }
}

impl ListChunked {
    pub fn full_null_with_dtype(name: &str, length: usize, inner_dtype: &DataType) -> ListChunked {
        let arr = new_null_array(
            ArrowDataType::LargeList(Box::new(ArrowField::new(
                "item",
                inner_dtype.to_arrow(),
                true,
            ))),
            length,
        );
        ListChunked::from_chunks(name, vec![arr])
    }
src/chunked_array/builder/from.rs (line 10)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    fn from(tpl: (&str, PrimitiveArray<T::Native>)) -> Self {
        let name = tpl.0;
        let arr = tpl.1;

        ChunkedArray::from_chunks(name, vec![Box::new(arr)])
    }
}

impl<T: PolarsNumericType> From<&[T::Native]> for ChunkedArray<T> {
    fn from(slice: &[T::Native]) -> Self {
        ChunkedArray::from_slice("", slice)
    }
}

impl From<(&str, BooleanArray)> for BooleanChunked {
    fn from(tpl: (&str, BooleanArray)) -> Self {
        let name = tpl.0;
        let arr = tpl.1;

        ChunkedArray::from_chunks(name, vec![Box::new(arr)])
    }
}

impl From<BooleanArray> for BooleanChunked {
    fn from(arr: BooleanArray) -> Self {
        ChunkedArray::from_chunks("", vec![Box::new(arr)])
    }
}

impl From<(&str, Utf8Array<i64>)> for Utf8Chunked {
    fn from(tpl: (&str, Utf8Array<i64>)) -> Self {
        let name = tpl.0;
        let arr = tpl.1;

        ChunkedArray::from_chunks(name, vec![Box::new(arr)])
    }
src/chunked_array/float.rs (line 32)
27
28
29
30
31
32
33
    pub fn none_to_nan(&self) -> Self {
        let chunks = self
            .downcast_iter()
            .map(|arr| Box::new(set_at_nulls(arr, T::Native::nan())) as ArrayRef)
            .collect();
        ChunkedArray::from_chunks(self.name(), chunks)
    }
src/chunked_array/builder/mod.rs (line 52)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    fn from_iter<I: IntoIterator<Item = (Vec<T::Native>, Option<Bitmap>)>>(iter: I) -> Self {
        let mut chunks = vec![];

        for (values, opt_buffer) in iter {
            chunks.push(to_array::<T>(values, opt_buffer))
        }
        ChunkedArray::from_chunks("from_iter", chunks)
    }
}

pub trait NewChunkedArray<T, N> {
    fn from_slice(name: &str, v: &[N]) -> Self;
    fn from_slice_options(name: &str, opt_v: &[Option<N>]) -> Self;

    /// Create a new ChunkedArray from an iterator.
    fn from_iter_options(name: &str, it: impl Iterator<Item = Option<N>>) -> Self;

    /// Create a new ChunkedArray from an iterator.
    fn from_iter_values(name: &str, it: impl Iterator<Item = N>) -> Self;
}

impl<T> NewChunkedArray<T, T::Native> for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn from_slice(name: &str, v: &[T::Native]) -> Self {
        let arr = PrimitiveArray::<T::Native>::from_slice(v).to(T::get_dtype().to_arrow());
        ChunkedArray::from_chunks(name, vec![Box::new(arr)])
    }

    fn from_slice_options(name: &str, opt_v: &[Option<T::Native>]) -> Self {
        Self::from_iter_options(name, opt_v.iter().copied())
    }

    fn from_iter_options(
        name: &str,
        it: impl Iterator<Item = Option<T::Native>>,
    ) -> ChunkedArray<T> {
        let mut builder = PrimitiveChunkedBuilder::new(name, get_iter_capacity(&it));
        it.for_each(|opt| builder.append_option(opt));
        builder.finish()
    }

    /// Create a new ChunkedArray from an iterator.
    fn from_iter_values(name: &str, it: impl Iterator<Item = T::Native>) -> ChunkedArray<T> {
        let ca: NoNull<ChunkedArray<_>> = it.collect();
        let mut ca = ca.into_inner();
        ca.rename(name);
        ca
    }
}

impl NewChunkedArray<BooleanType, bool> for BooleanChunked {
    fn from_slice(name: &str, v: &[bool]) -> Self {
        Self::from_iter_values(name, v.iter().copied())
    }

    fn from_slice_options(name: &str, opt_v: &[Option<bool>]) -> Self {
        Self::from_iter_options(name, opt_v.iter().copied())
    }

    fn from_iter_options(
        name: &str,
        it: impl Iterator<Item = Option<bool>>,
    ) -> ChunkedArray<BooleanType> {
        let mut builder = BooleanChunkedBuilder::new(name, get_iter_capacity(&it));
        it.for_each(|opt| builder.append_option(opt));
        builder.finish()
    }

    /// Create a new ChunkedArray from an iterator.
    fn from_iter_values(name: &str, it: impl Iterator<Item = bool>) -> ChunkedArray<BooleanType> {
        let mut ca: ChunkedArray<_> = it.collect();
        ca.rename(name);
        ca
    }
}

impl<S> NewChunkedArray<Utf8Type, S> for Utf8Chunked
where
    S: AsRef<str>,
{
    fn from_slice(name: &str, v: &[S]) -> Self {
        let values_size = v.iter().fold(0, |acc, s| acc + s.as_ref().len());

        let mut builder = MutableUtf8Array::<i64>::with_capacities(v.len(), values_size);
        builder.extend_trusted_len_values(v.iter().map(|s| s.as_ref()));

        let chunks = vec![builder.as_box()];
        ChunkedArray::from_chunks(name, chunks)
    }

    fn from_slice_options(name: &str, opt_v: &[Option<S>]) -> Self {
        let values_size = opt_v.iter().fold(0, |acc, s| match s {
            Some(s) => acc + s.as_ref().len(),
            None => acc,
        });
        let mut builder = MutableUtf8Array::<i64>::with_capacities(opt_v.len(), values_size);
        builder.extend_trusted_len(opt_v.iter().map(|s| s.as_ref()));

        let chunks = vec![builder.as_box()];
        ChunkedArray::from_chunks(name, chunks)
    }
src/chunked_array/trusted_len.rs (line 21)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    fn from_iter_trusted_length<I: IntoIterator<Item = Option<T::Native>>>(iter: I) -> Self {
        let iter = iter.into_iter();

        let arr = unsafe {
            PrimitiveArray::from_trusted_len_iter_unchecked(iter).to(T::get_dtype().to_arrow())
        };
        ChunkedArray::from_chunks("", vec![Box::new(arr)])
    }
}

// NoNull is only a wrapper needed for specialization
impl<T> FromTrustedLenIterator<T::Native> for NoNull<ChunkedArray<T>>
where
    T: PolarsNumericType,
{
    // We use Vec because it is way faster than Arrows builder. We can do this because we
    // know we don't have null values.
    fn from_iter_trusted_length<I: IntoIterator<Item = T::Native>>(iter: I) -> Self {
        let iter = iter.into_iter();
        let values = unsafe { Vec::from_trusted_len_iter_unchecked(iter) }.into();
        let arr = PrimitiveArray::new(T::get_dtype().to_arrow(), values, None);

        NoNull::new(ChunkedArray::from_chunks("", vec![Box::new(arr)]))
    }
}

impl<T> FromIteratorReversed<Option<T::Native>> for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn from_trusted_len_iter_rev<I: TrustedLen<Item = Option<T::Native>>>(iter: I) -> Self {
        let size = iter.size_hint().1.unwrap();

        let mut vals: Vec<T::Native> = Vec::with_capacity(size);
        let mut validity = MutableBitmap::with_capacity(size);
        validity.extend_constant(size, true);
        let validity_ptr = validity.as_slice().as_ptr() as *mut u8;
        unsafe {
            // set to end of buffer
            let mut ptr = vals.as_mut_ptr().add(size);
            let mut offset = size;

            iter.for_each(|opt_item| {
                offset -= 1;
                ptr = ptr.sub(1);
                match opt_item {
                    Some(item) => {
                        std::ptr::write(ptr, item);
                    }
                    None => {
                        std::ptr::write(ptr, T::Native::default());
                        unset_bit_raw(validity_ptr, offset)
                    }
                }
            });
            vals.set_len(size)
        }
        let arr = PrimitiveArray::new(
            T::get_dtype().to_arrow(),
            vals.into(),
            Some(validity.into()),
        );
        ChunkedArray::from_chunks("", vec![Box::new(arr)])
    }
}

impl FromIteratorReversed<Option<bool>> for BooleanChunked {
    fn from_trusted_len_iter_rev<I: TrustedLen<Item = Option<bool>>>(iter: I) -> Self {
        let size = iter.size_hint().1.unwrap();

        let vals = MutableBitmap::from_len_zeroed(size);
        let mut validity = MutableBitmap::with_capacity(size);
        validity.extend_constant(size, true);
        let validity_ptr = validity.as_slice().as_ptr() as *mut u8;
        let vals_ptr = vals.as_slice().as_ptr() as *mut u8;
        unsafe {
            let mut offset = size;

            iter.for_each(|opt_item| {
                offset -= 1;
                match opt_item {
                    Some(item) => {
                        if item {
                            // set value
                            // validity bit is already true
                            set_bit_raw(vals_ptr, offset);
                        }
                    }
                    None => {
                        // unset validity bit
                        unset_bit_raw(validity_ptr, offset)
                    }
                }
            });
        }
        let arr = BooleanArray::new(ArrowDataType::Boolean, vals.into(), Some(validity.into()));
        ChunkedArray::from_chunks("", vec![Box::new(arr)])
    }
}

impl<T> FromIteratorReversed<T::Native> for NoNull<ChunkedArray<T>>
where
    T: PolarsNumericType,
{
    fn from_trusted_len_iter_rev<I: TrustedLen<Item = T::Native>>(iter: I) -> Self {
        let size = iter.size_hint().1.unwrap();

        let mut vals: Vec<T::Native> = Vec::with_capacity(size);
        unsafe {
            // set to end of buffer
            let mut ptr = vals.as_mut_ptr().add(size);

            iter.for_each(|item| {
                ptr = ptr.sub(1);
                std::ptr::write(ptr, item);
            });
            vals.set_len(size)
        }
        let arr = PrimitiveArray::new(T::get_dtype().to_arrow(), vals.into(), None);
        NoNull::new(ChunkedArray::from_chunks("", vec![Box::new(arr)]))
    }
}

impl<Ptr> FromTrustedLenIterator<Ptr> for ListChunked
where
    Ptr: Borrow<Series>,
{
    fn from_iter_trusted_length<I: IntoIterator<Item = Ptr>>(iter: I) -> Self {
        let iter = iter.into_iter();
        iter.collect()
    }
}

impl FromTrustedLenIterator<Option<Series>> for ListChunked {
    fn from_iter_trusted_length<I: IntoIterator<Item = Option<Series>>>(iter: I) -> Self {
        let iter = iter.into_iter();
        iter.collect()
    }
}

impl FromTrustedLenIterator<Option<bool>> for ChunkedArray<BooleanType> {
    fn from_iter_trusted_length<I: IntoIterator<Item = Option<bool>>>(iter: I) -> Self
    where
        I::IntoIter: TrustedLen,
    {
        let iter = iter.into_iter();
        let arr: BooleanArray = iter.collect_trusted();

        Self::from_chunks("", vec![Box::new(arr)])
    }
}

impl FromTrustedLenIterator<bool> for BooleanChunked {
    fn from_iter_trusted_length<I: IntoIterator<Item = bool>>(iter: I) -> Self
    where
        I::IntoIter: TrustedLen,
    {
        let iter = iter.into_iter();
        let arr: BooleanArray = iter.collect_trusted();

        Self::from_chunks("", vec![Box::new(arr)])
    }

Create a new ChunkedArray by taking ownership of the Vec. This operation is zero copy.

Examples found in repository?
src/named_from.rs (line 440)
439
440
441
    pub fn new_vec(name: &str, v: Vec<T::Native>) -> Self {
        ChunkedArray::from_vec(name, v)
    }
More examples
Hide additional examples
src/chunked_array/ops/unique/mod.rs (line 229)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        Ok(IdxCa::from_vec(self.name(), arg_unique_ca!(self)))
    }

    fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, false)
    }

    fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, true)
    }

    fn n_unique(&self) -> PolarsResult<usize> {
        if self.null_count() > 0 {
            Ok(fill_set(self.into_iter().flatten()).len() + 1)
        } else {
            Ok(fill_set(self.into_no_null_iter()).len())
        }
    }

    #[cfg(feature = "mode")]
    fn mode(&self) -> PolarsResult<Self> {
        Ok(mode(self))
    }
}

impl ChunkUnique<Utf8Type> for Utf8Chunked {
    fn unique(&self) -> PolarsResult<Self> {
        match self.null_count() {
            0 => {
                let mut set =
                    PlHashSet::with_capacity(std::cmp::min(HASHMAP_INIT_SIZE, self.len()));
                for arr in self.downcast_iter() {
                    set.extend(arr.values_iter())
                }
                Ok(Utf8Chunked::from_iter_values(
                    self.name(),
                    set.iter().copied(),
                ))
            }
            _ => {
                let mut set =
                    PlHashSet::with_capacity(std::cmp::min(HASHMAP_INIT_SIZE, self.len()));
                for arr in self.downcast_iter() {
                    set.extend(arr.iter())
                }
                Ok(Utf8Chunked::from_iter_options(
                    self.name(),
                    set.iter().copied(),
                ))
            }
        }
    }

    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        Ok(IdxCa::from_vec(self.name(), arg_unique_ca!(self)))
    }

    fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, false)
    }
    fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, true)
    }

    fn n_unique(&self) -> PolarsResult<usize> {
        if self.null_count() > 0 {
            Ok(fill_set(self.into_iter().flatten()).len() + 1)
        } else {
            Ok(fill_set(self.into_no_null_iter()).len())
        }
    }

    #[cfg(feature = "mode")]
    fn mode(&self) -> PolarsResult<Self> {
        Ok(mode(self))
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkUnique<BinaryType> for BinaryChunked {
    fn unique(&self) -> PolarsResult<Self> {
        match self.null_count() {
            0 => {
                let mut set =
                    PlHashSet::with_capacity(std::cmp::min(HASHMAP_INIT_SIZE, self.len()));
                for arr in self.downcast_iter() {
                    set.extend(arr.values_iter())
                }
                Ok(BinaryChunked::from_iter_values(
                    self.name(),
                    set.iter().copied(),
                ))
            }
            _ => {
                let mut set =
                    PlHashSet::with_capacity(std::cmp::min(HASHMAP_INIT_SIZE, self.len()));
                for arr in self.downcast_iter() {
                    set.extend(arr.iter())
                }
                Ok(BinaryChunked::from_iter_options(
                    self.name(),
                    set.iter().copied(),
                ))
            }
        }
    }

    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        Ok(IdxCa::from_vec(self.name(), arg_unique_ca!(self)))
    }

    fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, false)
    }
    fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        is_unique_duplicated!(self, true)
    }

    fn n_unique(&self) -> PolarsResult<usize> {
        if self.null_count() > 0 {
            Ok(fill_set(self.into_iter().flatten()).len() + 1)
        } else {
            Ok(fill_set(self.into_no_null_iter()).len())
        }
    }

    #[cfg(feature = "mode")]
    fn mode(&self) -> PolarsResult<Self> {
        Ok(mode(self))
    }
}

impl ChunkUnique<BooleanType> for BooleanChunked {
    fn unique(&self) -> PolarsResult<Self> {
        // can be None, Some(true), Some(false)
        let mut unique = Vec::with_capacity(3);
        for v in self {
            if unique.len() == 3 {
                break;
            }
            if !unique.contains(&v) {
                unique.push(v)
            }
        }
        Ok(ChunkedArray::new(self.name(), &unique))
    }

    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        Ok(IdxCa::from_vec(self.name(), arg_unique_ca!(self)))
    }
src/chunked_array/ops/full.rs (line 14)
12
13
14
15
16
17
    fn full(name: &str, value: T::Native, length: usize) -> Self {
        let data = vec![value; length];
        let mut out = ChunkedArray::from_vec(name, data);
        out.set_sorted2(IsSorted::Ascending);
        out
    }
src/series/mod.rs (line 150)
146
147
148
149
150
151
152
    fn hash<H: Hasher>(&self, state: &mut H) {
        let rs = RandomState::with_seeds(0, 0, 0, 0);
        let mut h = vec![];
        self.0.vec_hash(rs, &mut h).unwrap();
        let h = UInt64Chunked::from_vec("", h).sum();
        h.hash(state)
    }
src/chunked_array/upstream_traits.rs (line 78)
75
76
77
78
79
    fn from_iter<I: IntoIterator<Item = T::Native>>(iter: I) -> Self {
        // 2021-02-07: aligned vec was ~2x faster than arrow collect.
        let av = iter.into_iter().collect::<Vec<T::Native>>();
        NoNull::new(ChunkedArray::from_vec("", av))
    }
src/frame/mod.rs (lines 369-372)
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
    pub fn with_row_count(&self, name: &str, offset: Option<IdxSize>) -> PolarsResult<Self> {
        let mut columns = Vec::with_capacity(self.columns.len() + 1);
        let offset = offset.unwrap_or(0);

        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);
        columns.push(ca.into_series());

        columns.extend_from_slice(&self.columns);
        DataFrame::new(columns)
    }

    /// Add a row count in place.
    pub fn with_row_count_mut(&mut self, name: &str, offset: Option<IdxSize>) -> &mut Self {
        let offset = offset.unwrap_or(0);
        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);

        self.columns.insert(0, ca.into_series());
        self
    }

    /// Create a new `DataFrame` but does not check the length or duplicate occurrence of the `Series`.
    ///
    /// It is advised to use [Series::new](Series::new) in favor of this method.
    ///
    /// # Panic
    /// It is the callers responsibility to uphold the contract of all `Series`
    /// having an equal length, if not this may panic down the line.
    pub const fn new_no_checks(columns: Vec<Series>) -> DataFrame {
        DataFrame { columns }
    }

    /// Aggregate all chunks to contiguous memory.
    #[must_use]
    pub fn agg_chunks(&self) -> Self {
        // Don't parallelize this. Memory overhead
        let f = |s: &Series| s.rechunk();
        let cols = self.columns.iter().map(f).collect();
        DataFrame::new_no_checks(cols)
    }

    /// Shrink the capacity of this DataFrame to fit its length.
    pub fn shrink_to_fit(&mut self) {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            s.shrink_to_fit();
        }
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk.
    pub fn as_single_chunk(&mut self) -> &mut Self {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            *s = s.rechunk();
        }
        self
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk in parallel.
    /// This may lead to more peak memory consumption.
    pub fn as_single_chunk_par(&mut self) -> &mut Self {
        if self.columns.iter().any(|s| s.n_chunks() > 1) {
            self.columns = self.apply_columns_par(&|s| s.rechunk());
        }
        self
    }

    /// Estimates of the DataFrames columns consist of the same chunk sizes
    pub fn should_rechunk(&self) -> bool {
        let hb = RandomState::default();
        let hb2 = RandomState::with_seeds(392498, 98132457, 0, 412059);
        !self
            .columns
            .iter()
            // The idea is that we create a hash of the chunk lengths.
            // Consisting of the combined hash + the sum (assuming collision probability is nihil)
            // if not, we can add more hashes or at worst case we do an extra rechunk.
            // the old solution to this was clone all lengths to a vec and compare the vecs
            .map(|s| {
                s.chunk_lengths().map(|i| i as u64).fold(
                    (0u64, 0u64, s.n_chunks()),
                    |(lhash, lh2, n), rval| {
                        let mut h = hb.build_hasher();
                        rval.hash(&mut h);
                        let rhash = h.finish();
                        let mut h = hb2.build_hasher();
                        rval.hash(&mut h);
                        let rh2 = h.finish();
                        (
                            _boost_hash_combine(lhash, rhash),
                            _boost_hash_combine(lh2, rh2),
                            n,
                        )
                    },
                )
            })
            .all_equal()
    }

    /// Ensure all the chunks in the DataFrame are aligned.
    pub fn rechunk(&mut self) -> &mut Self {
        if self.should_rechunk() {
            self.as_single_chunk_par()
        } else {
            self
        }
    }

    /// Get the `DataFrame` schema.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Thing" => &["Observable universe", "Human stupidity"],
    ///                         "Diameter (m)" => &[8.8e26, f64::INFINITY])?;
    ///
    /// let f1: Field = Field::new("Thing", DataType::Utf8);
    /// let f2: Field = Field::new("Diameter (m)", DataType::Float64);
    /// let sc: Schema = Schema::from(vec![f1, f2].into_iter());
    ///
    /// assert_eq!(df.schema(), sc);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn schema(&self) -> Schema {
        Schema::from(self.iter().map(|s| s.field().into_owned()))
    }

    /// Get a reference to the `DataFrame` columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Adenine", "Cytosine", "Guanine", "Thymine"],
    ///                         "Symbol" => &["A", "C", "G", "T"])?;
    /// let columns: &Vec<Series> = df.get_columns();
    ///
    /// assert_eq!(columns[0].name(), "Name");
    /// assert_eq!(columns[1].name(), "Symbol");
    /// # Ok::<(), PolarsError>(())
    /// ```
    #[inline]
    pub fn get_columns(&self) -> &Vec<Series> {
        &self.columns
    }

    #[cfg(feature = "private")]
    #[inline]
    pub fn get_columns_mut(&mut self) -> &mut Vec<Series> {
        &mut self.columns
    }

    /// Iterator over the columns as `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Name", &["Pythagoras' theorem", "Shannon entropy"]);
    /// let s2: Series = Series::new("Formula", &["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// let mut iterator = df.iter();
    ///
    /// assert_eq!(iterator.next(), Some(&s1));
    /// assert_eq!(iterator.next(), Some(&s2));
    /// assert_eq!(iterator.next(), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn iter(&self) -> std::slice::Iter<'_, Series> {
        self.columns.iter()
    }

    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Language" => &["Rust", "Python"],
    ///                         "Designer" => &["Graydon Hoare", "Guido van Rossum"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn get_column_names(&self) -> Vec<&str> {
        self.columns.iter().map(|s| s.name()).collect()
    }

    /// Get the `Vec<String>` representing the column names.
    pub fn get_column_names_owned(&self) -> Vec<String> {
        self.columns.iter().map(|s| s.name().to_string()).collect()
    }

    /// Set the column names.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Mathematical set" => &["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
    /// df.set_column_names(&["Set"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Set"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn set_column_names<S: AsRef<str>>(&mut self, names: &[S]) -> PolarsResult<()> {
        if names.len() != self.columns.len() {
            return Err(PolarsError::ShapeMisMatch("the provided slice with column names has not the same size as the DataFrame's width".into()));
        }
        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(names.iter().map(|name| name.as_ref()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }

        let columns = mem::take(&mut self.columns);
        self.columns = columns
            .into_iter()
            .zip(names)
            .map(|(s, name)| {
                let mut s = s;
                s.rename(name.as_ref());
                s
            })
            .collect();
        Ok(())
    }

    /// Get the data types of the columns in the DataFrame.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let venus_air: DataFrame = df!("Element" => &["Carbon dioxide", "Nitrogen"],
    ///                                "Fraction" => &[0.965, 0.035])?;
    ///
    /// assert_eq!(venus_air.dtypes(), &[DataType::Utf8, DataType::Float64]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

    /// Get a reference to the schema fields of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let earth: DataFrame = df!("Surface type" => &["Water", "Land"],
    ///                            "Fraction" => &[0.708, 0.292])?;
    ///
    /// let f1: Field = Field::new("Surface type", DataType::Utf8);
    /// let f2: Field = Field::new("Fraction", DataType::Float64);
    ///
    /// assert_eq!(earth.fields(), &[f1, f2]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn fields(&self) -> Vec<Field> {
        self.columns
            .iter()
            .map(|s| s.field().into_owned())
            .collect()
    }

    /// Get (height, width) of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("1" => &[1, 2, 3, 4, 5])?;
    /// let df2: DataFrame = df!("1" => &[1, 2, 3, 4, 5],
    ///                          "2" => &[1, 2, 3, 4, 5])?;
    ///
    /// assert_eq!(df0.shape(), (0 ,0));
    /// assert_eq!(df1.shape(), (5, 1));
    /// assert_eq!(df2.shape(), (5, 2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn shape(&self) -> (usize, usize) {
        match self.columns.as_slice() {
            &[] => (0, 0),
            v => (v[0].len(), v.len()),
        }
    }

    /// Get the width of the `DataFrame` which is the number of columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Series 1" => &[0; 0])?;
    /// let df2: DataFrame = df!("Series 1" => &[0; 0],
    ///                          "Series 2" => &[0; 0])?;
    ///
    /// assert_eq!(df0.width(), 0);
    /// assert_eq!(df1.width(), 1);
    /// assert_eq!(df2.width(), 2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn width(&self) -> usize {
        self.columns.len()
    }

    /// Get the height of the `DataFrame` which is the number of rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Currency" => &["€", "$"])?;
    /// let df2: DataFrame = df!("Currency" => &["€", "$", "¥", "£", "₿"])?;
    ///
    /// assert_eq!(df0.height(), 0);
    /// assert_eq!(df1.height(), 2);
    /// assert_eq!(df2.height(), 5);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn height(&self) -> usize {
        self.shape().0
    }

    /// Check if the `DataFrame` is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = DataFrame::default();
    /// assert!(df1.is_empty());
    ///
    /// let df2: DataFrame = df!("First name" => &["Forever"],
    ///                          "Last name" => &["Alone"])?;
    /// assert!(!df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_empty(&self) -> bool {
        self.columns.is_empty()
    }

    pub(crate) fn hstack_mut_no_checks(&mut self, columns: &[Series]) -> &mut Self {
        for col in columns {
            self.columns.push(col.clone());
        }
        self
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn stack(df: &mut DataFrame, columns: &[Series]) {
    ///     df.hstack_mut(columns);
    /// }
    /// ```
    pub fn hstack_mut(&mut self, columns: &[Series]) -> PolarsResult<&mut Self> {
        let mut names = PlHashSet::with_capacity(self.columns.len());
        for s in &self.columns {
            names.insert(s.name());
        }

        let height = self.height();
        // first loop check validity. We don't do this in a single pass otherwise
        // this DataFrame is already modified when an error occurs.
        for col in columns {
            if col.len() != height && height != 0 {
                return Err(PolarsError::ShapeMisMatch(
                    format!("Could not horizontally stack Series. The Series length {} differs from the DataFrame height: {height}", col.len()).into()));
            }

            let name = col.name();
            if names.contains(name) {
                return Err(PolarsError::Duplicate(
                    format!("Cannot do hstack operation. Column with name: {name} already exists",)
                        .into(),
                ));
            }
            names.insert(name);
        }
        drop(names);
        Ok(self.hstack_mut_no_checks(columns))
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"])?;
    /// let s1: Series = Series::new("Proton", &[29, 47, 79]);
    /// let s2: Series = Series::new("Electron", &[29, 47, 79]);
    ///
    /// let df2: DataFrame = df1.hstack(&[s1, s2])?;
    /// assert_eq!(df2.shape(), (3, 3));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 3)
    /// +---------+--------+----------+
    /// | Element | Proton | Electron |
    /// | ---     | ---    | ---      |
    /// | str     | i32    | i32      |
    /// +=========+========+==========+
    /// | Copper  | 29     | 29       |
    /// +---------+--------+----------+
    /// | Silver  | 47     | 47       |
    /// +---------+--------+----------+
    /// | Gold    | 79     | 79       |
    /// +---------+--------+----------+
    /// ```
    pub fn hstack(&self, columns: &[Series]) -> PolarsResult<Self> {
        let mut new_cols = self.columns.clone();
        new_cols.extend_from_slice(columns);
        DataFrame::new(new_cols)
    }

    /// Concatenate a `DataFrame` to this `DataFrame` and return as newly allocated `DataFrame`.
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// let df3: DataFrame = df1.vstack(&df2)?;
    ///
    /// assert_eq!(df3.shape(), (5, 2));
    /// println!("{}", df3);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack(&self, other: &DataFrame) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.vstack_mut(other)?;
        Ok(df)
    }

    /// Concatenate a DataFrame to this DataFrame
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// df1.vstack_mut(&df2)?;
    ///
    /// assert_eq!(df1.shape(), (5, 2));
    /// println!("{}", df1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack_mut(&mut self, other: &DataFrame) -> PolarsResult<&mut Self> {
        if self.width() != other.width() {
            if self.width() == 0 {
                self.columns = other.columns.clone();
                return Ok(self);
            }

            return Err(PolarsError::ShapeMisMatch(
                format!("Could not vertically stack DataFrame. The DataFrames appended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.append(right).expect("should not fail");
                Ok(())
            })?;
        Ok(self)
    }

    /// Does not check if schema is correct
    pub(crate) fn vstack_mut_unchecked(&mut self, other: &DataFrame) {
        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .for_each(|(left, right)| {
                left.append(right).expect("should not fail");
            });
    }

    /// Extend the memory backed by this [`DataFrame`] with the values from `other`.
    ///
    /// Different from [`vstack`](Self::vstack) which adds the chunks from `other` to the chunks of this [`DataFrame`]
    /// `extend` appends the data from `other` to the underlying memory locations and thus may cause a reallocation.
    ///
    /// If this does not cause a reallocation, the resulting data structure will not have any extra chunks
    /// and thus will yield faster queries.
    ///
    /// Prefer `extend` over `vstack` when you want to do a query after a single append. For instance during
    /// online operations where you add `n` rows and rerun a query.
    ///
    /// Prefer `vstack` over `extend` when you want to append many times before doing a query. For instance
    /// when you read in multiple files and when to store them in a single `DataFrame`. In the latter case, finish the sequence
    /// of `append` operations with a [`rechunk`](Self::rechunk).
    pub fn extend(&mut self, other: &DataFrame) -> PolarsResult<()> {
        if self.width() != other.width() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Could not extend DataFrame. The DataFrames extended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.extend(right).unwrap();
                Ok(())
            })?;
        Ok(())
    }

    /// Remove a column by name and return the column removed.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Animal" => &["Tiger", "Lion", "Great auk"],
    ///                             "IUCN" => &["Endangered", "Vulnerable", "Extinct"])?;
    ///
    /// let s1: PolarsResult<Series> = df.drop_in_place("Average weight");
    /// assert!(s1.is_err());
    ///
    /// let s2: Series = df.drop_in_place("Animal")?;
    /// assert_eq!(s2, Series::new("Animal", &["Tiger", "Lion", "Great auk"]));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop_in_place(&mut self, name: &str) -> PolarsResult<Series> {
        let idx = self.check_name_to_idx(name)?;
        Ok(self.columns.remove(idx))
    }

    /// Return a new `DataFrame` where all null values are dropped.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Country" => ["Malta", "Liechtenstein", "North Korea"],
    ///                         "Tax revenue (% GDP)" => [Some(32.7), None, None])?;
    /// assert_eq!(df1.shape(), (3, 2));
    ///
    /// let df2: DataFrame = df1.drop_nulls(None)?;
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------------------+
    /// | Country | Tax revenue (% GDP) |
    /// | ---     | ---                 |
    /// | str     | f64                 |
    /// +=========+=====================+
    /// | Malta   | 32.7                |
    /// +---------+---------------------+
    /// ```
    pub fn drop_nulls(&self, subset: Option<&[String]>) -> PolarsResult<Self> {
        let selected_series;

        let mut iter = match subset {
            Some(cols) => {
                selected_series = self.select_series(cols)?;
                selected_series.iter()
            }
            None => self.columns.iter(),
        };

        // fast path for no nulls in df
        if iter.clone().all(|s| !s.has_validity()) {
            return Ok(self.clone());
        }

        let mask = iter
            .next()
            .ok_or_else(|| PolarsError::NoData("No data to drop nulls from".into()))?;
        let mut mask = mask.is_not_null();

        for s in iter {
            mask = mask & s.is_not_null();
        }
        self.filter(&mask)
    }

    /// Drop a column by name.
    /// This is a pure method and will return a new `DataFrame` instead of modifying
    /// the current one in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Ray type" => &["α", "β", "X", "γ"])?;
    /// let df2: DataFrame = df1.drop("Ray type")?;
    ///
    /// assert!(df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop(&self, name: &str) -> PolarsResult<Self> {
        let idx = self.check_name_to_idx(name)?;
        let mut new_cols = Vec::with_capacity(self.columns.len() - 1);

        self.columns.iter().enumerate().for_each(|(i, s)| {
            if i != idx {
                new_cols.push(s.clone())
            }
        });

        Ok(DataFrame::new_no_checks(new_cols))
    }

    pub fn drop_many<S: AsRef<str>>(&self, names: &[S]) -> Self {
        let names = names.iter().map(|s| s.as_ref()).collect();
        fn inner(df: &DataFrame, names: Vec<&str>) -> DataFrame {
            let mut new_cols = Vec::with_capacity(df.columns.len() - names.len());
            df.columns.iter().for_each(|s| {
                if !names.contains(&s.name()) {
                    new_cols.push(s.clone())
                }
            });

            DataFrame::new_no_checks(new_cols)
        }
        inner(self, names)
    }

    fn insert_at_idx_no_name_check(
        &mut self,
        index: usize,
        series: Series,
    ) -> PolarsResult<&mut Self> {
        if series.len() == self.height() {
            self.columns.insert(index, series);
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                .into(),
            ))
        }
    }

    /// Insert a new column at a given index.
    pub fn insert_at_idx<S: IntoSeries>(
        &mut self,
        index: usize,
        column: S,
    ) -> PolarsResult<&mut Self> {
        let series = column.into_series();
        self.check_already_present(series.name())?;
        self.insert_at_idx_no_name_check(index, series)
    }

    fn add_column_by_search(&mut self, series: Series) -> PolarsResult<()> {
        if let Some(idx) = self.find_idx_by_name(series.name()) {
            self.replace_at_idx(idx, series)?;
        } else {
            self.columns.push(series);
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    pub fn with_column<S: IntoSeries>(&mut self, column: S) -> PolarsResult<&mut Self> {
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// let idx = vec![0, 1, 4];
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set_at_idx_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "ham-is-modified"   | 1      |
    /// +---------------------+--------+
    /// | "spam-is-modified"  | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "quack-is-modified" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();

        let _ = mem::replace(col, f(col).map(|s| s.into_series())?);

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // create a mask
    /// let values = df.column("values")?;
    /// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set(&mask, Some("not_within_bounds"))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "not_within_bounds" | 1      |
    /// +---------------------+--------+
    /// | "spam"              | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "not_within_bounds" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply<F, S>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let idx = self
            .find_idx_by_name(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))?;
        self.try_apply_at_idx(idx, f)
    }

    /// Slice the `DataFrame` along the rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Fruit" => &["Apple", "Grape", "Grape", "Fig", "Fig"],
    ///                         "Color" => &["Green", "Red", "White", "White", "Red"])?;
    /// let sl: DataFrame = df.slice(2, 3);
    ///
    /// assert_eq!(sl.shape(), (3, 2));
    /// println!("{}", sl);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Output:
    /// ```text
    /// shape: (3, 2)
    /// +-------+-------+
    /// | Fruit | Color |
    /// | ---   | ---   |
    /// | str   | str   |
    /// +=======+=======+
    /// | Grape | White |
    /// +-------+-------+
    /// | Fig   | White |
    /// +-------+-------+
    /// | Fig   | Red   |
    /// +-------+-------+
    /// ```
    #[must_use]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        let col = self
            .columns
            .iter()
            .map(|s| s.slice(offset, length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    #[must_use]
    pub fn slice_par(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns_par(&|s| s.slice(offset, length)))
    }

    #[must_use]
    pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns(&|s| {
            let mut out = s.slice(offset, length);
            out.shrink_to_fit();
            out
        }))
    }

    /// Get the head of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank by GDP (2021)" => &[1, 2, 3, 4, 5],
    ///         "Continent" => &["North America", "Asia", "Asia", "Europe", "Europe"],
    ///         "Country" => &["United States", "China", "Japan", "Germany", "United Kingdom"],
    ///         "Capital" => &["Washington", "Beijing", "Tokyo", "Berlin", "London"])?;
    /// assert_eq!(countries.shape(), (5, 4));
    ///
    /// println!("{}", countries.head(Some(3)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 4)
    /// +--------------------+---------------+---------------+------------+
    /// | Rank by GDP (2021) | Continent     | Country       | Capital    |
    /// | ---                | ---           | ---           | ---        |
    /// | i32                | str           | str           | str        |
    /// +====================+===============+===============+============+
    /// | 1                  | North America | United States | Washington |
    /// +--------------------+---------------+---------------+------------+
    /// | 2                  | Asia          | China         | Beijing    |
    /// +--------------------+---------------+---------------+------------+
    /// | 3                  | Asia          | Japan         | Tokyo      |
    /// +--------------------+---------------+---------------+------------+
    /// ```
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.head(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Get the tail of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank (2021)" => &[105, 106, 107, 108, 109],
    ///         "Apple Price (€/kg)" => &[0.75, 0.70, 0.70, 0.65, 0.52],
    ///         "Country" => &["Kosovo", "Moldova", "North Macedonia", "Syria", "Turkey"])?;
    /// assert_eq!(countries.shape(), (5, 3));
    ///
    /// println!("{}", countries.tail(Some(2)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (2, 3)
    /// +-------------+--------------------+---------+
    /// | Rank (2021) | Apple Price (€/kg) | Country |
    /// | ---         | ---                | ---     |
    /// | i32         | f64                | str     |
    /// +=============+====================+=========+
    /// | 108         | 0.63               | Syria   |
    /// +-------------+--------------------+---------+
    /// | 109         | 0.63               | Turkey  |
    /// +-------------+--------------------+---------+
    /// ```
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.tail(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks(&self) -> RecordBatchIter {
        RecordBatchIter {
            columns: &self.columns,
            idx: 0,
            n_chunks: self.n_chunks(),
        }
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches as physical values.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks_physical(&self) -> PhysRecordBatchIter<'_> {
        PhysRecordBatchIter {
            iters: self.columns.iter().map(|s| s.chunks().iter()).collect(),
        }
    }

    /// Get a `DataFrame` with all the columns in reversed order.
    #[must_use]
    pub fn reverse(&self) -> Self {
        let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `Nones`.
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.shift) for more info on the `shift` operation.
    #[must_use]
    pub fn shift(&self, periods: i64) -> Self {
        let col = self.apply_columns_par(&|s| s.shift(periods));

        DataFrame::new_no_checks(col)
    }

    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.fill_null) for more info on the `fill_null` operation.
    pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;

        Ok(DataFrame::new_no_checks(col))
    }

    /// Summary statistics for a DataFrame. Only summarizes numeric datatypes at the moment and returns nulls for non numeric datatypes.
    /// Try in keep output similar to pandas
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("categorical" => &["d","e","f"],
    ///                          "numeric" => &[1, 2, 3],
    ///                          "object" => &["a", "b", "c"])?;
    /// assert_eq!(df1.shape(), (3, 3));
    ///
    /// let df2: DataFrame = df1.describe(None);
    /// assert_eq!(df2.shape(), (8, 4));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (8, 4)
    /// ┌──────────┬─────────────┬─────────┬────────┐
    /// │ describe ┆ categorical ┆ numeric ┆ object │
    /// │ ---      ┆ ---         ┆ ---     ┆ ---    │
    /// │ str      ┆ f64         ┆ f64     ┆ f64    │
    /// ╞══════════╪═════════════╪═════════╪════════╡
    /// │ count    ┆ 3.0         ┆ 3.0     ┆ 3.0    │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ mean     ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ std      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ min      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 25%      ┆ null        ┆ 1.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 50%      ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 75%      ┆ null        ┆ 2.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ max      ┆ null        ┆ 3.0     ┆ null   │
    /// └──────────┴─────────────┴─────────┴────────┘
    /// ```
    #[must_use]
    #[cfg(feature = "describe")]
    pub fn describe(&self, percentiles: Option<&[f64]>) -> Self {
        fn describe_cast(df: &DataFrame) -> DataFrame {
            let mut columns: Vec<Series> = vec![];

            for s in df.columns.iter() {
                columns.push(s.cast(&DataType::Float64).expect("cast to float failed"));
            }

            DataFrame::new(columns).unwrap()
        }

        fn count(df: &DataFrame) -> DataFrame {
            let columns = df.apply_columns_par(&|s| Series::new(s.name(), [s.len() as IdxSize]));
            DataFrame::new_no_checks(columns)
        }

        let percentiles = percentiles.unwrap_or(&[0.25, 0.5, 0.75]);

        let mut headers: Vec<String> = vec![
            "count".to_string(),
            "mean".to_string(),
            "std".to_string(),
            "min".to_string(),
        ];

        let mut tmp: Vec<DataFrame> = vec![
            describe_cast(&count(self)),
            describe_cast(&self.mean()),
            describe_cast(&self.std(1)),
            describe_cast(&self.min()),
        ];

        for p in percentiles {
            tmp.push(describe_cast(
                &self
                    .quantile(*p, QuantileInterpolOptions::Linear)
                    .expect("quantile failed"),
            ));
            headers.push(format!("{}%", *p * 100.0));
        }

        // Keep order same as pandas
        tmp.push(describe_cast(&self.max()));
        headers.push("max".to_string());

        let mut summary = concat_df_unchecked(&tmp);

        summary
            .insert_at_idx(0, Series::new("describe", headers))
            .expect("insert of header failed");

        summary
    }

    /// Aggregate the columns to their maximum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.max();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 6       | 5       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their standard deviation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.std(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +-------------------+--------------------+
    /// | Die n°1           | Die n°2            |
    /// | ---               | ---                |
    /// | f64               | f64                |
    /// +===================+====================+
    /// | 2.280350850198276 | 1.0954451150103321 |
    /// +-------------------+--------------------+
    /// ```
    #[must_use]
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
    /// Aggregate the columns to their variation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.var(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 5.2     | 1.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their minimum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.min();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 1       | 2       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their sum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.sum();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 16      | 16      |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn sum(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.sum_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their mean values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.mean();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 3.2     | 3.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn mean(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.mean_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their median values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.median();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 3       | 3       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their quantile values.
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }

    /// Aggregate the column horizontally to their min values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their sum values.
    pub fn hsum(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        let sum_fn =
            |acc: &Series, s: &Series, none_strategy: NullStrategy| -> PolarsResult<Series> {
                let mut acc = acc.clone();
                let mut s = s.clone();
                if let NullStrategy::Ignore = none_strategy {
                    // if has nulls
                    if acc.has_validity() {
                        acc = acc.fill_null(FillNullStrategy::Zero)?;
                    }
                    if s.has_validity() {
                        s = s.fill_null(FillNullStrategy::Zero)?;
                    }
                }
                Ok(&acc + &s)
            };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => sum_fn(&self.columns[0], &self.columns[1], none_strategy).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| sum_fn(&l, &r, none_strategy).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their mean values.
    pub fn hmean(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            _ => {
                let columns = self
                    .columns
                    .iter()
                    .cloned()
                    .filter(|s| {
                        let dtype = s.dtype();
                        dtype.is_numeric() || matches!(dtype, DataType::Boolean)
                    })
                    .collect();
                let numeric_df = DataFrame::new_no_checks(columns);

                let sum = || numeric_df.hsum(none_strategy);

                let null_count = || {
                    numeric_df
                        .columns
                        .par_iter()
                        .map(|s| s.is_null().cast(&DataType::UInt32).unwrap())
                        .reduce_with(|l, r| &l + &r)
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 2 columns
                        .unwrap()
                };

                let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
                let sum = sum?;

                // value lengths: len - null_count
                let value_length: UInt32Chunked =
                    (numeric_df.width().sub(&null_count)).u32().unwrap().clone();

                // make sure that we do not divide by zero
                // by replacing with None
                let value_length = value_length
                    .set(&value_length.equal(0), None)?
                    .into_series()
                    .cast(&DataType::Float64)?;

                Ok(sum.map(|sum| &sum / &value_length))
            }
        }
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe<F, B>(self, f: F) -> PolarsResult<B>
    where
        F: Fn(DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_mut<F, B>(&mut self, f: F) -> PolarsResult<B>
    where
        F: Fn(&mut DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_with_args<F, B, Args>(self, f: F, args: Args) -> PolarsResult<B>
    where
        F: Fn(DataFrame, Args) -> PolarsResult<B>,
    {
        f(self, args)
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.drop_duplicates(true, None)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    #[deprecated(note = "use DataFrame::unique")]
    pub fn drop_duplicates(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
    ) -> PolarsResult<Self> {
        match maintain_order {
            true => self.unique_stable(subset, UniqueKeepStrategy::First),
            false => self.unique(subset, UniqueKeepStrategy::First),
        }
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// Stable means that the order is maintained. This has a higher cost than an unstable distinct.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.unique_stable(None, UniqueKeepStrategy::First)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    pub fn unique_stable(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(true, subset, keep)
    }

    /// Unstable distinct. See [`DataFrame::unique_stable`].
    pub fn unique(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(false, subset, keep)
    }

    fn unique_impl(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<Self> {
        use UniqueKeepStrategy::*;
        let names = match &subset {
            Some(s) => s.iter().map(|s| &**s).collect(),
            None => self.get_column_names(),
        };

        let columns = match (keep, maintain_order) {
            (First, true) => {
                let gb = self.groupby_stable(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, true) => {
                // maintain order by last values, so the sorted groups are not correct as they
                // are sorted by the first value
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                let last_idx: NoNull<IdxCa> = groups
                    .iter()
                    .map(|g| match g {
                        GroupsIndicator::Idx((_first, idx)) => idx[idx.len() - 1],
                        GroupsIndicator::Slice([first, len]) => first + len,
                    })
                    .collect();

                let last_idx = last_idx.sort(false);
                return Ok(unsafe { self.take_unchecked(&last_idx) });
            }
            (First, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_last(groups) })
            }
        };
        Ok(DataFrame::new_no_checks(columns))
    }

    /// Get a mask of all the unique rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Apple", "Microsoft"],
    ///                         "ISIN" => &["US0378331005", "US5949181045"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_unique()?;
    ///
    /// assert!(ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            true,
            false,
        ))
    }

    /// Get a mask of all the duplicated rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Alphabet", "Alphabet"],
    ///                         "ISIN" => &["US02079K3059", "US02079K1079"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_duplicated()?;
    ///
    /// assert!(!ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            false,
            true,
        ))
    }

    /// Create a new `DataFrame` that shows the null counts per column.
    #[must_use]
    pub fn null_count(&self) -> Self {
        let cols = self
            .columns
            .iter()
            .map(|s| Series::new(s.name(), &[s.null_count() as IdxSize]))
            .collect();
        Self::new_no_checks(cols)
    }

    /// Hash and combine the row values
    #[cfg(feature = "row_hash")]
    pub fn hash_rows(
        &mut self,
        hasher_builder: Option<RandomState>,
    ) -> PolarsResult<UInt64Chunked> {
        let dfs = split_df(self, POOL.current_num_threads())?;
        let (cas, _) = df_rows_to_hashes_threaded(&dfs, hasher_builder)?;

        let mut iter = cas.into_iter();
        let mut acc_ca = iter.next().unwrap();
        for ca in iter {
            acc_ca.append(&ca);
        }
        Ok(acc_ca.rechunk())
    }

    /// Get the supertype of the columns in this DataFrame
    pub fn get_supertype(&self) -> Option<PolarsResult<DataType>> {
        self.columns
            .iter()
            .map(|s| Ok(s.dtype().clone()))
            .reduce(|acc, b| try_get_supertype(&acc?, &b.unwrap()))
    }

    #[cfg(feature = "chunked_ids")]
    #[doc(hidden)]
    //// Take elements by a slice of [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    /// `sorted` indicates if the chunks are sorted.
    #[doc(hidden)]
    pub unsafe fn _take_chunked_unchecked_seq(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns(&|s| s._take_chunked_unchecked(idx, sorted));

        DataFrame::new_no_checks(cols)
    }
    #[cfg(feature = "chunked_ids")]
    //// Take elements by a slice of optional [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    #[doc(hidden)]
    pub unsafe fn _take_opt_chunked_unchecked_seq(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_chunked_unchecked(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_chunked_unchecked_threaded(idx, sorted, true),
            _ => s._take_chunked_unchecked(idx, sorted),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_opt_chunked_unchecked(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    /// Be careful with allowing threads when calling this in a large hot loop
    /// every thread split may be on rayon stack and lead to SO
    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice(&self, idx: &[IdxSize], allow_threads: bool) -> Self {
        self._take_unchecked_slice2(idx, allow_threads, IsSorted::Not)
    }

    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice2(
        &self,
        idx: &[IdxSize],
        allow_threads: bool,
        sorted: IsSorted,
    ) -> Self {
        #[cfg(debug_assertions)]
        {
            if idx.len() > 2 {
                match sorted {
                    IsSorted::Ascending => {
                        assert!(idx[0] <= idx[idx.len() - 1]);
                    }
                    IsSorted::Descending => {
                        assert!(idx[0] >= idx[idx.len() - 1]);
                    }
                    _ => {}
                }
            }
        }
        let ptr = idx.as_ptr() as *mut IdxSize;
        let len = idx.len();

        // create a temporary vec. we will not drop it.
        let mut ca = IdxCa::from_vec("", Vec::from_raw_parts(ptr, len, len));
        ca.set_sorted2(sorted);
        let out = self.take_unchecked_impl(&ca, allow_threads);

        // ref count of buffers should be one because we dropped all allocations
        let arr = {
            let arr_ref = std::mem::take(&mut ca.chunks).pop().unwrap();
            arr_ref
                .as_any()
                .downcast_ref::<PrimitiveArray<IdxSize>>()
                .unwrap()
                .clone()
        };
        // the only owned heap allocation is the `Vec` we created and must not be dropped
        let _ = std::mem::ManuallyDrop::new(arr.into_mut().right().unwrap());
        out
    }

Nullify values in slice with an existing null bitmap

This is an iterator over a ListChunked that save allocations. A Series is: 1. Arc ChunkedArray is: 2. Vec< 3. ArrayRef>

The ArrayRef we indicated with 3. will be updated during iteration. The Series will be pinned in memory, saving an allocation for

  1. Arc<..>
  2. Vec<…>
Warning

Though memory safe in the sense that it will not read unowned memory, UB, or memory leaks this function still needs precautions. The returned should never be cloned or taken longer than a single iteration, as every call on next of the iterator will change the contents of that Series.

Examples found in repository?
src/chunked_array/comparison.rs (line 894)
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    fn equal(&self, rhs: &ListChunked) -> BooleanChunked {
        self.amortized_iter()
            .zip(rhs.amortized_iter())
            .map(|(left, right)| match (left, right) {
                (None, None) => true,
                (Some(l), Some(r)) => l.as_ref().series_equal_missing(r.as_ref()),
                _ => false,
            })
            .collect_trusted()
    }

    fn not_equal(&self, rhs: &ListChunked) -> BooleanChunked {
        self.amortized_iter()
            .zip(rhs.amortized_iter())
            .map(|(left, right)| {
                let out = match (left, right) {
                    (None, None) => true,
                    (Some(l), Some(r)) => l.as_ref().series_equal_missing(r.as_ref()),
                    _ => false,
                };
                !out
            })
            .collect_trusted()
    }
More examples
Hide additional examples
src/chunked_array/list/iterator.rs (line 134)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    pub fn apply_amortized<'a, F>(&'a self, mut f: F) -> Self
    where
        F: FnMut(UnstableSeries<'a>) -> Series,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v.map(|v| {
                    let out = f(v);
                    if out.is_empty() {
                        fast_explode = false;
                    }
                    out
                })
            })
            .collect_trusted();

        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        ca
    }

    pub fn try_apply_amortized<'a, F>(&'a self, mut f: F) -> PolarsResult<Self>
    where
        F: FnMut(UnstableSeries<'a>) -> PolarsResult<Series>,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v
                    .map(|v| {
                        let out = f(v);
                        if let Ok(out) = &out {
                            if out.is_empty() {
                                fast_explode = false
                            }
                        };
                        out
                    })
                    .transpose()
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        Ok(ca)
    }
src/chunked_array/ops/is_in.rs (line 61)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        // We check implicitly cast to supertype here
        match other.dtype() {
            DataType::List(dt) => {
                let st = try_get_supertype(self.dtype(), dt)?;
                if &st != self.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&DataType::List(Box::new(st)))?;
                    return left.is_in(&right);
                }

                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);

                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_s| {
                            opt_s.map(|s| {
                                let ca = s.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            _ => {
                // first make sure that the types are equal
                let st = try_get_supertype(self.dtype(), other.dtype())?;
                if self.dtype() != other.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&st)?;
                    return left.is_in(&right);
                }
                // now that the types are equal, we coerce every 32 bit array to u32
                // and every 64 bit array to u64 (including floats)
                // this allows hashing them and greatly reduces the number of code paths.
                match self.dtype() {
                    DataType::UInt64 | DataType::Int64 | DataType::Float64 => unsafe {
                        is_in_helper::<T, u64>(self, other)
                    },
                    DataType::UInt32 | DataType::Int32 | DataType::Float32 => unsafe {
                        is_in_helper::<T, u32>(self, other)
                    },
                    DataType::UInt8 | DataType::Int8 => unsafe {
                        is_in_helper::<T, u8>(self, other)
                    },
                    DataType::UInt16 | DataType::Int16 => unsafe {
                        is_in_helper::<T, u16>(self, other)
                    },
                    _ => Err(PolarsError::ComputeError(
                        format!(
                            "Data type {:?} not supported in is_in operation",
                            self.dtype()
                        )
                        .into(),
                    )),
                }
            }
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}
impl IsIn for Utf8Chunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            #[cfg(feature = "dtype-categorical")]
            DataType::List(dt) if matches!(&**dt, DataType::Categorical(_)) => {
                if let DataType::Categorical(Some(rev_map)) = &**dt {
                    let opt_val = self.get(0);

                    let other = other.list()?;
                    match opt_val {
                        None => {
                            let mut ca: BooleanChunked = other
                                .amortized_iter()
                                .map(|opt_s| {
                                    opt_s.map(|s| s.as_ref().null_count() > 0) == Some(true)
                                })
                                .collect_trusted();
                            ca.rename(self.name());
                            Ok(ca)
                        }
                        Some(value) => {
                            match rev_map.find(value) {
                                // all false
                                None => Ok(BooleanChunked::full(self.name(), false, other.len())),
                                Some(idx) => {
                                    let mut ca: BooleanChunked = other
                                        .amortized_iter()
                                        .map(|opt_s| {
                                            opt_s.map(|s| {
                                                let s = s.as_ref().to_physical_repr();
                                                let ca = s.as_ref().u32().unwrap();
                                                if ca.null_count() == 0 {
                                                    ca.into_no_null_iter().any(|a| a == idx)
                                                } else {
                                                    ca.into_iter().any(|a| a == Some(idx))
                                                }
                                            }) == Some(true)
                                        })
                                        .collect_trusted();
                                    ca.rename(self.name());
                                    Ok(ca)
                                }
                            }
                        }
                    }
                } else {
                    unreachable!()
                }
            }
            DataType::List(dt) if DataType::Utf8 == **dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_s| {
                            opt_s.map(|s| {
                                let ca = s.as_ref().unpack::<Utf8Type>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<Utf8Type>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Utf8 => {
                let mut set = HashSet::with_capacity(other.len());

                let other = other.utf8()?;
                other.downcast_iter().for_each(|iter| {
                    iter.into_iter().for_each(|opt_val| {
                        set.insert(opt_val);
                    })
                });
                let mut ca: BooleanChunked = self
                    .into_iter()
                    .map(|opt_val| set.contains(&opt_val))
                    .collect_trusted();
                ca.rename(self.name());
                Ok(ca)
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}

#[cfg(feature = "dtype-binary")]
impl IsIn for BinaryChunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if DataType::Binary == **dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_b| {
                            opt_b.map(|s| {
                                let ca = s.as_ref().unpack::<BinaryType>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BinaryType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Binary => {
                let mut set = HashSet::with_capacity(other.len());

                let other = other.binary()?;
                other.downcast_iter().for_each(|iter| {
                    iter.into_iter().for_each(|opt_val| {
                        set.insert(opt_val);
                    })
                });
                let mut ca: BooleanChunked = self
                    .into_iter()
                    .map(|opt_val| set.contains(&opt_val))
                    .collect_trusted();
                ca.rename(self.name());
                Ok(ca)
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}

impl IsIn for BooleanChunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if self.dtype() == &**dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    // safety: we know the iterators len
                    unsafe {
                        other
                            .list()?
                            .amortized_iter()
                            .map(|opt_s| {
                                opt_s.map(|s| {
                                    let ca = s.as_ref().unpack::<BooleanType>().unwrap();
                                    ca.into_iter().any(|a| a == value)
                                }) == Some(true)
                            })
                            .trust_my_length(other.len())
                            .collect_trusted()
                    }
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BooleanType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Boolean => {
                let other = other.bool().unwrap();
                let has_true = other.any();
                let has_false = !other.all();
                Ok(self.apply(|v| if v { has_true } else { has_false }))
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }

Apply a closure F elementwise.

Examples found in repository?
src/chunked_array/ops/apply.rs (line 685)
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(Series) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply!(self, &mut function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    fn try_apply<F>(&'a self, f: F) -> PolarsResult<Self>
    where
        F: Fn(Series) -> PolarsResult<Series> + Copy,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }

        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if let Ok(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let ca: PolarsResult<ListChunked> = try_apply!(self, &mut function);
        let mut ca = ca?;
        if fast_explode {
            ca.set_fast_explode()
        }
        Ok(ca)
    }

    fn apply_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn(Option<Series>) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        self.into_iter().map(f).collect_trusted()
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Series)) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |(idx, s)| {
            let out = f((idx, s));
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply_enumerate!(self, function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Option<Series>)) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let function = |(idx, s)| {
            let out = f((idx, s));
            if let Some(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let mut ca: ListChunked = self.into_iter().enumerate().map(function).collect_trusted();
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }
More examples
Hide additional examples
src/series/ops/to_list.rs (line 24)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
fn reshape_fast_path(name: &str, s: &Series) -> Series {
    let chunks = match s.dtype() {
        #[cfg(feature = "dtype-struct")]
        DataType::Struct(_) => {
            vec![Box::new(array_to_unit_list(s.array_ref(0).clone())) as ArrayRef]
        }
        _ => s
            .chunks()
            .iter()
            .map(|arr| Box::new(array_to_unit_list(arr.clone())) as ArrayRef)
            .collect::<Vec<_>>(),
    };

    let mut ca = ListChunked::from_chunks(name, chunks);
    ca.set_inner_dtype(s.dtype().clone());
    ca.set_fast_explode();
    ca.into_series()
}

impl Series {
    /// Convert the values of this Series to a ListChunked with a length of 1,
    /// So a Series of:
    /// `[1, 2, 3]` becomes `[[1, 2, 3]]`
    pub fn to_list(&self) -> PolarsResult<ListChunked> {
        let s = self.rechunk();
        let values = s.array_ref(0);

        let offsets = vec![0i64, values.len() as i64];
        let inner_type = self.dtype();

        let data_type = ListArray::<i64>::default_datatype(inner_type.to_physical().to_arrow());

        // Safety:
        // offsets are correct;
        let arr = unsafe {
            ListArray::new(
                data_type,
                Offsets::new_unchecked(offsets).into(),
                values.clone(),
                None,
            )
        };
        let name = self.name();

        let mut ca = ListChunked::from_chunks(name, vec![Box::new(arr)]);
        if self.dtype() != &self.dtype().to_physical() {
            ca.to_logical(inner_type.clone())
        }
        ca.set_fast_explode();

        Ok(ca)
    }
src/chunked_array/builder/list.rs (line 583)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    pub fn finish(&mut self) -> ListChunked {
        let slf = std::mem::take(self);
        if slf.builder.is_empty() {
            ListChunked::full_null_with_dtype(&slf.name, 0, &slf.dtype.unwrap_or(DataType::Null))
        } else {
            let dtype = slf.dtype.map(|dt| dt.to_physical().to_arrow());
            let arr = slf.builder.finish(dtype.as_ref()).unwrap();
            let dtype = DataType::from(arr.data_type());
            let mut ca = ListChunked::from_chunks("", vec![Box::new(arr)]);

            if self.fast_explode {
                ca.set_fast_explode();
            }

            ca.field = Arc::new(Field::new(&slf.name, dtype));
            ca
        }
    }
}

pub struct AnonymousOwnedListBuilder {
    name: String,
    builder: AnonymousBuilder<'static>,
    owned: Vec<Series>,
    inner_dtype: Option<DataType>,
    fast_explode: bool,
}

impl Default for AnonymousOwnedListBuilder {
    fn default() -> Self {
        Self::new("", 0, None)
    }
}

impl ListBuilderTrait for AnonymousOwnedListBuilder {
    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.append_empty();
        } else {
            // Safety
            // we deref a raw pointer with a lifetime that is not static
            // it is safe because we also clone Series (Arc +=1) and therefore the &dyn Arrays
            // will not be dropped until the owned series are dropped
            unsafe {
                match s.dtype() {
                    #[cfg(feature = "dtype-struct")]
                    DataType::Struct(_) => {
                        self.builder.push(&*(&**s.array_ref(0) as *const dyn Array))
                    }
                    _ => {
                        self.builder
                            .push_multiple(&*(s.chunks().as_ref() as *const [ArrayRef]));
                    }
                }
            }
            // this make sure that the underlying ArrayRef's are not dropped
            self.owned.push(s.clone());
        }
    }

    #[inline]
    fn append_null(&mut self) {
        self.builder.push_null()
    }

    fn finish(&mut self) -> ListChunked {
        let slf = std::mem::take(self);
        if slf.builder.is_empty() {
            // not really empty, there were empty null list added probably e.g. []
            let real_length = slf.builder.offsets().len() - 1;
            if real_length > 0 {
                let dtype = slf.inner_dtype.unwrap_or(NULL_DTYPE).to_arrow();
                let array = new_null_array(dtype.clone(), real_length);
                let dtype = ListArray::<i64>::default_datatype(dtype);
                let array = ListArray::new(dtype, slf.builder.take_offsets().into(), array, None);
                ListChunked::from_chunks(&slf.name, vec![Box::new(array)])
            } else {
                ListChunked::full_null_with_dtype(
                    &slf.name,
                    0,
                    &slf.inner_dtype.unwrap_or(DataType::Null),
                )
            }
        } else {
            let inner_dtype = slf.inner_dtype.map(|dt| dt.to_physical().to_arrow());
            let arr = slf.builder.finish(inner_dtype.as_ref()).unwrap();
            let dtype = DataType::from(arr.data_type());
            let mut ca = ListChunked::from_chunks("", vec![Box::new(arr)]);

            if self.fast_explode {
                ca.set_fast_explode();
            }

            ca.field = Arc::new(Field::new(&slf.name, dtype));
            ca
        }
    }
src/chunked_array/list/iterator.rs (line 148)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    pub fn apply_amortized<'a, F>(&'a self, mut f: F) -> Self
    where
        F: FnMut(UnstableSeries<'a>) -> Series,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v.map(|v| {
                    let out = f(v);
                    if out.is_empty() {
                        fast_explode = false;
                    }
                    out
                })
            })
            .collect_trusted();

        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        ca
    }

    pub fn try_apply_amortized<'a, F>(&'a self, mut f: F) -> PolarsResult<Self>
    where
        F: FnMut(UnstableSeries<'a>) -> PolarsResult<Series>,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v
                    .map(|v| {
                        let out = f(v);
                        if let Ok(out) = &out {
                            if out.is_empty() {
                                fast_explode = false
                            }
                        };
                        out
                    })
                    .transpose()
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        Ok(ca)
    }
src/chunked_array/object/extension/list.rs (line 92)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    fn finish(&mut self) -> ListChunked {
        let values_builder = std::mem::take(&mut self.values_builder);
        let offsets = std::mem::take(&mut self.offsets);
        let ca = values_builder.finish();
        let obj_arr = ca.downcast_chunks().get(0).unwrap().clone();

        let mut pe = create_extension(obj_arr.into_iter_cloned());

        // Safety:
        // this is safe because we just created the PolarsExtension
        // meaning that the sentinel is heap allocated and the dereference of the
        // pointer does not fail
        unsafe { pe.set_to_series_fn::<T>() };
        let extension_array = Box::new(pe.take_and_forget()) as ArrayRef;
        let extension_dtype = extension_array.data_type();

        let data_type = ListArray::<i64>::default_datatype(extension_dtype.clone());
        // Safety:
        // offsets are monotonically increasing
        let arr = unsafe {
            Box::new(ListArray::<i64>::new(
                data_type,
                Offsets::new_unchecked(offsets).into(),
                extension_array,
                None,
            )) as ArrayRef
        };

        let mut listarr = ListChunked::from_chunks(ca.name(), vec![arr]);
        if self.fast_explode {
            listarr.set_fast_explode()
        }
        listarr
    }
src/frame/groupby/aggregations/agg_list.rs (line 86)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        let ca = self.rechunk();

        match groups {
            GroupsProxy::Idx(groups) => {
                let mut can_fast_explode = true;

                let arr = ca.downcast_iter().next().unwrap();
                let values = arr.values();

                let mut offsets = Vec::<i64>::with_capacity(groups.len() + 1);
                let mut length_so_far = 0i64;
                offsets.push(length_so_far);

                let mut list_values = Vec::<T::Native>::with_capacity(self.len());
                groups.iter().for_each(|(_, idx)| {
                    let idx_len = idx.len();
                    if idx_len == 0 {
                        can_fast_explode = false;
                    }

                    length_so_far += idx_len as i64;
                    // Safety:
                    // group tuples are in bounds
                    {
                        list_values.extend(idx.iter().map(|idx| {
                            debug_assert!((*idx as usize) < values.len());
                            *values.get_unchecked(*idx as usize)
                        }));
                        // Safety:
                        // we know that offsets has allocated enough slots
                        offsets.push_unchecked(length_so_far);
                    }
                });

                let validity = if arr.null_count() > 0 {
                    let old_validity = arr.validity().unwrap();
                    let mut validity = MutableBitmap::from_len_set(list_values.len());

                    let mut count = 0;
                    groups.iter().for_each(|(_, idx)| {
                        for i in idx {
                            if !old_validity.get_bit_unchecked(*i as usize) {
                                validity.set_bit_unchecked(count, false)
                            }
                            count += 1;
                        }
                    });
                    Some(validity.into())
                } else {
                    None
                };

                let array =
                    PrimitiveArray::new(T::get_dtype().to_arrow(), list_values.into(), validity);
                let data_type = ListArray::<i64>::default_datatype(T::get_dtype().to_arrow());
                // Safety:
                // offsets are monotonically increasing
                let arr = ListArray::<i64>::new(
                    data_type,
                    Offsets::new_unchecked(offsets).into(),
                    Box::new(array),
                    None,
                );

                let mut ca = ListChunked::from_chunks(self.name(), vec![Box::new(arr)]);
                if can_fast_explode {
                    ca.set_fast_explode()
                }
                ca.into()
            }
            GroupsProxy::Slice { groups, .. } => {
                let mut can_fast_explode = true;
                let arr = ca.downcast_iter().next().unwrap();
                let values = arr.values();

                let mut offsets = Vec::<i64>::with_capacity(groups.len() + 1);
                let mut length_so_far = 0i64;
                offsets.push(length_so_far);

                let mut list_values = Vec::<T::Native>::with_capacity(self.len());
                groups.iter().for_each(|&[first, len]| {
                    if len == 0 {
                        can_fast_explode = false;
                    }

                    length_so_far += len as i64;
                    list_values.extend_from_slice(&values[first as usize..(first + len) as usize]);
                    {
                        // Safety:
                        // we know that offsets has allocated enough slots
                        offsets.push_unchecked(length_so_far);
                    }
                });

                let validity = if arr.null_count() > 0 {
                    let old_validity = arr.validity().unwrap();
                    let mut validity = MutableBitmap::from_len_set(list_values.len());

                    let mut count = 0;
                    groups.iter().for_each(|[first, len]| {
                        for i in *first..(*first + *len) {
                            if !old_validity.get_bit_unchecked(i as usize) {
                                validity.set_bit_unchecked(count, false)
                            }
                            count += 1;
                        }
                    });
                    Some(validity.into())
                } else {
                    None
                };

                let array =
                    PrimitiveArray::new(T::get_dtype().to_arrow(), list_values.into(), validity);
                let data_type = ListArray::<i64>::default_datatype(T::get_dtype().to_arrow());
                let arr = ListArray::<i64>::new(
                    data_type,
                    Offsets::new_unchecked(offsets).into(),
                    Box::new(array),
                    None,
                );
                let mut ca = ListChunked::from_chunks(self.name(), vec![Box::new(arr)]);
                if can_fast_explode {
                    ca.set_fast_explode()
                }
                ca.into()
            }
        }
    }
}

impl AggList for BooleanChunked {
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => {
                let mut builder =
                    ListBooleanChunkedBuilder::new(self.name(), groups.len(), self.len());
                for idx in groups.all().iter() {
                    let ca = { self.take_unchecked(idx.into()) };
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
            GroupsProxy::Slice { groups, .. } => {
                let mut builder =
                    ListBooleanChunkedBuilder::new(self.name(), groups.len(), self.len());
                for [first, len] in groups {
                    let ca = self.slice(*first as i64, *len as usize);
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
        }
    }
}

impl AggList for Utf8Chunked {
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => {
                let mut builder =
                    ListUtf8ChunkedBuilder::new(self.name(), groups.len(), self.len());
                for idx in groups.all().iter() {
                    let ca = { self.take_unchecked(idx.into()) };
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
            GroupsProxy::Slice { groups, .. } => {
                let mut builder =
                    ListUtf8ChunkedBuilder::new(self.name(), groups.len(), self.len());
                for [first, len] in groups {
                    let ca = self.slice(*first as i64, *len as usize);
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
        }
    }
}

#[cfg(feature = "dtype-binary")]
impl AggList for BinaryChunked {
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => {
                let mut builder =
                    ListBinaryChunkedBuilder::new(self.name(), groups.len(), self.len());
                for idx in groups.all().iter() {
                    let ca = { self.take_unchecked(idx.into()) };
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
            GroupsProxy::Slice { groups, .. } => {
                let mut builder =
                    ListBinaryChunkedBuilder::new(self.name(), groups.len(), self.len());
                for [first, len] in groups {
                    let ca = self.slice(*first as i64, *len as usize);
                    builder.append(&ca)
                }
                builder.finish().into_series()
            }
        }
    }
}

fn agg_list_list<F: Fn(&ListChunked, bool, &mut Vec<i64>, &mut i64, &mut Vec<ArrayRef>) -> bool>(
    ca: &ListChunked,
    groups_len: usize,
    func: F,
) -> Series {
    let can_fast_explode = true;
    let mut offsets = Vec::<i64>::with_capacity(groups_len + 1);
    let mut length_so_far = 0i64;
    offsets.push(length_so_far);

    let mut list_values = Vec::with_capacity(groups_len);

    let can_fast_explode = func(
        ca,
        can_fast_explode,
        &mut offsets,
        &mut length_so_far,
        &mut list_values,
    );
    if groups_len == 0 {
        list_values.push(ca.chunks[0].slice(0, 0))
    }
    let arrays = list_values.iter().map(|arr| &**arr).collect::<Vec<_>>();
    let list_values: ArrayRef = arrow::compute::concatenate::concatenate(&arrays).unwrap();
    let data_type = ListArray::<i64>::default_datatype(list_values.data_type().clone());
    // Safety:
    // offsets are monotonically increasing
    let arr = unsafe {
        Box::new(ListArray::<i64>::new(
            data_type,
            Offsets::new_unchecked(offsets).into(),
            list_values,
            None,
        )) as ArrayRef
    };
    let mut listarr = ListChunked::from_chunks(ca.name(), vec![arr]);
    if can_fast_explode {
        listarr.set_fast_explode()
    }
    listarr.into_series()
}

impl AggList for ListChunked {
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => {
                let func = |ca: &ListChunked,
                            mut can_fast_explode: bool,
                            offsets: &mut Vec<i64>,
                            length_so_far: &mut i64,
                            list_values: &mut Vec<ArrayRef>| {
                    groups.iter().for_each(|(_, idx)| {
                        let idx_len = idx.len();
                        if idx_len == 0 {
                            can_fast_explode = false;
                        }

                        *length_so_far += idx_len as i64;
                        // Safety:
                        // group tuples are in bounds
                        {
                            let mut s = ca.take_unchecked(idx.into());
                            let arr = s.chunks.pop().unwrap();
                            list_values.push(arr);

                            // Safety:
                            // we know that offsets has allocated enough slots
                            offsets.push_unchecked(*length_so_far);
                        }
                    });
                    can_fast_explode
                };

                agg_list_list(self, groups.len(), func)
            }
            GroupsProxy::Slice { groups, .. } => {
                let func = |ca: &ListChunked,
                            mut can_fast_explode: bool,
                            offsets: &mut Vec<i64>,
                            length_so_far: &mut i64,
                            list_values: &mut Vec<ArrayRef>| {
                    groups.iter().for_each(|&[first, len]| {
                        if len == 0 {
                            can_fast_explode = false;
                        }

                        *length_so_far += len as i64;
                        let mut s = ca.slice(first as i64, len as usize);
                        let arr = s.chunks.pop().unwrap();
                        list_values.push(arr);

                        {
                            // Safety:
                            // we know that offsets has allocated enough slots
                            offsets.push_unchecked(*length_so_far);
                        }
                    });
                    can_fast_explode
                };

                agg_list_list(self, groups.len(), func)
            }
        }
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> AggList for ObjectChunked<T> {
    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        let mut can_fast_explode = true;
        let mut offsets = Vec::<i64>::with_capacity(groups.len() + 1);
        let mut length_so_far = 0i64;
        offsets.push(length_so_far);

        //  we know that iterators length
        let iter = {
            groups
                .iter()
                .flat_map(|indicator| {
                    let (group_vals, len) = match indicator {
                        GroupsIndicator::Idx((_first, idx)) => {
                            // Safety:
                            // group tuples always in bounds
                            let group_vals = self.take_unchecked(idx.into());

                            (group_vals, idx.len() as IdxSize)
                        }
                        GroupsIndicator::Slice([first, len]) => {
                            let group_vals = _slice_from_offsets(self, first, len);

                            (group_vals, len)
                        }
                    };

                    if len == 0 {
                        can_fast_explode = false;
                    }
                    length_so_far += len as i64;
                    // Safety:
                    // we know that offsets has allocated enough slots
                    offsets.push_unchecked(length_so_far);

                    let arr = group_vals.downcast_iter().next().unwrap().clone();
                    arr.into_iter_cloned()
                })
                .trust_my_length(self.len())
        };

        let mut pe = create_extension(iter);

        // Safety:
        // this is safe because we just created the PolarsExtension
        // meaning that the sentinel is heap allocated and the dereference of the
        // pointer does not fail
        pe.set_to_series_fn::<T>();
        let extension_array = Box::new(pe.take_and_forget()) as ArrayRef;
        let extension_dtype = extension_array.data_type();

        let data_type = ListArray::<i64>::default_datatype(extension_dtype.clone());
        // Safety:
        // offsets are monotonically increasing
        let arr = Box::new(ListArray::<i64>::new(
            data_type,
            Offsets::new_unchecked(offsets).into(),
            extension_array,
            None,
        )) as ArrayRef;

        let mut listarr = ListChunked::from_chunks(self.name(), vec![arr]);
        if can_fast_explode {
            listarr.set_fast_explode()
        }
        listarr.into_series()
    }
Examples found in repository?
src/chunked_array/ops/append.rs (line 68)
60
61
62
63
64
65
66
67
68
69
70
71
72
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        let dtype = merge_dtypes(self.dtype(), other.dtype())?;
        self.field = Arc::new(Field::new(self.name(), dtype));

        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
        if !other._can_fast_explode() {
            self.unset_fast_explode()
        }
        Ok(())
    }
More examples
Hide additional examples
src/chunked_array/ops/explode.rs (line 393)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    fn explode_and_offsets(&self) -> PolarsResult<(Series, OffsetsBuffer<i64>)> {
        // A list array's memory layout is actually already 'exploded', so we can just take the values array
        // of the list. And we also return a slice of the offsets. This slice can be used to find the old
        // list layout or indexes to expand the DataFrame in the same manner as the 'explode' operation
        let ca = self.rechunk();
        let listarr: &LargeListArray = ca
            .downcast_iter()
            .next()
            .ok_or_else(|| PolarsError::NoData("cannot explode empty list".into()))?;
        let offsets_buf = listarr.offsets().clone();
        let offsets = listarr.offsets().as_slice();
        let mut values = listarr.values().clone();

        // all empty
        if offsets[offsets.len() - 1] == 0 {
            return Ok((
                Series::new_empty(self.name(), &self.inner_dtype()),
                OffsetsBuffer::new(),
            ));
        }

        let mut s = if ca._can_fast_explode() {
            // ensure that the value array is sliced
            // as a list only slices its offsets on a slice operation

            // we only do this in fast-explode as for the other
            // branch the offsets must coincide with the values.
            if !offsets.is_empty() {
                let start = offsets[0] as usize;
                let len = offsets[offsets.len() - 1] as usize - start;
                // safety:
                // we are in bounds
                values = unsafe { values.slice_unchecked(start, len) };
            }
            Series::try_from((self.name(), values)).unwrap()
        } else {
            // during tests
            // test that this code branch is not hit with list arrays that could be fast exploded
            #[cfg(test)]
            {
                let mut last = offsets[0];
                let mut has_empty = false;
                for &o in &offsets[1..] {
                    if o == last {
                        has_empty = true;
                    }
                    last = o;
                }
                if !has_empty && offsets[0] == 0 {
                    panic!("could have fast exploded")
                }
            }

            let values = Series::try_from((self.name(), values)).unwrap();
            values.explode_by_offsets(offsets)
        };
        debug_assert_eq!(s.name(), self.name());
        // make sure we restore the logical type
        match self.inner_dtype() {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(rev_map) => {
                let cats = s.u32().unwrap().clone();
                // safety:
                // rev_map is from same array, so we are still in bounds
                s = unsafe {
                    CategoricalChunked::from_cats_and_rev_map_unchecked(cats, rev_map.unwrap())
                        .into_series()
                };
            }
            #[cfg(feature = "dtype-date")]
            DataType::Date => s = s.into_date(),
            #[cfg(feature = "dtype-datetime")]
            DataType::Datetime(tu, tz) => s = s.into_datetime(tu, tz),
            #[cfg(feature = "dtype-duration")]
            DataType::Duration(tu) => s = s.into_duration(tu),
            #[cfg(feature = "dtype-time")]
            DataType::Time => s = s.into_time(),
            _ => {}
        }

        Ok((s, offsets_buf))
    }
Examples found in repository?
src/series/ops/to_list.rs (line 55)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    pub fn to_list(&self) -> PolarsResult<ListChunked> {
        let s = self.rechunk();
        let values = s.array_ref(0);

        let offsets = vec![0i64, values.len() as i64];
        let inner_type = self.dtype();

        let data_type = ListArray::<i64>::default_datatype(inner_type.to_physical().to_arrow());

        // Safety:
        // offsets are correct;
        let arr = unsafe {
            ListArray::new(
                data_type,
                Offsets::new_unchecked(offsets).into(),
                values.clone(),
                None,
            )
        };
        let name = self.name();

        let mut ca = ListChunked::from_chunks(name, vec![Box::new(arr)]);
        if self.dtype() != &self.dtype().to_physical() {
            ca.to_logical(inner_type.clone())
        }
        ca.set_fast_explode();

        Ok(ca)
    }
Available on crate feature object only.
Available on crate feature object only.

Get a hold to an object that can be formatted or downcasted via the Any trait.

Safety

No bounds checks

Examples found in repository?
src/chunked_array/object/mod.rs (line 190)
188
189
190
191
192
193
194
    pub fn get_object(&self, index: usize) -> Option<&dyn PolarsObjectSafe> {
        if index < self.len() {
            unsafe { self.get_object_unchecked(index) }
        } else {
            None
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/any_value.rs (line 225)
224
225
226
227
228
229
    unsafe fn get_any_value_unchecked(&self, index: usize) -> AnyValue {
        match self.get_object_unchecked(index) {
            None => AnyValue::Null,
            Some(v) => AnyValue::Object(v),
        }
    }
Available on crate feature object only.

Get a hold to an object that can be formatted or downcasted via the Any trait.

Examples found in repository?
src/series/implementations/object.rs (line 237)
236
237
238
    fn get_object(&self, index: usize) -> Option<&dyn PolarsObjectSafe> {
        ObjectChunked::<T>::get_object(&self.0, index)
    }
More examples
Hide additional examples
src/chunked_array/ops/any_value.rs (line 232)
231
232
233
234
235
236
    fn get_any_value(&self, index: usize) -> PolarsResult<AnyValue> {
        match self.get_object(index) {
            None => Err(PolarsError::ComputeError("index is out of bounds".into())),
            Some(v) => Ok(AnyValue::Object(v)),
        }
    }
Available on crate feature random only.
Available on crate feature random only.

Sample n datapoints from this ChunkedArray.

Examples found in repository?
src/chunked_array/random.rs (line 161)
153
154
155
156
157
158
159
160
161
162
    pub fn sample_frac(
        &self,
        frac: f64,
        with_replacement: bool,
        shuffle: bool,
        seed: Option<u64>,
    ) -> PolarsResult<Self> {
        let n = (self.len() as f64 * frac) as usize;
        self.sample_n(n, with_replacement, shuffle, seed)
    }
Available on crate feature random only.

Sample a fraction between 0.0-1.0 of this ChunkedArray.

Available on crate feature random only.

Create ChunkedArray with samples from a Normal distribution.

Available on crate feature random only.

Create ChunkedArray with samples from a Standard Normal distribution.

Available on crate feature random only.

Create ChunkedArray with samples from a Uniform distribution.

Available on crate feature random only.

Create ChunkedArray with samples from a Bernoulli distribution.

Set the ‘sorted’ bit meta info.

Examples found in repository?
src/chunked_array/ops/mod.rs (line 618)
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    fn new_from_index(&self, index: usize, length: usize) -> ChunkedArray<T> {
        let mut out = impl_chunk_expand!(self, length, index);
        out.set_sorted(false);
        out
    }
}

impl ChunkExpandAtIndex<BooleanType> for BooleanChunked {
    fn new_from_index(&self, index: usize, length: usize) -> BooleanChunked {
        let mut out = impl_chunk_expand!(self, length, index);
        out.set_sorted(false);
        out
    }
}

impl ChunkExpandAtIndex<Utf8Type> for Utf8Chunked {
    fn new_from_index(&self, index: usize, length: usize) -> Utf8Chunked {
        let mut out = impl_chunk_expand!(self, length, index);
        out.set_sorted(false);
        out
    }
More examples
Hide additional examples
src/chunked_array/mod.rs (line 204)
198
199
200
201
202
203
204
205
206
207
    pub fn set_sorted2(&mut self, sorted: IsSorted) {
        match sorted {
            IsSorted::Not => {
                self.bit_settings
                    .remove(Settings::SORTED_ASC | Settings::SORTED_DSC);
            }
            IsSorted::Ascending => self.set_sorted(false),
            IsSorted::Descending => self.set_sorted(true),
        }
    }
src/frame/mod.rs (line 373)
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    pub fn with_row_count(&self, name: &str, offset: Option<IdxSize>) -> PolarsResult<Self> {
        let mut columns = Vec::with_capacity(self.columns.len() + 1);
        let offset = offset.unwrap_or(0);

        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);
        columns.push(ca.into_series());

        columns.extend_from_slice(&self.columns);
        DataFrame::new(columns)
    }

    /// Add a row count in place.
    pub fn with_row_count_mut(&mut self, name: &str, offset: Option<IdxSize>) -> &mut Self {
        let offset = offset.unwrap_or(0);
        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);

        self.columns.insert(0, ca.into_series());
        self
    }
src/frame/explode.rs (line 61)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    pub fn explode_impl(&self, mut columns: Vec<Series>) -> PolarsResult<DataFrame> {
        let mut df = self.clone();
        if self.height() == 0 {
            for s in &columns {
                df.with_column(s.explode()?)?;
            }
            return Ok(df);
        }
        columns.sort_by(|sa, sb| {
            self.check_name_to_idx(sa.name())
                .expect("checked above")
                .partial_cmp(&self.check_name_to_idx(sb.name()).expect("checked above"))
                .expect("cmp usize -> Ordering")
        });

        // first remove all the exploded columns
        for s in &columns {
            df = df.drop(s.name())?;
        }

        for (i, s) in columns.iter().enumerate() {
            // Safety:
            // offsets don't have indices exceeding Series length.
            if let Ok((exploded, offsets)) = get_exploded(s) {
                let col_idx = self.check_name_to_idx(s.name())?;

                // expand all the other columns based the exploded first column
                if i == 0 {
                    let row_idx = offsets_to_indexes(offsets.as_slice(), exploded.len());
                    let mut row_idx = IdxCa::from_vec("", row_idx);
                    row_idx.set_sorted(false);

                    // Safety
                    // We just created indices that are in bounds.
                    df = unsafe { df.take_unchecked(&row_idx) };
                }
                if exploded.len() == df.height() || df.width() == 0 {
                    df.columns.insert(col_idx, exploded);
                } else {
                    return Err(PolarsError::ShapeMisMatch(
                        format!("The exploded column(s) don't have the same length. Length DataFrame: {}. Length exploded column {}: {}", df.height(), exploded.name(), exploded.len()).into(),
                    ));
                }
            } else {
                return Err(PolarsError::InvalidOperation(
                    format!("cannot explode dtype: {:?}", s.dtype()).into(),
                ));
            }
        }
        Ok(df)
    }
src/chunked_array/ops/sort/mod.rs (line 166)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn sort_with_numeric<T>(
    ca: &ChunkedArray<T>,
    options: SortOptions,
    order_default: fn(&T::Native, &T::Native) -> Ordering,
    order_reverse: fn(&T::Native, &T::Native) -> Ordering,
) -> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    sort_with_fast_path!(ca, options);
    if !ca.has_validity() {
        let mut vals = memcpy_values(ca);

        sort_branch(
            vals.as_mut_slice(),
            options.descending,
            order_default,
            order_reverse,
        );

        let mut ca = ChunkedArray::from_vec(ca.name(), vals);
        ca.set_sorted(options.descending);
        ca
    } else {
        let null_count = ca.null_count();
        let len = ca.len();

        let mut vals = Vec::with_capacity(ca.len());

        if !options.nulls_last {
            let iter = std::iter::repeat(T::Native::default()).take(null_count);
            vals.extend(iter);
        }

        ca.downcast_iter().for_each(|arr| {
            let iter = arr.iter().filter_map(|v| v.copied());
            vals.extend(iter);
        });
        let mut_slice = if options.nulls_last {
            &mut vals[..len - null_count]
        } else {
            &mut vals[null_count..]
        };

        sort_branch(mut_slice, options.descending, order_default, order_reverse);

        let mut ca: ChunkedArray<T> = if options.nulls_last {
            vals.extend(std::iter::repeat(T::Native::default()).take(ca.null_count()));
            let mut validity = MutableBitmap::with_capacity(len);
            validity.extend_constant(len - null_count, true);
            validity.extend_constant(null_count, false);

            (
                ca.name(),
                PrimitiveArray::new(
                    T::get_dtype().to_arrow(),
                    vals.into(),
                    Some(validity.into()),
                ),
            )
                .into()
        } else {
            let mut validity = MutableBitmap::with_capacity(len);
            validity.extend_constant(null_count, false);
            validity.extend_constant(len - null_count, true);

            (
                ca.name(),
                PrimitiveArray::new(
                    T::get_dtype().to_arrow(),
                    vals.into(),
                    Some(validity.into()),
                ),
            )
                .into()
        };

        ca.set_sorted(options.descending);
        ca
    }
}

fn argsort_numeric<T>(ca: &ChunkedArray<T>, options: SortOptions) -> IdxCa
where
    T: PolarsNumericType,
{
    let reverse = options.descending;
    if ca.null_count() == 0 {
        let mut vals = Vec::with_capacity(ca.len());
        let mut count: IdxSize = 0;
        ca.downcast_iter().for_each(|arr| {
            let values = arr.values();
            let iter = values.iter().map(|&v| {
                let i = count;
                count += 1;
                (i, v)
            });
            vals.extend_trusted_len(iter);
        });

        argsort_no_nulls(vals.as_mut_slice(), reverse);

        let out: NoNull<IdxCa> = vals.into_iter().map(|(idx, _v)| idx).collect_trusted();
        let mut out = out.into_inner();
        out.rename(ca.name());
        out
    } else {
        let iter = ca
            .downcast_iter()
            .map(|arr| arr.iter().map(|opt| opt.copied()));
        argsort::argsort(ca.name(), iter, options, ca.null_count(), ca.len())
    }
}

#[cfg(feature = "sort_multiple")]
fn argsort_multiple_numeric<T: PolarsNumericType>(
    ca: &ChunkedArray<T>,
    other: &[Series],
    reverse: &[bool],
) -> PolarsResult<IdxCa> {
    args_validate(ca, other, reverse)?;
    let mut count: IdxSize = 0;
    let vals: Vec<_> = ca
        .into_iter()
        .map(|v| {
            let i = count;
            count += 1;
            (i, v)
        })
        .collect_trusted();

    argsort_multiple_impl(vals, other, reverse)
}

impl<T> ChunkSort<T> for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Default + Ord,
{
    fn sort_with(&self, options: SortOptions) -> ChunkedArray<T> {
        sort_with_numeric(self, options, order_default, order_reverse)
    }

    fn sort(&self, reverse: bool) -> ChunkedArray<T> {
        self.sort_with(SortOptions {
            descending: reverse,
            ..Default::default()
        })
    }

    fn argsort(&self, options: SortOptions) -> IdxCa {
        argsort_numeric(self, options)
    }

    #[cfg(feature = "sort_multiple")]
    /// # Panics
    ///
    /// This function is very opinionated.
    /// We assume that all numeric `Series` are of the same type, if not it will panic
    fn argsort_multiple(&self, other: &[Series], reverse: &[bool]) -> PolarsResult<IdxCa> {
        argsort_multiple_numeric(self, other, reverse)
    }
}

impl ChunkSort<Float32Type> for Float32Chunked {
    fn sort_with(&self, options: SortOptions) -> Float32Chunked {
        sort_with_numeric(self, options, order_default_flt, order_reverse_flt)
    }

    fn sort(&self, reverse: bool) -> Float32Chunked {
        self.sort_with(SortOptions {
            descending: reverse,
            ..Default::default()
        })
    }

    fn argsort(&self, options: SortOptions) -> IdxCa {
        argsort_numeric(self, options)
    }

    #[cfg(feature = "sort_multiple")]
    /// # Panics
    ///
    /// This function is very opinionated.
    /// We assume that all numeric `Series` are of the same type, if not it will panic
    fn argsort_multiple(&self, other: &[Series], reverse: &[bool]) -> PolarsResult<IdxCa> {
        argsort_multiple_numeric(self, other, reverse)
    }
}

impl ChunkSort<Float64Type> for Float64Chunked {
    fn sort_with(&self, options: SortOptions) -> Float64Chunked {
        sort_with_numeric(self, options, order_default_flt, order_reverse_flt)
    }

    fn sort(&self, reverse: bool) -> Float64Chunked {
        self.sort_with(SortOptions {
            descending: reverse,
            ..Default::default()
        })
    }

    fn argsort(&self, options: SortOptions) -> IdxCa {
        argsort_numeric(self, options)
    }

    #[cfg(feature = "sort_multiple")]
    /// # Panics
    ///
    /// This function is very opinionated.
    /// We assume that all numeric `Series` are of the same type, if not it will panic
    fn argsort_multiple(&self, other: &[Series], reverse: &[bool]) -> PolarsResult<IdxCa> {
        argsort_multiple_numeric(self, other, reverse)
    }
}

fn ordering_other_columns<'a>(
    compare_inner: &'a [Box<dyn PartialOrdInner + 'a>],
    reverse: &[bool],
    idx_a: usize,
    idx_b: usize,
) -> Ordering {
    for (cmp, reverse) in compare_inner.iter().zip(reverse) {
        // Safety:
        // indices are in bounds
        let ordering = unsafe { cmp.cmp_element_unchecked(idx_a, idx_b) };
        match (ordering, reverse) {
            (Ordering::Equal, _) => continue,
            (_, true) => return ordering.reverse(),
            _ => return ordering,
        }
    }
    // all arrays/columns exhausted, ordering equal it is.
    Ordering::Equal
}

impl ChunkSort<Utf8Type> for Utf8Chunked {
    fn sort_with(&self, options: SortOptions) -> ChunkedArray<Utf8Type> {
        sort_with_fast_path!(self, options);
        let mut v: Vec<&str> = if self.null_count() > 0 {
            Vec::from_iter(self.into_iter().flatten())
        } else {
            Vec::from_iter(self.into_no_null_iter())
        };

        sort_branch(
            v.as_mut_slice(),
            options.descending,
            order_default,
            order_reverse,
        );

        let mut values = Vec::<u8>::with_capacity(self.get_values_size());
        let mut offsets = Vec::<i64>::with_capacity(self.len() + 1);
        let mut length_so_far = 0i64;
        offsets.push(length_so_far);

        let len = self.len();
        let null_count = self.null_count();
        let mut ca: Self = match (null_count, options.nulls_last) {
            (0, _) => {
                for val in v {
                    values.extend_from_slice(val.as_bytes());
                    length_so_far = values.len() as i64;
                    offsets.push(length_so_far);
                }
                // Safety:
                // we pass valid utf8
                let ar = unsafe {
                    Utf8Array::from_data_unchecked_default(offsets.into(), values.into(), None)
                };
                (self.name(), ar).into()
            }
            (_, true) => {
                for val in v {
                    values.extend_from_slice(val.as_bytes());
                    length_so_far = values.len() as i64;
                    offsets.push(length_so_far);
                }
                let mut validity = MutableBitmap::with_capacity(len);
                validity.extend_constant(len - null_count, true);
                validity.extend_constant(null_count, false);
                offsets.extend(std::iter::repeat(length_so_far).take(null_count));

                // Safety:
                // we pass valid utf8
                let ar = unsafe {
                    Utf8Array::from_data_unchecked_default(
                        offsets.into(),
                        values.into(),
                        Some(validity.into()),
                    )
                };
                (self.name(), ar).into()
            }
            (_, false) => {
                let mut validity = MutableBitmap::with_capacity(len);
                validity.extend_constant(null_count, false);
                validity.extend_constant(len - null_count, true);
                offsets.extend(std::iter::repeat(length_so_far).take(null_count));

                for val in v {
                    values.extend_from_slice(val.as_bytes());
                    length_so_far = values.len() as i64;
                    offsets.push(length_so_far);
                }

                // Safety:
                // we pass valid utf8
                let ar = unsafe {
                    Utf8Array::from_data_unchecked_default(
                        offsets.into(),
                        values.into(),
                        Some(validity.into()),
                    )
                };
                (self.name(), ar).into()
            }
        };

        ca.set_sorted(options.descending);
        ca
    }
Examples found in repository?
src/series/implementations/utf8.rs (line 206)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };

        let mut out = ChunkTake::take_unchecked(&self.0, (&*idx).into());

        if self.0.is_sorted() && (idx.is_sorted() || idx.is_sorted_reverse()) {
            out.set_sorted2(idx.is_sorted2())
        }

        Ok(out.into_series())
    }
More examples
Hide additional examples
src/chunked_array/ops/reverse.rs (line 18)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    fn reverse(&self) -> ChunkedArray<T> {
        let mut out = if let Ok(slice) = self.cont_slice() {
            let ca: NoNull<ChunkedArray<T>> = slice.iter().rev().copied().collect_trusted();
            ca.into_inner()
        } else {
            self.into_iter().rev().collect_trusted()
        };
        out.rename(self.name());

        match self.is_sorted2() {
            IsSorted::Ascending => out.set_sorted2(IsSorted::Descending),
            IsSorted::Descending => out.set_sorted2(IsSorted::Ascending),
            _ => {}
        }

        out
    }
src/chunked_array/ops/aggregate.rs (line 75)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    fn min(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_max(&acc, &v), Ordering::Less) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

    fn max(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_min(&acc, &v), Ordering::Greater) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

    fn mean(&self) -> Option<f64> {
        match self.dtype() {
            DataType::Float64 => {
                let len = (self.len() - self.null_count()) as f64;
                self.sum().map(|v| v.to_f64().unwrap() / len)
            }
            _ => {
                let null_count = self.null_count();
                let len = self.len();
                if null_count == len {
                    None
                } else {
                    let mut acc = 0.0;
                    let len = (len - null_count) as f64;

                    for arr in self.downcast_iter() {
                        if arr.null_count() > 0 {
                            for v in arr.into_iter().flatten() {
                                // safety
                                // all these types can be coerced to f64
                                unsafe {
                                    let val = v.to_f64().unwrap_unchecked();
                                    acc += val
                                }
                            }
                        } else {
                            for v in arr.values().as_slice() {
                                // safety
                                // all these types can be coerced to f64
                                unsafe {
                                    let val = v.to_f64().unwrap_unchecked();
                                    acc += val
                                }
                            }
                        }
                    }
                    Some(acc / len)
                }
            }
        }
    }
}

/// helper
fn quantile_idx(
    quantile: f64,
    length: usize,
    null_count: usize,
    interpol: QuantileInterpolOptions,
) -> (i64, f64, i64) {
    let mut base_idx = match interpol {
        QuantileInterpolOptions::Nearest => {
            (((length - null_count) as f64) * quantile + null_count as f64) as i64
        }
        QuantileInterpolOptions::Lower
        | QuantileInterpolOptions::Midpoint
        | QuantileInterpolOptions::Linear => {
            (((length - null_count) as f64 - 1.0) * quantile + null_count as f64) as i64
        }
        QuantileInterpolOptions::Higher => {
            (((length - null_count) as f64 - 1.0) * quantile + null_count as f64).ceil() as i64
        }
    };

    base_idx = base_idx.clamp(0, (length - 1) as i64);
    let float_idx = ((length - null_count) as f64 - 1.0) * quantile + null_count as f64;
    let top_idx = f64::ceil(float_idx) as i64;

    (base_idx, float_idx, top_idx)
}

/// helper
fn linear_interpol<T: Float>(bounds: &[Option<T>], idx: i64, float_idx: f64) -> Option<T> {
    if bounds[0] == bounds[1] {
        Some(bounds[0].unwrap())
    } else {
        let proportion: T = T::from(float_idx).unwrap() - T::from(idx).unwrap();
        Some(proportion * (bounds[1].unwrap() - bounds[0].unwrap()) + bounds[0].unwrap())
    }
}

impl<T> ChunkQuantile<f64> for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Option<f64>> {
        if !(0.0..=1.0).contains(&quantile) {
            return Err(PolarsError::ComputeError(
                "quantile should be between 0.0 and 1.0".into(),
            ));
        }

        let null_count = self.null_count();
        let length = self.len();

        if null_count == length {
            return Ok(None);
        }

        let (idx, float_idx, top_idx) = quantile_idx(quantile, length, null_count, interpol);

        let opt = match interpol {
            QuantileInterpolOptions::Midpoint => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f64>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .collect();

                    Some((bounds[0].unwrap() + bounds[1].unwrap()) / 2.0f64)
                }
            }
            QuantileInterpolOptions::Linear => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f64>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .collect();

                    linear_interpol(&bounds, idx, float_idx)
                }
            }
            _ => ChunkSort::sort(self, false)
                .slice(idx, 1)
                .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                .into_iter()
                .next()
                .flatten(),
        };

        Ok(opt)
    }

    fn median(&self) -> Option<f64> {
        self.quantile(0.5, QuantileInterpolOptions::Linear).unwrap() // unwrap fine since quantile in range
    }
}

impl ChunkQuantile<f32> for Float32Chunked {
    fn quantile(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Option<f32>> {
        if !(0.0..=1.0).contains(&quantile) {
            return Err(PolarsError::ComputeError(
                "quantile should be between 0.0 and 1.0".into(),
            ));
        }

        let null_count = self.null_count();
        let length = self.len();

        if null_count == length {
            return Ok(None);
        }

        let (idx, float_idx, top_idx) = quantile_idx(quantile, length, null_count, interpol);

        let opt = match interpol {
            QuantileInterpolOptions::Midpoint => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float32Type>(|value| value.to_f32().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f32>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float32Type>(|value| value.to_f32().unwrap())
                        .into_iter()
                        .collect();

                    Some((bounds[0].unwrap() + bounds[1].unwrap()) / 2.0f32)
                }
            }
            QuantileInterpolOptions::Linear => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float32Type>(|value| value.to_f32().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f32>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float32Type>(|value| value.to_f32().unwrap())
                        .into_iter()
                        .collect();

                    linear_interpol(&bounds, idx, float_idx)
                }
            }
            _ => ChunkSort::sort(self, false)
                .slice(idx, 1)
                .apply_cast_numeric::<_, Float32Type>(|value| value.to_f32().unwrap())
                .into_iter()
                .next()
                .flatten(),
        };

        Ok(opt)
    }

    fn median(&self) -> Option<f32> {
        self.quantile(0.5, QuantileInterpolOptions::Linear).unwrap() // unwrap fine since quantile in range
    }
}

impl ChunkQuantile<f64> for Float64Chunked {
    fn quantile(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Option<f64>> {
        if !(0.0..=1.0).contains(&quantile) {
            return Err(PolarsError::ComputeError(
                "quantile should be between 0.0 and 1.0".into(),
            ));
        }

        let null_count = self.null_count();
        let length = self.len();

        if null_count == length {
            return Ok(None);
        }

        let (idx, float_idx, top_idx) = quantile_idx(quantile, length, null_count, interpol);

        let opt = match interpol {
            QuantileInterpolOptions::Midpoint => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f64>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .collect();

                    Some((bounds[0].unwrap() + bounds[1].unwrap()) / 2.0f64)
                }
            }
            QuantileInterpolOptions::Linear => {
                if top_idx == idx {
                    ChunkSort::sort(self, false)
                        .slice(idx, 1)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .next()
                        .flatten()
                } else {
                    let bounds: Vec<Option<f64>> = ChunkSort::sort(self, false)
                        .slice(idx, 2)
                        .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                        .into_iter()
                        .collect();

                    linear_interpol(&bounds, idx, float_idx)
                }
            }
            _ => ChunkSort::sort(self, false)
                .slice(idx, 1)
                .apply_cast_numeric::<_, Float64Type>(|value| value.to_f64().unwrap())
                .into_iter()
                .next()
                .flatten(),
        };

        Ok(opt)
    }

    fn median(&self) -> Option<f64> {
        self.quantile(0.5, QuantileInterpolOptions::Linear).unwrap() // unwrap fine since quantile in range
    }
}

impl ChunkQuantile<String> for Utf8Chunked {}
impl ChunkQuantile<Series> for ListChunked {}
#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkQuantile<Series> for ObjectChunked<T> {}
impl ChunkQuantile<bool> for BooleanChunked {}

impl<T> ChunkVar<f64> for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var(&self, ddof: u8) -> Option<f64> {
        if self.len() == 1 {
            return Some(0.0);
        }
        let n_values = self.len() - self.null_count();

        if ddof as usize > n_values {
            return None;
        }
        let n_values = n_values as f64;

        let mean = self.mean()?;
        let squared = self.apply_cast_numeric::<_, Float64Type>(|value| {
            let tmp = value.to_f64().unwrap() - mean;
            tmp * tmp
        });
        // Note, this is similar behavior to numpy if DDOF=1.
        // in statistics DDOF often = 1.
        // this last step is similar to mean, only now instead of 1/n it is 1/(n-1)
        squared.sum().map(|sum| sum / (n_values - ddof as f64))
    }
    fn std(&self, ddof: u8) -> Option<f64> {
        self.var(ddof).map(|var| var.sqrt())
    }
}

impl ChunkVar<f32> for Float32Chunked {
    fn var(&self, ddof: u8) -> Option<f32> {
        if self.len() == 1 {
            return Some(0.0);
        }
        let n_values = self.len() - self.null_count();

        if ddof as usize > n_values {
            return None;
        }
        let n_values = n_values as f32;

        let mean = self.mean()? as f32;
        let squared = self.apply(|value| {
            let tmp = value - mean;
            tmp * tmp
        });
        squared.sum().map(|sum| sum / (n_values - ddof as f32))
    }
    fn std(&self, ddof: u8) -> Option<f32> {
        self.var(ddof).map(|var| var.sqrt())
    }
}

impl ChunkVar<f64> for Float64Chunked {
    fn var(&self, ddof: u8) -> Option<f64> {
        if self.len() == 1 {
            return Some(0.0);
        }
        let n_values = self.len() - self.null_count();

        if ddof as usize > n_values {
            return None;
        }
        let n_values = n_values as f64;

        let mean = self.mean()?;
        let squared = self.apply(|value| {
            let tmp = value - mean;
            tmp * tmp
        });
        squared.sum().map(|sum| sum / (n_values - ddof as f64))
    }
    fn std(&self, ddof: u8) -> Option<f64> {
        self.var(ddof).map(|var| var.sqrt())
    }
}

impl ChunkVar<String> for Utf8Chunked {}
impl ChunkVar<Series> for ListChunked {}
#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkVar<Series> for ObjectChunked<T> {}
impl ChunkVar<bool> for BooleanChunked {}

/// Booleans are casted to 1 or 0.
impl ChunkAgg<IdxSize> for BooleanChunked {
    /// Returns `None` if the array is empty or only contains null values.
    fn sum(&self) -> Option<IdxSize> {
        if self.is_empty() {
            None
        } else {
            Some(
                self.downcast_iter()
                    .map(|arr| match arr.validity() {
                        Some(validity) => {
                            (arr.len() - (validity & arr.values()).unset_bits()) as IdxSize
                        }
                        None => (arr.len() - arr.values().unset_bits()) as IdxSize,
                    })
                    .sum(),
            )
        }
    }

    fn min(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.all() {
            Some(1)
        } else {
            Some(0)
        }
    }

    fn max(&self) -> Option<IdxSize> {
        if self.is_empty() {
            return None;
        }
        if self.any() {
            Some(1)
        } else {
            Some(0)
        }
    }
    fn mean(&self) -> Option<f64> {
        self.sum()
            .map(|sum| sum as f64 / (self.len() - self.null_count()) as f64)
    }
}

// Needs the same trait bounds as the implementation of ChunkedArray<T> of dyn Series
impl<T> ChunkAggSeries for ChunkedArray<T>
where
    T: PolarsNumericType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
    ChunkedArray<T>: IntoSeries,
{
    fn sum_as_series(&self) -> Series {
        let v = self.sum();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = self.max();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = self.min();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

    fn prod_as_series(&self) -> Series {
        let mut prod = None;
        for opt_v in self.into_iter() {
            match (prod, opt_v) {
                (_, None) => return Self::full_null(self.name(), 1).into_series(),
                (None, Some(v)) => prod = Some(v),
                (Some(p), Some(v)) => prod = Some(p * v),
            }
        }
        Self::from_slice_options(self.name(), &[prod]).into_series()
    }
}

macro_rules! impl_as_series {
    ($self:expr, $agg:ident, $ty: ty) => {{
        let v = $self.$agg();
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
    ($self:expr, $agg:ident, $arg:expr, $ty: ty) => {{
        let v = $self.$agg($arg);
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
}

impl<T> VarAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

impl VarAggSeries for Float32Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float32Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float32Chunked)
    }
}

impl VarAggSeries for Float64Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

macro_rules! impl_quantile_as_series {
    ($self:expr, $agg:ident, $ty: ty, $qtl:expr, $opt:expr) => {{
        let v = $self.$agg($qtl, $opt)?;
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        Ok(ca.into_series())
    }};
}

impl<T> QuantileAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl QuantileAggSeries for Float32Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float32Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float32Chunked)
    }
}

impl QuantileAggSeries for Float64Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl ChunkAggSeries for BooleanChunked {
    fn sum_as_series(&self) -> Series {
        let v = ChunkAgg::sum(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = ChunkAgg::max(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = ChunkAgg::min(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
}

impl Utf8Chunked {
    pub(crate) fn max_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(self.len() - 1),
            IsSorted::Descending => self.get(0),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_string)
                .fold_first_(|acc, v| if acc > v { acc } else { v }),
        }
    }
    pub(crate) fn min_str(&self) -> Option<&str> {
        match self.is_sorted2() {
            IsSorted::Ascending => self.get(0),
            IsSorted::Descending => self.get(self.len() - 1),
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_string)
                .fold_first_(|acc, v| if acc < v { acc } else { v }),
        }
    }
}

impl ChunkAggSeries for Utf8Chunked {
    fn sum_as_series(&self) -> Series {
        Utf8Chunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(self.name(), &[self.max_str()])
    }
    fn min_as_series(&self) -> Series {
        Series::new(self.name(), &[self.min_str()])
    }
}

#[cfg(feature = "dtype-binary")]
impl ChunkAggSeries for BinaryChunked {
    fn sum_as_series(&self) -> Series {
        BinaryChunked::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::max_binary)
                .fold_first_(|acc, v| if acc > v { acc } else { v })],
        )
    }
    fn min_as_series(&self) -> Series {
        Series::new(
            self.name(),
            &[self
                .downcast_iter()
                .filter_map(compute::aggregate::min_binary)
                .fold_first_(|acc, v| if acc < v { acc } else { v })],
        )
    }
}

impl ChunkAggSeries for ListChunked {
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
}

#[cfg(feature = "object")]
impl<T: PolarsObject> ChunkAggSeries for ObjectChunked<T> {}

impl<T> ArgAgg for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn arg_min(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(0),
            IsSorted::Descending => Some(self.len()),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 > val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
    fn arg_max(&self) -> Option<usize> {
        match self.is_sorted2() {
            IsSorted::Ascending => Some(self.len()),
            IsSorted::Descending => Some(0),
            IsSorted::Not => self
                .into_iter()
                .enumerate()
                .reduce(|acc, (idx, val)| if acc.1 < val { (idx, val) } else { acc })
                .map(|tpl| tpl.0),
        }
    }
src/chunked_array/cast.rs (line 83)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    fn cast_impl(&self, data_type: &DataType, checked: bool) -> PolarsResult<Series> {
        match data_type {
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(_) => {
                Ok(CategoricalChunked::full_null(self.name(), self.len()).into_series())
            }
            #[cfg(feature = "dtype-struct")]
            DataType::Struct(fields) => {
                // cast to first field dtype
                let fld = &fields[0];
                let dtype = &fld.dtype;
                let name = &fld.name;
                let s = cast_impl_inner(name, &self.chunks, dtype, true)?;
                Ok(StructChunked::new_unchecked(self.name(), &[s]).into_series())
            }
            _ => cast_impl_inner(self.name(), &self.chunks, data_type, checked).map(|mut s| {
                // maintain sorted if data types remain signed
                // this may still fail with overflow?
                if ((self.dtype().is_signed() && data_type.is_signed())
                    || (self.dtype().is_unsigned() && data_type.is_unsigned()))
                    && (s.null_count() == self.null_count())
                {
                    let is_sorted = self.is_sorted2();
                    s.set_sorted(is_sorted)
                }
                s
            }),
        }
    }
src/frame/groupby/aggregations/mod.rs (line 214)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    pub(crate) unsafe fn agg_min(&self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (self.is_sorted2(), self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            _ => {}
        }
        match groups {
            GroupsProxy::Idx(groups) => _agg_helper_idx_bool(groups, |(first, idx)| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else if idx.len() == 1 {
                    self.get(first as usize)
                } else {
                    // TODO! optimize this
                    // can just check if any is false and early stop
                    let take = { self.take_unchecked(idx.into()) };
                    take.min().map(|v| v == 1)
                }
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => _agg_helper_slice_bool(groups_slice, |[first, len]| {
                debug_assert!(len <= self.len() as IdxSize);
                match len {
                    0 => None,
                    1 => self.get(first as usize),
                    _ => {
                        let arr_group = _slice_from_offsets(self, first, len);
                        arr_group.min().map(|v| v == 1)
                    }
                }
            }),
        }
    }
    pub(crate) unsafe fn agg_max(&self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (self.is_sorted2(), self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            _ => {}
        }

        match groups {
            GroupsProxy::Idx(groups) => _agg_helper_idx_bool(groups, |(first, idx)| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else if idx.len() == 1 {
                    self.get(first as usize)
                } else {
                    // TODO! optimize this
                    // can just check if any is true and early stop
                    let take = { self.take_unchecked(idx.into()) };
                    take.max().map(|v| v == 1)
                }
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => _agg_helper_slice_bool(groups_slice, |[first, len]| {
                debug_assert!(len <= self.len() as IdxSize);
                match len {
                    0 => None,
                    1 => self.get(first as usize),
                    _ => {
                        let arr_group = _slice_from_offsets(self, first, len);
                        arr_group.max().map(|v| v == 1)
                    }
                }
            }),
        }
    }
    pub(crate) unsafe fn agg_sum(&self, groups: &GroupsProxy) -> Series {
        self.cast(&IDX_DTYPE).unwrap().agg_sum(groups)
    }
}

impl Utf8Chunked {
    #[allow(clippy::needless_lifetimes)]
    pub(crate) unsafe fn agg_min<'a>(&'a self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (&self.is_sorted2(), &self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            _ => {}
        }

        match groups {
            GroupsProxy::Idx(groups) => {
                let ca_self = self.rechunk();
                let arr = ca_self.downcast_iter().next().unwrap();
                _agg_helper_idx_utf8(groups, |(first, idx)| {
                    debug_assert!(idx.len() <= ca_self.len());
                    if idx.is_empty() {
                        None
                    } else if idx.len() == 1 {
                        ca_self.get(first as usize)
                    } else if self.null_count() == 0 {
                        take_agg_utf8_iter_unchecked_no_null(
                            arr,
                            indexes_to_usizes(idx),
                            |acc, v| if acc < v { acc } else { v },
                        )
                    } else {
                        take_agg_utf8_iter_unchecked(
                            arr,
                            indexes_to_usizes(idx),
                            |acc, v| if acc < v { acc } else { v },
                            idx.len() as IdxSize,
                        )
                    }
                })
            }
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => _agg_helper_slice_utf8(groups_slice, |[first, len]| {
                debug_assert!(len <= self.len() as IdxSize);
                match len {
                    0 => None,
                    1 => self.get(first as usize),
                    _ => {
                        let arr_group = _slice_from_offsets(self, first, len);
                        let borrowed = arr_group.min_str();

                        // Safety:
                        // The borrowed has `arr_group`s lifetime, but it actually points to data
                        // hold by self. Here we tell the compiler that.
                        unsafe { std::mem::transmute::<Option<&str>, Option<&'a str>>(borrowed) }
                    }
                }
            }),
        }
    }

    #[allow(clippy::needless_lifetimes)]
    pub(crate) unsafe fn agg_max<'a>(&'a self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (self.is_sorted2(), self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            _ => {}
        }

        match groups {
            GroupsProxy::Idx(groups) => {
                let ca_self = self.rechunk();
                let arr = ca_self.downcast_iter().next().unwrap();
                _agg_helper_idx_utf8(groups, |(first, idx)| {
                    debug_assert!(idx.len() <= self.len());
                    if idx.is_empty() {
                        None
                    } else if idx.len() == 1 {
                        ca_self.get(first as usize)
                    } else if ca_self.null_count() == 0 {
                        take_agg_utf8_iter_unchecked_no_null(
                            arr,
                            indexes_to_usizes(idx),
                            |acc, v| if acc > v { acc } else { v },
                        )
                    } else {
                        take_agg_utf8_iter_unchecked(
                            arr,
                            indexes_to_usizes(idx),
                            |acc, v| if acc > v { acc } else { v },
                            idx.len() as IdxSize,
                        )
                    }
                })
            }
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => _agg_helper_slice_utf8(groups_slice, |[first, len]| {
                debug_assert!(len <= self.len() as IdxSize);
                match len {
                    0 => None,
                    1 => self.get(first as usize),
                    _ => {
                        let arr_group = _slice_from_offsets(self, first, len);
                        let borrowed = arr_group.max_str();

                        // Safety:
                        // The borrowed has `arr_group`s lifetime, but it actually points to data
                        // hold by self. Here we tell the compiler that.
                        unsafe { std::mem::transmute::<Option<&str>, Option<&'a str>>(borrowed) }
                    }
                }
            }),
        }
    }
}

#[inline(always)]
fn take_min<T: PartialOrd>(a: T, b: T) -> T {
    if a < b {
        a
    } else {
        b
    }
}

#[inline(always)]
fn take_max<T: PartialOrd>(a: T, b: T) -> T {
    if a > b {
        a
    } else {
        b
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType + Sync,
    T::Native:
        NativeType + PartialOrd + Num + NumCast + Zero + Simd + Bounded + std::iter::Sum<T::Native>,
    <T::Native as Simd>::Simd: std::ops::Add<Output = <T::Native as Simd>::Simd>
        + arrow::compute::aggregate::Sum<T::Native>
        + arrow::compute::aggregate::SimdOrd<T::Native>,
    ChunkedArray<T>: IntoSeries,
{
    pub(crate) unsafe fn agg_min(&self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (self.is_sorted2(), self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            _ => {}
        }
        match groups {
            GroupsProxy::Idx(groups) => _agg_helper_idx::<T, _>(groups, |(first, idx)| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else if idx.len() == 1 {
                    self.get(first as usize)
                } else {
                    match (self.has_validity(), self.chunks.len()) {
                        (false, 1) => Some(take_agg_no_null_primitive_iter_unchecked(
                            self.downcast_iter().next().unwrap(),
                            idx.iter().map(|i| *i as usize),
                            take_min,
                            T::Native::max_value(),
                        )),
                        (_, 1) => take_agg_primitive_iter_unchecked::<T::Native, _, _>(
                            self.downcast_iter().next().unwrap(),
                            idx.iter().map(|i| *i as usize),
                            take_min,
                            T::Native::max_value(),
                            idx.len() as IdxSize,
                        ),
                        _ => {
                            let take = { self.take_unchecked(idx.into()) };
                            take.min()
                        }
                    }
                }
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let arr = self.downcast_iter().next().unwrap();
                    let values = arr.values().as_slice();
                    let offset_iter = groups_slice.iter().map(|[first, len]| (*first, *len));
                    let arr = match arr.validity() {
                        None => _rolling_apply_agg_window_no_nulls::<MinWindow<_>, _, _>(
                            values,
                            offset_iter,
                        ),
                        Some(validity) => _rolling_apply_agg_window_nulls::<
                            rolling::nulls::MinWindow<_>,
                            _,
                            _,
                        >(values, validity, offset_iter),
                    };
                    Self::from_chunks("", vec![arr]).into_series()
                } else {
                    _agg_helper_slice::<T, _>(groups_slice, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.min()
                            }
                        }
                    })
                }
            }
        }
    }

    pub(crate) unsafe fn agg_max(&self, groups: &GroupsProxy) -> Series {
        // faster paths
        match (self.is_sorted2(), self.null_count()) {
            (IsSorted::Ascending, 0) => {
                return self.clone().into_series().agg_last(groups);
            }
            (IsSorted::Descending, 0) => {
                return self.clone().into_series().agg_first(groups);
            }
            _ => {}
        }

        match groups {
            GroupsProxy::Idx(groups) => _agg_helper_idx::<T, _>(groups, |(first, idx)| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else if idx.len() == 1 {
                    self.get(first as usize)
                } else {
                    match (self.has_validity(), self.chunks.len()) {
                        (false, 1) => Some({
                            take_agg_no_null_primitive_iter_unchecked(
                                self.downcast_iter().next().unwrap(),
                                idx.iter().map(|i| *i as usize),
                                take_max,
                                T::Native::min_value(),
                            )
                        }),
                        (_, 1) => take_agg_primitive_iter_unchecked::<T::Native, _, _>(
                            self.downcast_iter().next().unwrap(),
                            idx.iter().map(|i| *i as usize),
                            take_max,
                            T::Native::min_value(),
                            idx.len() as IdxSize,
                        ),
                        _ => {
                            let take = { self.take_unchecked(idx.into()) };
                            take.max()
                        }
                    }
                }
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let arr = self.downcast_iter().next().unwrap();
                    let values = arr.values().as_slice();
                    let offset_iter = groups_slice.iter().map(|[first, len]| (*first, *len));
                    let arr = match arr.validity() {
                        None => _rolling_apply_agg_window_no_nulls::<MaxWindow<_>, _, _>(
                            values,
                            offset_iter,
                        ),
                        Some(validity) => _rolling_apply_agg_window_nulls::<
                            rolling::nulls::MaxWindow<_>,
                            _,
                            _,
                        >(values, validity, offset_iter),
                    };
                    Self::from_chunks("", vec![arr]).into_series()
                } else {
                    _agg_helper_slice::<T, _>(groups_slice, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.max()
                            }
                        }
                    })
                }
            }
        }
    }
src/chunked_array/ops/unique/mod.rs (line 186)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    fn unique(&self) -> PolarsResult<Self> {
        // prevent stackoverflow repeated sorted.unique call
        if self.is_empty() {
            return Ok(self.clone());
        }
        match self.is_sorted2() {
            IsSorted::Ascending | IsSorted::Descending => {
                // TODO! optimize this branch
                if self.null_count() > 0 {
                    let mut arr = MutablePrimitiveArray::with_capacity(self.len());
                    let mut iter = self.into_iter();
                    let mut last = None;

                    if let Some(val) = iter.next() {
                        last = val;
                        arr.push(val)
                    };

                    #[allow(clippy::unnecessary_filter_map)]
                    let to_extend = iter.filter_map(|opt_val| {
                        if opt_val != last {
                            last = opt_val;
                            Some(opt_val)
                        } else {
                            None
                        }
                    });

                    arr.extend(to_extend);
                    let arr: PrimitiveArray<T::Native> = arr.into();

                    Ok(ChunkedArray::from_chunks(
                        self.name(),
                        vec![Box::new(arr) as ArrayRef],
                    ))
                } else {
                    let mask = self.not_equal(&self.shift(1));
                    self.filter(&mask)
                }
            }
            IsSorted::Not => {
                let sorted = self.sort(false);
                sorted.unique()
            }
        }
    }
Examples found in repository?
src/series/implementations/boolean.rs (line 35)
34
35
36
    fn _set_sorted(&mut self, is_sorted: IsSorted) {
        self.0.set_sorted2(is_sorted)
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 29)
28
29
30
    fn _set_sorted(&mut self, is_sorted: IsSorted) {
        self.0.set_sorted2(is_sorted)
    }
src/series/implementations/utf8.rs (line 33)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    fn _set_sorted(&mut self, is_sorted: IsSorted) {
        self.0.set_sorted2(is_sorted)
    }

    unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
        self.0.equal_element(idx_self, idx_other, other)
    }

    #[cfg(feature = "zip_with")]
    fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
        ChunkZip::zip_with(&self.0, mask, other.as_ref().as_ref()).map(|ca| ca.into_series())
    }
    fn into_partial_eq_inner<'a>(&'a self) -> Box<dyn PartialEqInner + 'a> {
        (&self.0).into_partial_eq_inner()
    }
    fn into_partial_ord_inner<'a>(&'a self) -> Box<dyn PartialOrdInner + 'a> {
        (&self.0).into_partial_ord_inner()
    }

    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        self.0.vec_hash(random_state, buf);
        Ok(())
    }

    fn vec_hash_combine(&self, build_hasher: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        self.0.vec_hash_combine(build_hasher, hashes);
        Ok(())
    }

    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        self.0.agg_list(groups)
    }

    unsafe fn agg_min(&self, groups: &GroupsProxy) -> Series {
        self.0.agg_min(groups)
    }

    unsafe fn agg_max(&self, groups: &GroupsProxy) -> Series {
        self.0.agg_max(groups)
    }

    fn zip_outer_join_column(
        &self,
        right_column: &Series,
        opt_join_tuples: &[(Option<IdxSize>, Option<IdxSize>)],
    ) -> Series {
        ZipOuterJoinColumn::zip_outer_join_column(&self.0, right_column, opt_join_tuples)
    }
    fn subtract(&self, rhs: &Series) -> PolarsResult<Series> {
        NumOpsDispatch::subtract(&self.0, rhs)
    }
    fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
        NumOpsDispatch::add_to(&self.0, rhs)
    }
    fn multiply(&self, rhs: &Series) -> PolarsResult<Series> {
        NumOpsDispatch::multiply(&self.0, rhs)
    }
    fn divide(&self, rhs: &Series) -> PolarsResult<Series> {
        NumOpsDispatch::divide(&self.0, rhs)
    }
    fn remainder(&self, rhs: &Series) -> PolarsResult<Series> {
        NumOpsDispatch::remainder(&self.0, rhs)
    }
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        IntoGroupsProxy::group_tuples(&self.0, multithreaded, sorted)
    }

    #[cfg(feature = "sort_multiple")]
    fn argsort_multiple(&self, by: &[Series], reverse: &[bool]) -> PolarsResult<IdxCa> {
        self.0.argsort_multiple(by, reverse)
    }
}

impl SeriesTrait for SeriesWrap<Utf8Chunked> {
    fn is_sorted(&self) -> IsSorted {
        if self.0.is_sorted() {
            IsSorted::Ascending
        } else if self.0.is_sorted_reverse() {
            IsSorted::Descending
        } else {
            IsSorted::Not
        }
    }

    fn rename(&mut self, name: &str) {
        self.0.rename(name);
    }

    fn chunk_lengths(&self) -> ChunkIdIter {
        self.0.chunk_id()
    }
    fn name(&self) -> &str {
        self.0.name()
    }

    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.chunks()
    }
    fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit()
    }

    fn slice(&self, offset: i64, length: usize) -> Series {
        self.0.slice(offset, length).into_series()
    }

    fn append(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            // todo! add object
            self.0.append(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot append Series; data types don't match".into(),
            ))
        }
    }

    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.extend(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }

    fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
        ChunkFilter::filter(&self.0, filter).map(|ca| ca.into_series())
    }

    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_chunked_unchecked(&self, by: &[ChunkId], sorted: IsSorted) -> Series {
        self.0.take_chunked_unchecked(by, sorted).into_series()
    }

    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_opt_chunked_unchecked(&self, by: &[Option<ChunkId>]) -> Series {
        self.0.take_opt_chunked_unchecked(by).into_series()
    }

    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        Ok(ChunkTake::take(&self.0, (&*indices).into())?.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        Ok(ChunkTake::take(&self.0, iter.into())?.into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.0.take_every(n).into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        ChunkTake::take_unchecked(&self.0, iter.into()).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };

        let mut out = ChunkTake::take_unchecked(&self.0, (&*idx).into());

        if self.0.is_sorted() && (idx.is_sorted() || idx.is_sorted_reverse()) {
            out.set_sorted2(idx.is_sorted2())
        }

        Ok(out.into_series())
    }
src/series/implementations/categorical.rs (line 78)
77
78
79
    fn _set_sorted(&mut self, is_sorted: IsSorted) {
        self.0.logical_mut().set_sorted2(is_sorted)
    }
src/chunked_array/ops/append.rs (line 24)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    pub fn append(&mut self, other: &Self) {
        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
    }
}

#[doc(hidden)]
impl BooleanChunked {
    pub fn append(&mut self, other: &Self) {
        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
    }
}
#[doc(hidden)]
impl Utf8Chunked {
    pub fn append(&mut self, other: &Self) {
        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
    }
}

#[cfg(feature = "dtype-binary")]
#[doc(hidden)]
impl BinaryChunked {
    pub fn append(&mut self, other: &Self) {
        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
    }
}

#[doc(hidden)]
impl ListChunked {
    pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
        let dtype = merge_dtypes(self.dtype(), other.dtype())?;
        self.field = Arc::new(Field::new(self.name(), dtype));

        let len = self.len();
        self.length += other.length;
        new_chunks(&mut self.chunks, &other.chunks, len);
        self.set_sorted2(IsSorted::Not);
        if !other._can_fast_explode() {
            self.unset_fast_explode()
        }
        Ok(())
    }
}
#[cfg(feature = "object")]
#[doc(hidden)]
impl<T: PolarsObject> ObjectChunked<T> {
    pub fn append(&mut self, other: &Self) {
        let len = self.len();
        self.length += other.length;
        self.set_sorted2(IsSorted::Not);
        new_chunks(&mut self.chunks, &other.chunks, len);
    }
src/chunked_array/ops/full.rs (line 15)
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    fn full(name: &str, value: T::Native, length: usize) -> Self {
        let data = vec![value; length];
        let mut out = ChunkedArray::from_vec(name, data);
        out.set_sorted2(IsSorted::Ascending);
        out
    }
}

impl<T> ChunkFullNull for ChunkedArray<T>
where
    T: PolarsNumericType,
{
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(T::get_dtype().to_arrow(), length);
        ChunkedArray::from_chunks(name, vec![arr])
    }
}
impl ChunkFull<bool> for BooleanChunked {
    fn full(name: &str, value: bool, length: usize) -> Self {
        let mut bits = MutableBitmap::with_capacity(length);
        bits.extend_constant(length, value);
        let mut out: BooleanChunked =
            (name, BooleanArray::from_data_default(bits.into(), None)).into();
        out.set_sorted2(IsSorted::Ascending);
        out
    }
}

impl ChunkFullNull for BooleanChunked {
    fn full_null(name: &str, length: usize) -> Self {
        let arr = new_null_array(DataType::Boolean.to_arrow(), length);
        BooleanChunked::from_chunks(name, vec![arr])
    }
}

impl<'a> ChunkFull<&'a str> for Utf8Chunked {
    fn full(name: &str, value: &'a str, length: usize) -> Self {
        let mut builder = Utf8ChunkedBuilder::new(name, length, length * value.len());

        for _ in 0..length {
            builder.append_value(value);
        }
        let mut out = builder.finish();
        out.set_sorted2(IsSorted::Ascending);
        out
    }

Get the index of the first non null value in this ChunkedArray.

Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 77)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    fn min(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_max(&acc, &v), Ordering::Less) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

    fn max(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_min(&acc, &v), Ordering::Greater) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

Get the index of the last non null value in this ChunkedArray.

Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 84)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    fn min(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::min_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_max(&acc, &v), Ordering::Less) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

    fn max(&self) -> Option<T::Native> {
        match self.is_sorted2() {
            IsSorted::Ascending => {
                self.last_non_null().and_then(|idx| {
                    // Safety:
                    // first_non_null returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Descending => {
                self.first_non_null().and_then(|idx| {
                    // Safety:
                    // last returns in bound index
                    unsafe { self.get_unchecked(idx) }
                })
            }
            IsSorted::Not => self
                .downcast_iter()
                .filter_map(compute::aggregate::max_primitive)
                .fold_first_(|acc, v| {
                    if matches!(compare_fn_nan_min(&acc, &v), Ordering::Greater) {
                        acc
                    } else {
                        v
                    }
                }),
        }
    }

Get the buffer of bits representing null values

Examples found in repository?
src/chunked_array/mod.rs (line 214)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    pub fn first_non_null(&self) -> Option<usize> {
        if self.is_empty() {
            None
        } else {
            first_non_null(self.iter_validities())
        }
    }

    /// Get the index of the last non null value in this ChunkedArray.
    pub fn last_non_null(&self) -> Option<usize> {
        last_non_null(self.iter_validities(), self.length as usize)
    }

    /// Get the buffer of bits representing null values
    #[inline]
    #[allow(clippy::type_complexity)]
    pub fn iter_validities(&self) -> Map<Iter<'_, ArrayRef>, fn(&ArrayRef) -> Option<&Bitmap>> {
        fn to_validity(arr: &ArrayRef) -> Option<&Bitmap> {
            arr.validity()
        }
        self.chunks.iter().map(to_validity)
    }

    #[inline]
    /// Return if any the chunks in this `[ChunkedArray]` have a validity bitmap.
    /// no bitmap means no null values.
    pub fn has_validity(&self) -> bool {
        self.iter_validities().any(|valid| valid.is_some())
    }
More examples
Hide additional examples
src/chunked_array/ops/apply.rs (line 138)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    fn apply_cast_numeric<F, S>(&self, f: F) -> ChunkedArray<S>
    where
        F: Fn(T::Native) -> S::Native + Copy,
        S: PolarsNumericType,
    {
        let chunks = self
            .data_views()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let values = Vec::<_>::from_trusted_len_iter(slice.iter().map(|&v| f(v)));
                to_array::<S>(values, validity.cloned())
            })
            .collect();
        ChunkedArray::<S>::from_chunks(self.name(), chunks)
    }

    fn branch_apply_cast_numeric_no_null<F, S>(&self, f: F) -> ChunkedArray<S>
    where
        F: Fn(Option<T::Native>) -> S::Native,
        S: PolarsNumericType,
    {
        let chunks = self
            .downcast_iter()
            .map(|array| {
                let values = if !array.has_validity() {
                    let values = array.values().iter().map(|&v| f(Some(v)));
                    Vec::<_>::from_trusted_len_iter(values)
                } else {
                    let values = array.into_iter().map(|v| f(v.copied()));
                    Vec::<_>::from_trusted_len_iter(values)
                };
                to_array::<S>(values, None)
            })
            .collect();
        ChunkedArray::<S>::from_chunks(self.name(), chunks)
    }

    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(T::Native) -> T::Native + Copy,
    {
        let chunks = self
            .data_views()
            .into_iter()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let values = slice.iter().copied().map(f);
                let values = Vec::<_>::from_trusted_len_iter(values);
                to_array::<T>(values, validity.cloned())
            })
            .collect();
        ChunkedArray::<T>::from_chunks(self.name(), chunks)
    }

    fn try_apply<F>(&'a self, f: F) -> PolarsResult<Self>
    where
        F: Fn(T::Native) -> PolarsResult<T::Native> + Copy,
    {
        let mut ca: ChunkedArray<T> = self
            .data_views()
            .into_iter()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let vec: PolarsResult<Vec<_>> = slice.iter().copied().map(f).collect();
                Ok((vec?, validity.cloned()))
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        Ok(ca)
    }

Return if any the chunks in this [ChunkedArray] have a validity bitmap. no bitmap means no null values.

Examples found in repository?
src/series/implementations/boolean.rs (line 274)
273
274
275
    fn has_validity(&self) -> bool {
        self.0.has_validity()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 176)
175
176
177
    fn has_validity(&self) -> bool {
        self.0.has_validity()
    }
src/series/implementations/utf8.rs (line 260)
259
260
261
    fn has_validity(&self) -> bool {
        self.0.has_validity()
    }
src/series/implementations/categorical.rs (line 311)
310
311
312
    fn has_validity(&self) -> bool {
        self.0.logical().has_validity()
    }
src/series/implementations/object.rs (line 185)
184
185
186
    fn has_validity(&self) -> bool {
        ObjectChunked::has_validity(&self.0)
    }
src/chunked_array/mod.rs (line 320)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    pub fn is_optimal_aligned(&self) -> bool {
        self.chunks.len() == 1 && !self.has_validity()
    }

    /// Count the null values.
    #[inline]
    pub fn null_count(&self) -> usize {
        self.chunks.iter().map(|arr| arr.null_count()).sum()
    }

    /// Create a new ChunkedArray from self, where the chunks are replaced.
    fn copy_with_chunks(&self, chunks: Vec<ArrayRef>, keep_sorted: bool) -> Self {
        let mut out = ChunkedArray {
            field: self.field.clone(),
            chunks,
            phantom: PhantomData,
            bit_settings: self.bit_settings,
            length: 0,
        };
        out.compute_len();
        if !keep_sorted {
            out.set_sorted2(IsSorted::Not);
        }
        out
    }

    /// Get a mask of the null values.
    pub fn is_null(&self) -> BooleanChunked {
        if !self.has_validity() {
            return BooleanChunked::full("is_null", false, self.len());
        }
        let chunks = self
            .chunks
            .iter()
            .map(|arr| {
                let bitmap = arr
                    .validity()
                    .map(|bitmap| !bitmap)
                    .unwrap_or_else(|| Bitmap::new_zeroed(arr.len()));
                Box::new(BooleanArray::from_data_default(bitmap, None)) as ArrayRef
            })
            .collect::<Vec<_>>();
        BooleanChunked::from_chunks(self.name(), chunks)
    }

    /// Get a mask of the valid values.
    pub fn is_not_null(&self) -> BooleanChunked {
        if !self.has_validity() {
            return BooleanChunked::full("is_not_null", true, self.len());
        }
        let chunks = self
            .chunks
            .iter()
            .map(|arr| {
                let bitmap = arr
                    .validity()
                    .cloned()
                    .unwrap_or_else(|| !(&Bitmap::new_zeroed(arr.len())));
                Box::new(BooleanArray::from_data_default(bitmap, None)) as ArrayRef
            })
            .collect::<Vec<_>>();
        BooleanChunked::from_chunks(self.name(), chunks)
    }

Shrink the capacity of this array to fit its length.

Examples found in repository?
src/series/implementations/boolean.rs (line 149)
148
149
150
    fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 66)
65
66
67
    fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit()
    }
src/series/implementations/utf8.rs (line 131)
130
131
132
    fn shrink_to_fit(&mut self) {
        self.0.shrink_to_fit()
    }
src/series/implementations/categorical.rs (line 174)
173
174
175
    fn shrink_to_fit(&mut self) {
        self.0.logical_mut().shrink_to_fit()
    }

Series to ChunkedArray

Examples found in repository?
src/series/implementations/boolean.rs (line 120)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    fn bitxor(&self, other: &Series) -> PolarsResult<Series> {
        let other = self.0.unpack_series_matching_type(other)?;
        Ok((&self.0).bitxor(other).into_series())
    }

    fn bitand(&self, other: &Series) -> PolarsResult<Series> {
        let other = self.0.unpack_series_matching_type(other)?;
        Ok((&self.0).bitand(other).into_series())
    }

    fn bitor(&self, other: &Series) -> PolarsResult<Series> {
        let other = self.0.unpack_series_matching_type(other)?;
        Ok((&self.0).bitor(other).into_series())
    }
More examples
Hide additional examples
src/series/arithmetic/borrowed.rs (line 78)
77
78
79
80
81
    fn add_to(&self, rhs: &Series) -> PolarsResult<Series> {
        let rhs = self.unpack_series_matching_type(rhs)?;
        let out = self + rhs;
        Ok(out.into_series())
    }
src/frame/hash_join/mod.rs (line 208)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    fn zip_outer_join_column(
        &self,
        right_column: &Series,
        opt_join_tuples: &[(Option<IdxSize>, Option<IdxSize>)],
    ) -> Series {
        let right_ca = self.unpack_series_matching_type(right_column).unwrap();

        let left_rand_access = self.take_rand();
        let right_rand_access = right_ca.take_rand();

        opt_join_tuples
            .iter()
            .map(|(opt_left_idx, opt_right_idx)| {
                if let Some(left_idx) = opt_left_idx {
                    unsafe { left_rand_access.get_unchecked(*left_idx as usize) }
                } else {
                    unsafe {
                        let right_idx = opt_right_idx.unwrap_unchecked();
                        right_rand_access.get_unchecked(right_idx as usize)
                    }
                }
            })
            .collect_trusted::<ChunkedArray<T>>()
            .into_series()
    }
src/chunked_array/ops/is_in.rs (line 15)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
unsafe fn is_in_helper<T, P>(ca: &ChunkedArray<T>, other: &Series) -> PolarsResult<BooleanChunked>
where
    T: PolarsNumericType,
    P: Eq + Hash + Copy,
{
    let mut set = HashSet::with_capacity(other.len());

    let other = ca.unpack_series_matching_type(other)?;
    other.downcast_iter().for_each(|iter| {
        iter.into_iter().for_each(|opt_val| {
            // Safety
            // bit sizes are/ should be equal
            let ptr = &opt_val.copied() as *const Option<T::Native> as *const Option<P>;
            let opt_val = *ptr;
            set.insert(opt_val);
        })
    });

    let name = ca.name();
    let mut ca: BooleanChunked = ca
        .into_iter()
        .map(|opt_val| {
            // Safety
            // bit sizes are/ should be equal
            let ptr = &opt_val as *const Option<T::Native> as *const Option<P>;
            let opt_val = *ptr;
            set.contains(&opt_val)
        })
        .collect_trusted();
    ca.rename(name);
    Ok(ca)
}
src/frame/asof_join/mod.rs (line 75)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    pub(crate) fn join_asof(
        &self,
        other: &Series,
        strategy: AsofStrategy,
        tolerance: Option<AnyValue<'static>>,
    ) -> PolarsResult<Vec<Option<IdxSize>>> {
        let other = self.unpack_series_matching_type(other)?;

        // cont_slice requires a single chunk
        let ca = self.rechunk();
        let other = other.rechunk();

        let out = match strategy {
            AsofStrategy::Forward => match tolerance {
                None => join_asof_forward(ca.cont_slice().unwrap(), other.cont_slice().unwrap()),
                Some(tolerance) => {
                    let tolerance = tolerance.extract::<T::Native>().unwrap();
                    join_asof_forward_with_tolerance(
                        ca.cont_slice().unwrap(),
                        other.cont_slice().unwrap(),
                        tolerance,
                    )
                }
            },
            AsofStrategy::Backward => match tolerance {
                None => join_asof_backward(ca.cont_slice().unwrap(), other.cont_slice().unwrap()),
                Some(tolerance) => {
                    let tolerance = tolerance.extract::<T::Native>().unwrap();
                    join_asof_backward_with_tolerance(
                        self.cont_slice().unwrap(),
                        other.cont_slice().unwrap(),
                        tolerance,
                    )
                }
            },
        };
        Ok(out)
    }
src/chunked_array/ops/rolling_window.rs (line 143)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        fn rolling_apply(
            &self,
            f: &dyn Fn(&Series) -> Series,
            options: RollingOptionsFixedWindow,
        ) -> PolarsResult<Series> {
            check_input(options.window_size, options.min_periods)?;

            let ca = self.rechunk();
            if options.weights.is_some()
                && !matches!(self.dtype(), DataType::Float64 | DataType::Float32)
            {
                let s = self.cast(&DataType::Float64)?;
                return s.rolling_apply(f, options);
            }

            if options.window_size >= self.len() {
                return Ok(Self::full_null(self.name(), self.len()).into_series());
            }

            let len = self.len();
            let arr = ca.downcast_iter().next().unwrap();
            let mut series_container =
                ChunkedArray::<T>::from_slice("", &[T::Native::zero()]).into_series();
            let array_ptr = series_container.array_ref(0);
            let ptr = array_ptr.as_ref() as *const dyn Array as *mut dyn Array
                as *mut PrimitiveArray<T::Native>;
            let mut builder = PrimitiveChunkedBuilder::<T>::new(self.name(), self.len());

            if let Some(weights) = options.weights {
                let weights_series = Float64Chunked::new("weights", &weights).into_series();

                let weights_series = weights_series.cast(self.dtype()).unwrap();

                for idx in 0..len {
                    let (start, size) = window_edges(idx, len, options.window_size, options.center);

                    if size < options.min_periods {
                        builder.append_null();
                    } else {
                        // safety:
                        // we are in bounds
                        let arr_window = unsafe { arr.slice_unchecked(start, size) };

                        // Safety.
                        // ptr is not dropped as we are in scope
                        // We are also the only owner of the contents of the Arc
                        // we do this to reduce heap allocs.
                        unsafe {
                            *ptr = arr_window;
                        }
                        // ensure the length is correct
                        series_container._get_inner_mut().compute_len();

                        let s = if size == options.window_size {
                            f(&series_container.multiply(&weights_series).unwrap())
                        } else {
                            let weights_cutoff: Series = match self.dtype() {
                                DataType::Float64 => weights_series
                                    .f64()
                                    .unwrap()
                                    .into_iter()
                                    .take(series_container.len())
                                    .collect(),
                                _ => weights_series // Float32 case
                                    .f32()
                                    .unwrap()
                                    .into_iter()
                                    .take(series_container.len())
                                    .collect(),
                            };
                            f(&series_container.multiply(&weights_cutoff).unwrap())
                        };

                        let out = self.unpack_series_matching_type(&s)?;
                        builder.append_option(out.get(0));
                    }
                }

                Ok(builder.finish().into_series())
            } else {
                for idx in 0..len {
                    let (start, size) = window_edges(idx, len, options.window_size, options.center);

                    if size < options.min_periods {
                        builder.append_null();
                    } else {
                        // safety:
                        // we are in bounds
                        let arr_window = unsafe { arr.slice_unchecked(start, size) };

                        // Safety.
                        // ptr is not dropped as we are in scope
                        // We are also the only owner of the contents of the Arc
                        // we do this to reduce heap allocs.
                        unsafe {
                            *ptr = arr_window;
                        }
                        // ensure the length is correct
                        series_container._get_inner_mut().compute_len();

                        let s = f(&series_container);
                        let out = self.unpack_series_matching_type(&s)?;
                        builder.append_option(out.get(0));
                    }
                }

                Ok(builder.finish().into_series())
            }
        }

Unique id representing the number of chunks

Examples found in repository?
src/series/implementations/boolean.rs (line 139)
138
139
140
    fn chunk_lengths(&self) -> ChunkIdIter {
        self.0.chunk_id()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 56)
55
56
57
    fn chunk_lengths(&self) -> ChunkIdIter {
        self.0.chunk_id()
    }
src/series/implementations/utf8.rs (line 121)
120
121
122
    fn chunk_lengths(&self) -> ChunkIdIter {
        self.0.chunk_id()
    }
src/series/implementations/categorical.rs (line 164)
163
164
165
    fn chunk_lengths(&self) -> ChunkIdIter {
        self.0.logical().chunk_id()
    }
src/series/implementations/object.rs (line 76)
75
76
77
    fn chunk_lengths(&self) -> ChunkIdIter {
        ObjectChunked::chunk_id(&self.0)
    }
src/chunked_array/comparison.rs (line 535)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    fn gt(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.gt(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.lt(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        }
        // same length
        else if self.chunk_id().zip(rhs.chunk_id()).all(|(l, r)| l == r) {
            self.comparison(rhs, |l, r| comparison::gt(l, r))
        } else {
            apply_operand_on_chunkedarray_by_iter!(self, rhs, >)
        }
    }

    fn gt_eq(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.gt_eq(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.lt_eq(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        }
        // same length
        else if self.chunk_id().zip(rhs.chunk_id()).all(|(l, r)| l == r) {
            self.comparison(rhs, |l, r| comparison::gt_eq(l, r))
        } else {
            apply_operand_on_chunkedarray_by_iter!(self, rhs, >=)
        }
    }

    fn lt(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.lt(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.gt(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        }
        // same length
        else if self.chunk_id().zip(rhs.chunk_id()).all(|(l, r)| l == r) {
            self.comparison(rhs, |l, r| comparison::lt(l, r))
        } else {
            apply_operand_on_chunkedarray_by_iter!(self, rhs, <)
        }
    }

    fn lt_eq(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.lt_eq(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.gt_eq(value)
            } else {
                BooleanChunked::full("", false, self.len())
            }
        }
        // same length
        else if self.chunk_id().zip(rhs.chunk_id()).all(|(l, r)| l == r) {
            self.comparison(rhs, |l, r| comparison::lt_eq(l, r))
        } else {
            apply_operand_on_chunkedarray_by_iter!(self, rhs, <=)
        }
    }

A reference to the chunks

Examples found in repository?
src/series/implementations/boolean.rs (line 146)
145
146
147
    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.chunks()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 63)
62
63
64
    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.chunks()
    }
src/series/implementations/utf8.rs (line 128)
127
128
129
    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.chunks()
    }
src/series/implementations/categorical.rs (line 171)
170
171
172
    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.logical().chunks()
    }
src/series/implementations/object.rs (line 88)
87
88
89
    fn chunks(&self) -> &Vec<ArrayRef> {
        ObjectChunked::chunks(&self.0)
    }
src/utils/mod.rs (line 930)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
pub fn coalesce_nulls<'a, T: PolarsDataType>(
    a: &'a ChunkedArray<T>,
    b: &'a ChunkedArray<T>,
) -> (Cow<'a, ChunkedArray<T>>, Cow<'a, ChunkedArray<T>>) {
    if a.null_count() > 0 || b.null_count() > 0 {
        let (a, b) = align_chunks_binary(a, b);
        let mut b = b.into_owned();
        let a = a.coalesce_nulls(b.chunks());

        for arr in a.chunks().iter() {
            for arr_b in unsafe { b.chunks_mut() } {
                *arr_b = arr_b.with_validity(arr.validity().cloned())
            }
        }
        (Cow::Owned(a), Cow::Owned(b))
    } else {
        (Cow::Borrowed(a), Cow::Borrowed(b))
    }
}

A mutable reference to the chunks

Safety

The caller must ensure to not change the DataType or length of any of the chunks.

Examples found in repository?
src/utils/mod.rs (line 933)
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
pub fn coalesce_nulls<'a, T: PolarsDataType>(
    a: &'a ChunkedArray<T>,
    b: &'a ChunkedArray<T>,
) -> (Cow<'a, ChunkedArray<T>>, Cow<'a, ChunkedArray<T>>) {
    if a.null_count() > 0 || b.null_count() > 0 {
        let (a, b) = align_chunks_binary(a, b);
        let mut b = b.into_owned();
        let a = a.coalesce_nulls(b.chunks());

        for arr in a.chunks().iter() {
            for arr_b in unsafe { b.chunks_mut() } {
                *arr_b = arr_b.with_validity(arr.validity().cloned())
            }
        }
        (Cow::Owned(a), Cow::Owned(b))
    } else {
        (Cow::Borrowed(a), Cow::Borrowed(b))
    }
}

Returns true if contains a single chunk and has no null values

Count the null values.

Examples found in repository?
src/series/implementations/boolean.rs (line 270)
269
270
271
    fn null_count(&self) -> usize {
        self.0.null_count()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 172)
171
172
173
    fn null_count(&self) -> usize {
        self.0.null_count()
    }
src/series/implementations/utf8.rs (line 256)
255
256
257
    fn null_count(&self) -> usize {
        self.0.null_count()
    }
src/series/implementations/categorical.rs (line 307)
306
307
308
    fn null_count(&self) -> usize {
        self.0.logical().null_count()
    }
src/series/implementations/object.rs (line 181)
180
181
182
    fn null_count(&self) -> usize {
        ObjectChunked::null_count(&self.0)
    }
src/chunked_array/ops/sort/categorical.rs (line 108)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    pub fn argsort(&self, options: SortOptions) -> IdxCa {
        if self.use_lexical_sort() {
            let iters = [self.iter_str()];
            argsort::argsort(
                self.name(),
                iters,
                options,
                self.logical().null_count(),
                self.len(),
            )
        } else {
            self.logical().argsort(options)
        }
    }

Get a mask of the null values.

Examples found in repository?
src/series/implementations/boolean.rs (line 298)
297
298
299
    fn is_null(&self) -> BooleanChunked {
        self.0.is_null()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 180)
179
180
181
    fn is_null(&self) -> BooleanChunked {
        self.0.is_null()
    }
src/series/implementations/utf8.rs (line 284)
283
284
285
    fn is_null(&self) -> BooleanChunked {
        self.0.is_null()
    }
src/series/implementations/categorical.rs (line 327)
326
327
328
    fn is_null(&self) -> BooleanChunked {
        self.0.logical().is_null()
    }
src/series/implementations/object.rs (line 201)
200
201
202
    fn is_null(&self) -> BooleanChunked {
        ObjectChunked::is_null(&self.0)
    }
src/chunked_array/ops/fill_null.rs (line 334)
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    fn fill_null_with_values(&self, value: bool) -> PolarsResult<Self> {
        self.set(&self.is_null(), Some(value))
    }
}

impl ChunkFillNull for Utf8Chunked {
    fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        // nothing to fill
        if !self.has_validity() {
            return Ok(self.clone());
        }
        match strategy {
            FillNullStrategy::Forward(limit) => {
                let mut out: Self = match limit {
                    Some(limit) => impl_fill_forward_limit!(self, limit),
                    None => impl_fill_forward!(self),
                };
                out.rename(self.name());
                Ok(out)
            }
            FillNullStrategy::Backward(limit) => {
                let mut out = match limit {
                    None => impl_fill_backward!(self, Utf8Chunked),
                    Some(limit) => fill_backward_limit_utf8(self, limit),
                };
                out.rename(self.name());
                Ok(out)
            }
            strat => Err(PolarsError::InvalidOperation(
                format!("Strategy {strat:?} not supported").into(),
            )),
        }
    }
}

impl ChunkFillNullValue<&str> for Utf8Chunked {
    fn fill_null_with_values(&self, value: &str) -> PolarsResult<Self> {
        self.set(&self.is_null(), Some(value))
    }

Get a mask of the valid values.

Examples found in repository?
src/series/implementations/boolean.rs (line 302)
301
302
303
    fn is_not_null(&self) -> BooleanChunked {
        self.0.is_not_null()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 184)
183
184
185
    fn is_not_null(&self) -> BooleanChunked {
        self.0.is_not_null()
    }
src/series/implementations/utf8.rs (line 288)
287
288
289
    fn is_not_null(&self) -> BooleanChunked {
        self.0.is_not_null()
    }
src/series/implementations/categorical.rs (line 331)
330
331
332
    fn is_not_null(&self) -> BooleanChunked {
        self.0.logical().is_not_null()
    }
src/series/implementations/object.rs (line 205)
204
205
206
    fn is_not_null(&self) -> BooleanChunked {
        ObjectChunked::is_not_null(&self.0)
    }
src/chunked_array/comparison.rs (line 77)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    fn not_equal(&self, rhs: &ChunkedArray<T>) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    self.not_equal(value)
                } else {
                    self.is_not_null()
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    rhs.not_equal(value)
                } else {
                    self.is_not_null()
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                lhs.comparison(&rhs, |x, y| comparison::neq_and_validity(x, y))
            }
        }
    }

    fn gt(&self, rhs: &ChunkedArray<T>) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    self.gt(value)
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    rhs.lt(value)
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                lhs.comparison(&rhs, |x, y| comparison::gt(x, y))
            }
        }
    }

    fn gt_eq(&self, rhs: &ChunkedArray<T>) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    self.gt_eq(value)
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    rhs.lt_eq(value)
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                lhs.comparison(&rhs, |x, y| comparison::gt_eq(x, y))
            }
        }
    }

    fn lt(&self, rhs: &ChunkedArray<T>) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    self.lt(value)
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    rhs.gt(value)
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                lhs.comparison(&rhs, |x, y| comparison::lt(x, y))
            }
        }
    }

    fn lt_eq(&self, rhs: &ChunkedArray<T>) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    self.lt_eq(value)
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    rhs.gt_eq(value)
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                lhs.comparison(&rhs, |x, y| comparison::lt_eq(x, y))
            }
        }
    }
}

fn compare_bools(
    lhs: &BooleanChunked,
    rhs: &BooleanChunked,
    f: impl Fn(&BooleanArray, &BooleanArray) -> BooleanArray,
) -> BooleanChunked {
    let chunks = lhs
        .downcast_iter()
        .zip(rhs.downcast_iter())
        .map(|(l, r)| Box::new(f(l, r)) as ArrayRef)
        .collect();

    BooleanChunked::from_chunks(lhs.name(), chunks)
}

impl ChunkCompare<&BooleanChunked> for BooleanChunked {
    type Item = BooleanChunked;

    fn equal(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => {
                            if self.null_count() == 0 {
                                self.clone()
                            } else {
                                let chunks = self
                                    .downcast_iter()
                                    .map(|arr| {
                                        if let Some(validity) = arr.validity() {
                                            Box::new(BooleanArray::from_data_default(
                                                arr.values() & validity,
                                                None,
                                            ))
                                                as ArrayRef
                                        } else {
                                            Box::new(arr.clone())
                                        }
                                    })
                                    .collect();
                                BooleanChunked::from_chunks("", chunks)
                            }
                        }
                        false => {
                            if self.null_count() == 0 {
                                self.not()
                            } else {
                                let chunks = self
                                    .downcast_iter()
                                    .map(|arr| {
                                        let bitmap = if let Some(validity) = arr.validity() {
                                            arr.values() ^ validity
                                        } else {
                                            arr.values().not()
                                        };
                                        Box::new(BooleanArray::from_data_default(bitmap, None))
                                            as ArrayRef
                                    })
                                    .collect();
                                BooleanChunked::from_chunks("", chunks)
                            }
                        }
                    }
                } else {
                    self.is_null()
                }
            }
            (1, _) => rhs.equal(self),
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| comparison::eq_and_validity(lhs, rhs))
            }
        }
    }

    fn not_equal(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => {
                            if self.null_count() == 0 {
                                self.not()
                            } else {
                                let chunks = self
                                    .downcast_iter()
                                    .map(|arr| {
                                        let bitmap = if let Some(validity) = arr.validity() {
                                            (arr.values() & validity).not()
                                        } else {
                                            arr.values().not()
                                        };
                                        Box::new(BooleanArray::from_data_default(bitmap, None))
                                            as ArrayRef
                                    })
                                    .collect();
                                BooleanChunked::from_chunks("", chunks)
                            }
                        }
                        false => {
                            if self.null_count() == 0 {
                                self.clone()
                            } else {
                                let chunks = self
                                    .downcast_iter()
                                    .map(|arr| {
                                        let bitmap = if let Some(validity) = arr.validity() {
                                            (arr.values() ^ validity).not()
                                        } else {
                                            arr.values().clone()
                                        };
                                        Box::new(BooleanArray::from_data_default(bitmap, None))
                                            as ArrayRef
                                    })
                                    .collect();
                                BooleanChunked::from_chunks("", chunks)
                            }
                        }
                    }
                } else {
                    self.is_not_null()
                }
            }
            (1, _) => rhs.not_equal(self),
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| {
                    comparison::neq_and_validity(lhs, rhs)
                })
            }
        }
    }

    fn gt(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => BooleanChunked::full("", false, self.len()),
                        false => self.clone(),
                    }
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    match value {
                        true => rhs.not(),
                        false => BooleanChunked::full("", false, rhs.len()),
                    }
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| comparison::gt(lhs, rhs))
            }
        }
    }

    fn gt_eq(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => self.clone(),
                        false => BooleanChunked::full("", true, self.len()),
                    }
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    match value {
                        true => BooleanChunked::full("", true, rhs.len()),
                        false => rhs.not(),
                    }
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| comparison::gt_eq(lhs, rhs))
            }
        }
    }

    fn lt(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => self.not(),
                        false => BooleanChunked::full("", false, self.len()),
                    }
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    match value {
                        true => BooleanChunked::full("", false, rhs.len()),
                        false => rhs.clone(),
                    }
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| comparison::lt(lhs, rhs))
            }
        }
    }

    fn lt_eq(&self, rhs: &BooleanChunked) -> BooleanChunked {
        // broadcast
        match (self.len(), rhs.len()) {
            (_, 1) => {
                if let Some(value) = rhs.get(0) {
                    match value {
                        true => BooleanChunked::full("", true, self.len()),
                        false => BooleanChunked::full("", false, self.len()),
                    }
                } else {
                    BooleanChunked::full("", false, self.len())
                }
            }
            (1, _) => {
                if let Some(value) = self.get(0) {
                    match value {
                        true => rhs.clone(),
                        false => BooleanChunked::full("", true, rhs.len()),
                    }
                } else {
                    BooleanChunked::full("", false, rhs.len())
                }
            }
            _ => {
                // same length
                let (lhs, rhs) = align_chunks_binary(self, rhs);
                compare_bools(&lhs, &rhs, |lhs, rhs| comparison::lt_eq(lhs, rhs))
            }
        }
    }
}

impl Utf8Chunked {
    fn comparison(
        &self,
        rhs: &Utf8Chunked,
        f: impl Fn(&Utf8Array<i64>, &Utf8Array<i64>) -> BooleanArray,
    ) -> BooleanChunked {
        let chunks = self
            .downcast_iter()
            .zip(rhs.downcast_iter())
            .map(|(left, right)| {
                let arr = f(left, right);
                Box::new(arr) as ArrayRef
            })
            .collect();
        BooleanChunked::from_chunks("", chunks)
    }
}

impl ChunkCompare<&Utf8Chunked> for Utf8Chunked {
    type Item = BooleanChunked;

    fn equal(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.equal(value)
            } else {
                self.is_null()
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.equal(value)
            } else {
                self.is_null()
            }
        } else {
            let (lhs, rhs) = align_chunks_binary(self, rhs);
            lhs.comparison(&rhs, comparison::utf8::eq_and_validity)
        }
    }

    fn not_equal(&self, rhs: &Utf8Chunked) -> BooleanChunked {
        // broadcast
        if rhs.len() == 1 {
            if let Some(value) = rhs.get(0) {
                self.not_equal(value)
            } else {
                self.is_not_null()
            }
        } else if self.len() == 1 {
            if let Some(value) = self.get(0) {
                rhs.not_equal(value)
            } else {
                self.is_not_null()
            }
        } else {
            let (lhs, rhs) = align_chunks_binary(self, rhs);
            lhs.comparison(&rhs, comparison::utf8::neq_and_validity)
        }
    }

Get data type of ChunkedArray.

Examples found in repository?
src/series/implementations/object.rs (line 35)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    fn _dtype(&self) -> &DataType {
        self.0.dtype()
    }

    unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
        self.0.agg_list(groups)
    }

    fn into_partial_eq_inner<'a>(&'a self) -> Box<dyn PartialEqInner + 'a> {
        (&self.0).into_partial_eq_inner()
    }

    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        self.0.vec_hash(random_state, buf);
        Ok(())
    }

    fn vec_hash_combine(&self, build_hasher: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        self.0.vec_hash_combine(build_hasher, hashes);
        Ok(())
    }

    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        IntoGroupsProxy::group_tuples(&self.0, multithreaded, sorted)
    }
    #[cfg(feature = "zip_with")]
    fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
        self.0
            .zip_with(mask, other.as_ref().as_ref())
            .map(|ca| ca.into_series())
    }
}
#[cfg_attr(docsrs, doc(cfg(feature = "object")))]
impl<T> SeriesTrait for SeriesWrap<ObjectChunked<T>>
where
    T: PolarsObject,
{
    fn rename(&mut self, name: &str) {
        ObjectChunked::rename(&mut self.0, name)
    }

    fn chunk_lengths(&self) -> ChunkIdIter {
        ObjectChunked::chunk_id(&self.0)
    }

    fn name(&self) -> &str {
        ObjectChunked::name(&self.0)
    }

    fn dtype(&self) -> &DataType {
        ObjectChunked::dtype(&self.0)
    }
More examples
Hide additional examples
src/chunked_array/list/mod.rs (line 21)
20
21
22
23
24
25
    pub(crate) fn is_nested(&self) -> bool {
        match self.dtype() {
            DataType::List(inner) => matches!(&**inner, DataType::List(_)),
            _ => unreachable!(),
        }
    }
src/series/implementations/list.rs (line 74)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    fn append(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.append(other.as_ref().as_ref())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot append Series; data types don't match".into(),
            ))
        }
    }
    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.extend(other.as_ref().as_ref())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }
src/series/implementations/boolean.rs (line 157)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    fn append(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.append(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot append Series; data types don't match".into(),
            ))
        }
    }

    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.extend(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }
src/series/implementations/utf8.rs (line 139)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    fn append(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            // todo! add object
            self.0.append(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot append Series; data types don't match".into(),
            ))
        }
    }

    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.extend(other.as_ref().as_ref());
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }
src/chunked_array/comparison.rs (line 990)
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
        let ca_other = other.as_ref().as_ref();
        debug_assert!(self.dtype() == other.dtype());
        let ca_other = &*(ca_other as *const ChunkedArray<T>);
        // Should be get and not get_unchecked, because there could be nulls
        self.get(idx_self) == ca_other.get(idx_other)
    }
}

impl ChunkEqualElement for BooleanChunked {
    unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
        let ca_other = other.as_ref().as_ref();
        debug_assert!(self.dtype() == other.dtype());
        let ca_other = &*(ca_other as *const BooleanChunked);
        self.get(idx_self) == ca_other.get(idx_other)
    }
}

impl ChunkEqualElement for Utf8Chunked {
    unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
        let ca_other = other.as_ref().as_ref();
        debug_assert!(self.dtype() == other.dtype());
        let ca_other = &*(ca_other as *const Utf8Chunked);
        self.get(idx_self) == ca_other.get(idx_other)
    }

Name of the ChunkedArray.

Examples found in repository?
src/series/implementations/boolean.rs (line 142)
141
142
143
    fn name(&self) -> &str {
        self.0.name()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 59)
58
59
60
    fn name(&self) -> &str {
        self.0.name()
    }
src/series/implementations/utf8.rs (line 124)
123
124
125
    fn name(&self) -> &str {
        self.0.name()
    }
src/series/implementations/categorical.rs (line 167)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    fn name(&self) -> &str {
        self.0.logical().name()
    }

    fn chunks(&self) -> &Vec<ArrayRef> {
        self.0.logical().chunks()
    }
    fn shrink_to_fit(&mut self) {
        self.0.logical_mut().shrink_to_fit()
    }

    fn slice(&self, offset: i64, length: usize) -> Series {
        self.with_state(false, |cats| cats.slice(offset, length))
            .into_series()
    }

    fn append(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            self.0.append(other.categorical().unwrap())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot append Series; data types don't match".into(),
            ))
        }
    }
    fn extend(&mut self, other: &Series) -> PolarsResult<()> {
        if self.0.dtype() == other.dtype() {
            let other = other.categorical()?;
            self.0.logical_mut().extend(other.logical());
            let new_rev_map = self.0.merge_categorical_map(other)?;
            // safety:
            // rev_maps are merged
            unsafe { self.0.set_rev_map(new_rev_map, false) };
            Ok(())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot extend Series; data types don't match".into(),
            ))
        }
    }

    fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
        self.try_with_state(false, |cats| cats.filter(filter))
            .map(|ca| ca.into_series())
    }

    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_chunked_unchecked(&self, by: &[ChunkId], sorted: IsSorted) -> Series {
        let cats = self.0.logical().take_chunked_unchecked(by, sorted);
        self.finish_with_state(false, cats).into_series()
    }

    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_opt_chunked_unchecked(&self, by: &[Option<ChunkId>]) -> Series {
        let cats = self.0.logical().take_opt_chunked_unchecked(by);
        self.finish_with_state(false, cats).into_series()
    }

    fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        self.try_with_state(false, |cats| cats.take((&*indices).into()))
            .map(|ca| ca.into_series())
    }

    fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
        let cats = self.0.logical().take(iter.into())?;
        Ok(self.finish_with_state(false, cats).into_series())
    }

    fn take_every(&self, n: usize) -> Series {
        self.with_state(true, |cats| cats.take_every(n))
            .into_series()
    }

    unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
        let cats = self.0.logical().take_unchecked(iter.into());
        self.finish_with_state(false, cats).into_series()
    }

    unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
        let idx = if idx.chunks.len() > 1 {
            Cow::Owned(idx.rechunk())
        } else {
            Cow::Borrowed(idx)
        };
        Ok(self
            .with_state(false, |cats| cats.take_unchecked((&*idx).into()))
            .into_series())
    }

    unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
        let cats = self.0.logical().take_unchecked(iter.into());
        self.finish_with_state(false, cats).into_series()
    }

    #[cfg(feature = "take_opt_iter")]
    fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        let cats = self.0.logical().take(iter.into())?;
        Ok(self.finish_with_state(false, cats).into_series())
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn rechunk(&self) -> Series {
        self.with_state(true, |ca| ca.rechunk()).into_series()
    }

    fn new_from_index(&self, index: usize, length: usize) -> Series {
        self.with_state(true, |cats| cats.new_from_index(index, length))
            .into_series()
    }

    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        self.0.cast(data_type)
    }

    fn get(&self, index: usize) -> PolarsResult<AnyValue> {
        self.0.get_any_value(index)
    }

    #[inline]
    #[cfg(feature = "private")]
    unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
        self.0.get_any_value_unchecked(index)
    }

    fn sort_with(&self, options: SortOptions) -> Series {
        self.0.sort_with(options).into_series()
    }

    fn argsort(&self, options: SortOptions) -> IdxCa {
        self.0.argsort(options)
    }

    fn null_count(&self) -> usize {
        self.0.logical().null_count()
    }

    fn has_validity(&self) -> bool {
        self.0.logical().has_validity()
    }

    fn unique(&self) -> PolarsResult<Series> {
        self.0.unique().map(|ca| ca.into_series())
    }

    fn n_unique(&self) -> PolarsResult<usize> {
        self.0.n_unique()
    }

    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        self.0.logical().arg_unique()
    }

    fn is_null(&self) -> BooleanChunked {
        self.0.logical().is_null()
    }

    fn is_not_null(&self) -> BooleanChunked {
        self.0.logical().is_not_null()
    }

    fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        self.0.logical().is_unique()
    }

    fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        self.0.logical().is_duplicated()
    }

    fn reverse(&self) -> Series {
        self.with_state(true, |cats| cats.reverse()).into_series()
    }

    fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        self.0.logical_mut().as_single_ptr()
    }

    fn shift(&self, periods: i64) -> Series {
        self.with_state(false, |ca| ca.shift(periods)).into_series()
    }

    fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Series> {
        self.try_with_state(false, |cats| cats.fill_null(strategy))
            .map(|ca| ca.into_series())
    }

    fn _sum_as_series(&self) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn min_as_series(&self) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn median_as_series(&self) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn var_as_series(&self, _ddof: u8) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn std_as_series(&self, _ddof: u8) -> Series {
        CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
    }
    fn quantile_as_series(
        &self,
        _quantile: f64,
        _interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
    }

    fn fmt_list(&self) -> String {
        FmtList::fmt_list(&self.0)
    }
    fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
        Arc::new(SeriesWrap(Clone::clone(&self.0)))
    }

    #[cfg(feature = "is_in")]
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        _check_categorical_src(self.dtype(), other.dtype())?;
        self.0.logical().is_in(&other.to_physical_repr())
    }
    #[cfg(feature = "repeat_by")]
    fn repeat_by(&self, by: &IdxCa) -> ListChunked {
        let out = self.0.logical().repeat_by(by);
        let casted = out
            .cast(&DataType::List(Box::new(self.dtype().clone())))
            .unwrap();
        casted.list().unwrap().clone()
    }

    #[cfg(feature = "is_first")]
    fn is_first(&self) -> PolarsResult<BooleanChunked> {
        self.0.logical().is_first()
    }

    #[cfg(feature = "mode")]
    fn mode(&self) -> PolarsResult<Series> {
        Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
    }
src/series/implementations/object.rs (line 80)
79
80
81
    fn name(&self) -> &str {
        ObjectChunked::name(&self.0)
    }
src/chunked_array/logical/categorical/mod.rs (line 25)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    pub(crate) fn field(&self) -> Field {
        let name = self.logical().name();
        Field::new(name, self.dtype().clone())
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    pub fn len(&self) -> usize {
        self.logical.len()
    }

    pub fn name(&self) -> &str {
        self.logical.name()
    }

    /// Get a reference to the logical array (the categories).
    pub fn logical(&self) -> &UInt32Chunked {
        &self.logical
    }

    /// Get a reference to the logical array (the categories).
    pub(crate) fn logical_mut(&mut self) -> &mut UInt32Chunked {
        &mut self.logical
    }

    /// Build a categorical from an original RevMap. That means that the number of categories in the `RevMapping == self.unique().len()`.
    pub(crate) fn from_chunks_original(
        name: &str,
        chunks: Vec<ArrayRef>,
        rev_map: RevMapping,
    ) -> Self {
        let ca = UInt32Chunked::from_chunks(name, chunks);
        let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(ca);
        logical.2 = Some(DataType::Categorical(Some(Arc::new(rev_map))));
        let bit_settings = 1u8;
        Self {
            logical,
            bit_settings,
        }
    }

    pub fn set_lexical_sorted(&mut self, toggle: bool) {
        if toggle {
            self.bit_settings |= 1u8 << 1;
        } else {
            self.bit_settings &= !(1u8 << 1);
        }
    }

    pub(crate) fn use_lexical_sort(&self) -> bool {
        self.bit_settings & 1 << 1 != 0
    }

    /// Create a [`CategoricalChunked`] from an array of `idx` and an existing [`RevMapping`]:  `rev_map`.
    ///
    /// # Safety
    /// Invariant in `v < rev_map.len() for v in idx` must be hold.
    pub unsafe fn from_cats_and_rev_map_unchecked(
        idx: UInt32Chunked,
        rev_map: Arc<RevMapping>,
    ) -> Self {
        let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(idx);
        logical.2 = Some(DataType::Categorical(Some(rev_map)));
        Self {
            logical,
            bit_settings: Default::default(),
        }
    }

    /// # Safety
    /// The existing index values must be in bounds of the new [`RevMapping`].
    pub(crate) unsafe fn set_rev_map(&mut self, rev_map: Arc<RevMapping>, keep_fast_unique: bool) {
        self.logical.2 = Some(DataType::Categorical(Some(rev_map)));
        if !keep_fast_unique {
            self.set_fast_unique(false)
        }
    }

    pub(crate) fn can_fast_unique(&self) -> bool {
        self.bit_settings & 1 << 0 != 0 && self.logical.chunks.len() == 1
    }

    pub(crate) fn set_fast_unique(&mut self, can: bool) {
        if can {
            self.bit_settings |= 1u8 << 0;
        } else {
            self.bit_settings &= !(1u8 << 0);
        }
    }

    /// Get a reference to the mapping of categorical types to the string values.
    pub fn get_rev_map(&self) -> &Arc<RevMapping> {
        if let DataType::Categorical(Some(rev_map)) = &self.logical.2.as_ref().unwrap() {
            rev_map
        } else {
            panic!("implementation error")
        }
    }

    /// Create an `[Iterator]` that iterates over the `&str` values of the `[CategoricalChunked]`.
    pub fn iter_str(&self) -> CatIter<'_> {
        let iter = self.logical().into_iter();
        CatIter {
            rev: self.get_rev_map(),
            iter,
        }
    }
}

impl LogicalType for CategoricalChunked {
    fn dtype(&self) -> &DataType {
        self.logical.2.as_ref().unwrap()
    }

    fn get_any_value(&self, i: usize) -> PolarsResult<AnyValue<'_>> {
        if i < self.len() {
            Ok(unsafe { self.get_any_value_unchecked(i) })
        } else {
            Err(PolarsError::ComputeError("Index is out of bounds.".into()))
        }
    }

    unsafe fn get_any_value_unchecked(&self, i: usize) -> AnyValue<'_> {
        match self.logical.0.get_unchecked(i) {
            Some(i) => AnyValue::Categorical(i, self.get_rev_map()),
            None => AnyValue::Null,
        }
    }

    fn cast(&self, dtype: &DataType) -> PolarsResult<Series> {
        match dtype {
            DataType::Utf8 => {
                let mapping = &**self.get_rev_map();

                let mut builder =
                    Utf8ChunkedBuilder::new(self.logical.name(), self.len(), self.len() * 5);

                let f = |idx: u32| mapping.get(idx);

                if !self.logical.has_validity() {
                    self.logical
                        .into_no_null_iter()
                        .for_each(|idx| builder.append_value(f(idx)));
                } else {
                    self.logical.into_iter().for_each(|opt_idx| {
                        builder.append_option(opt_idx.map(f));
                    });
                }

                let ca = builder.finish();
                Ok(ca.into_series())
            }
            DataType::UInt32 => {
                let ca =
                    UInt32Chunked::from_chunks(self.logical.name(), self.logical.chunks.clone());
                Ok(ca.into_series())
            }
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(_) => Ok(self.clone().into_series()),
            _ => self.logical.cast(dtype),
        }
    }

Get a reference to the field.

Examples found in repository?
src/series/implementations/boolean.rs (line 24)
23
24
25
26
27
28
    fn _field(&self) -> Cow<Field> {
        Cow::Borrowed(self.0.ref_field())
    }
    fn _dtype(&self) -> &DataType {
        self.0.ref_field().data_type()
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 19)
18
19
20
21
22
23
    fn _field(&self) -> Cow<Field> {
        Cow::Borrowed(self.0.ref_field())
    }
    fn _dtype(&self) -> &DataType {
        self.0.ref_field().data_type()
    }
src/series/implementations/object.rs (line 31)
30
31
32
    fn _field(&self) -> Cow<Field> {
        Cow::Borrowed(self.0.ref_field())
    }
src/series/implementations/utf8.rs (line 23)
22
23
24
25
26
27
    fn _field(&self) -> Cow<Field> {
        Cow::Borrowed(self.0.ref_field())
    }
    fn _dtype(&self) -> &DataType {
        self.0.ref_field().data_type()
    }
src/chunked_array/logical/mod.rs (line 91)
90
91
92
93
    pub fn field(&self) -> Field {
        let name = self.0.ref_field().name();
        Field::new(name, LogicalType::dtype(self).clone())
    }

Rename this ChunkedArray.

Examples found in repository?
src/series/implementations/boolean.rs (line 135)
134
135
136
    fn rename(&mut self, name: &str) {
        self.0.rename(name);
    }
More examples
Hide additional examples
src/series/implementations/list.rs (line 52)
51
52
53
    fn rename(&mut self, name: &str) {
        self.0.rename(name);
    }
src/series/implementations/utf8.rs (line 117)
116
117
118
    fn rename(&mut self, name: &str) {
        self.0.rename(name);
    }
src/series/implementations/categorical.rs (line 160)
159
160
161
    fn rename(&mut self, name: &str) {
        self.0.logical_mut().rename(name);
    }
src/series/implementations/object.rs (line 72)
71
72
73
    fn rename(&mut self, name: &str) {
        ObjectChunked::rename(&mut self.0, name)
    }
src/chunked_array/ops/aggregate.rs (line 594)
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    fn sum_as_series(&self) -> Series {
        let v = self.sum();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = self.max();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = self.min();
        let mut ca: ChunkedArray<T> = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

    fn prod_as_series(&self) -> Series {
        let mut prod = None;
        for opt_v in self.into_iter() {
            match (prod, opt_v) {
                (_, None) => return Self::full_null(self.name(), 1).into_series(),
                (None, Some(v)) => prod = Some(v),
                (Some(p), Some(v)) => prod = Some(p * v),
            }
        }
        Self::from_slice_options(self.name(), &[prod]).into_series()
    }
}

macro_rules! impl_as_series {
    ($self:expr, $agg:ident, $ty: ty) => {{
        let v = $self.$agg();
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
    ($self:expr, $agg:ident, $arg:expr, $ty: ty) => {{
        let v = $self.$agg($arg);
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        ca.into_series()
    }};
}

impl<T> VarAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

impl VarAggSeries for Float32Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float32Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float32Chunked)
    }
}

impl VarAggSeries for Float64Chunked {
    fn var_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, var, ddof, Float64Chunked)
    }

    fn std_as_series(&self, ddof: u8) -> Series {
        impl_as_series!(self, std, ddof, Float64Chunked)
    }
}

macro_rules! impl_quantile_as_series {
    ($self:expr, $agg:ident, $ty: ty, $qtl:expr, $opt:expr) => {{
        let v = $self.$agg($qtl, $opt)?;
        let mut ca: $ty = [v].iter().copied().collect();
        ca.rename($self.name());
        Ok(ca.into_series())
    }};
}

impl<T> QuantileAggSeries for ChunkedArray<T>
where
    T: PolarsIntegerType,
    T::Native: Ord,
    <T::Native as Simd>::Simd: Add<Output = <T::Native as Simd>::Simd>
        + compute::aggregate::Sum<T::Native>
        + compute::aggregate::SimdOrd<T::Native>,
{
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl QuantileAggSeries for Float32Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float32Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float32Chunked)
    }
}

impl QuantileAggSeries for Float64Chunked {
    fn quantile_as_series(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        impl_quantile_as_series!(self, quantile, Float64Chunked, quantile, interpol)
    }

    fn median_as_series(&self) -> Series {
        impl_as_series!(self, median, Float64Chunked)
    }
}

impl ChunkAggSeries for BooleanChunked {
    fn sum_as_series(&self) -> Series {
        let v = ChunkAgg::sum(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn max_as_series(&self) -> Series {
        let v = ChunkAgg::max(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }
    fn min_as_series(&self) -> Series {
        let v = ChunkAgg::min(self);
        let mut ca: IdxCa = [v].iter().copied().collect();
        ca.rename(self.name());
        ca.into_series()
    }

Contiguous slice

Examples found in repository?
src/chunked_array/ndarray.rs (line 14)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    pub fn to_ndarray(&self) -> PolarsResult<ArrayView1<T::Native>> {
        let slice = self.cont_slice()?;
        Ok(aview1(slice))
    }
}

impl ListChunked {
    /// If all nested `Series` have the same length, a 2 dimensional `ndarray::Array` is returned.
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        if self.null_count() != 0 {
            Err(PolarsError::ComputeError(
                "Creation of ndarray with null values is not supported.".into(),
            ))
        } else {
            let mut iter = self.into_no_null_iter();

            let mut ndarray;
            let width;

            // first iteration determine the size
            if let Some(series) = iter.next() {
                width = series.len();

                let mut row_idx = 0;
                ndarray = ndarray::Array::uninit((self.len(), width));

                let series = series.cast(&N::get_dtype())?;
                let ca = series.unpack::<N>()?;
                let a = ca.to_ndarray()?;
                let mut row = ndarray.slice_mut(s![row_idx, ..]);
                a.assign_to(&mut row);
                row_idx += 1;

                for series in iter {
                    if series.len() != width {
                        return Err(PolarsError::ShapeMisMatch(
                            "Could not create a 2D array. Series have different lengths".into(),
                        ));
                    }
                    let series = series.cast(&N::get_dtype())?;
                    let ca = series.unpack::<N>()?;
                    let a = ca.to_ndarray()?;
                    let mut row = ndarray.slice_mut(s![row_idx, ..]);
                    a.assign_to(&mut row);
                    row_idx += 1;
                }

                debug_assert_eq!(row_idx, self.len());
                // Safety:
                // We have assigned to every row and element of the array
                unsafe { Ok(ndarray.assume_init()) }
            } else {
                Err(PolarsError::NoData(
                    "cannot create ndarray of empty ListChunked".into(),
                ))
            }
        }
    }
}

impl DataFrame {
    /// Create a 2D `ndarray::Array` from this `DataFrame`. This requires all columns in the
    /// `DataFrame` to be non-null and numeric. They will be casted to the same data type
    /// (if they aren't already).
    ///
    /// For floating point data we implicitly convert `None` to `NaN` without failure.
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let a = UInt32Chunked::new("a", &[1, 2, 3]).into_series();
    /// let b = Float64Chunked::new("b", &[10., 8., 6.]).into_series();
    ///
    /// let df = DataFrame::new(vec![a, b]).unwrap();
    /// let ndarray = df.to_ndarray::<Float64Type>().unwrap();
    /// println!("{:?}", ndarray);
    /// ```
    /// Outputs:
    /// ```text
    /// [[1.0, 10.0],
    ///  [2.0, 8.0],
    ///  [3.0, 6.0]], shape=[3, 2], strides=[2, 1], layout=C (0x1), const ndim=2/
    /// ```
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let columns = self
            .get_columns()
            .par_iter()
            .map(|s| {
                let s = s.cast(&N::get_dtype())?;
                let s = match s.dtype() {
                    DataType::Float32 => {
                        let ca = s.f32().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    DataType::Float64 => {
                        let ca = s.f64().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    _ => s,
                };
                Ok(s.rechunk())
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let shape = self.shape();
        let height = self.height();
        let mut membuf = Vec::with_capacity(shape.0 * shape.1);
        let ptr = membuf.as_ptr() as usize;

        columns.par_iter().enumerate().map(|(col_idx, s)| {
            if s.null_count() != 0 {
                return Err(PolarsError::ComputeError(
                    "Creation of ndarray with null values is not supported. Consider using floats and NaNs".into(),
                ));
            }

            // this is an Arc clone if already of type N
            let s = s.cast(&N::get_dtype())?;
            let ca = s.unpack::<N>()?;
            let vals = ca.cont_slice().unwrap();

            // Safety:
            // we get parallel access to the vector
            // but we make sure that we don't get aliased access by offsetting the column indices + length
            unsafe {
                let offset_ptr = (ptr as *mut N::Native).add(col_idx * height) ;
                // Safety:
                // this is uninitialized memory, so we must never read from this data
                // copy_from_slice does not read
                let buf = std::slice::from_raw_parts_mut(offset_ptr, height);
                buf.copy_from_slice(vals)
            }

            Ok(())
        }).collect::<PolarsResult<Vec<_>>>()?;

        // Safety:
        // we have written all data, so we can now safely set length
        unsafe {
            membuf.set_len(shape.0 * shape.1);
        }
        let ndarr = Array2::from_shape_vec((shape.1, shape.0), membuf).unwrap();
        Ok(ndarr.reversed_axes())
    }
More examples
Hide additional examples
src/frame/hash_join/single_keys_dispatch.rs (line 138)
134
135
136
137
138
139
fn splitted_to_slice<T>(splitted: &[ChunkedArray<T>]) -> Vec<&[T::Native]>
where
    T: PolarsNumericType,
{
    splitted.iter().map(|ca| ca.cont_slice().unwrap()).collect()
}
src/chunked_array/ops/reverse.rs (line 10)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    fn reverse(&self) -> ChunkedArray<T> {
        let mut out = if let Ok(slice) = self.cont_slice() {
            let ca: NoNull<ChunkedArray<T>> = slice.iter().rev().copied().collect_trusted();
            ca.into_inner()
        } else {
            self.into_iter().rev().collect_trusted()
        };
        out.rename(self.name());

        match self.is_sorted2() {
            IsSorted::Ascending => out.set_sorted2(IsSorted::Descending),
            IsSorted::Descending => out.set_sorted2(IsSorted::Ascending),
            _ => {}
        }

        out
    }
src/frame/asof_join/mod.rs (line 83)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    pub(crate) fn join_asof(
        &self,
        other: &Series,
        strategy: AsofStrategy,
        tolerance: Option<AnyValue<'static>>,
    ) -> PolarsResult<Vec<Option<IdxSize>>> {
        let other = self.unpack_series_matching_type(other)?;

        // cont_slice requires a single chunk
        let ca = self.rechunk();
        let other = other.rechunk();

        let out = match strategy {
            AsofStrategy::Forward => match tolerance {
                None => join_asof_forward(ca.cont_slice().unwrap(), other.cont_slice().unwrap()),
                Some(tolerance) => {
                    let tolerance = tolerance.extract::<T::Native>().unwrap();
                    join_asof_forward_with_tolerance(
                        ca.cont_slice().unwrap(),
                        other.cont_slice().unwrap(),
                        tolerance,
                    )
                }
            },
            AsofStrategy::Backward => match tolerance {
                None => join_asof_backward(ca.cont_slice().unwrap(), other.cont_slice().unwrap()),
                Some(tolerance) => {
                    let tolerance = tolerance.extract::<T::Native>().unwrap();
                    join_asof_backward_with_tolerance(
                        self.cont_slice().unwrap(),
                        other.cont_slice().unwrap(),
                        tolerance,
                    )
                }
            },
        };
        Ok(out)
    }
src/frame/groupby/into_groups.rs (line 47)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn num_groups_proxy<T>(ca: &ChunkedArray<T>, multithreaded: bool, sorted: bool) -> GroupsProxy
where
    T: PolarsIntegerType,
    T::Native: Hash + Eq + Send + AsU64,
    Option<T::Native>: AsU64,
{
    // set group size hint
    #[cfg(feature = "dtype-categorical")]
    let group_size_hint = if let DataType::Categorical(Some(m)) = ca.dtype() {
        ca.len() / m.len()
    } else {
        0
    };
    #[cfg(not(feature = "dtype-categorical"))]
    let group_size_hint = 0;

    if multithreaded && group_multithreaded(ca) {
        let n_partitions = _set_partition_size() as u64;

        // use the arrays as iterators
        if ca.chunks.len() == 1 {
            if !ca.has_validity() {
                let keys = vec![ca.cont_slice().unwrap()];
                groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
            } else {
                let keys = ca
                    .downcast_iter()
                    .map(|arr| arr.into_iter().map(|x| x.copied()).collect::<Vec<_>>())
                    .collect::<Vec<_>>();
                groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
            }
            // use the polars-iterators
        } else if !ca.has_validity() {
            let keys = vec![ca.into_no_null_iter().collect::<Vec<_>>()];
            groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
        } else {
            let keys = vec![ca.into_iter().collect::<Vec<_>>()];
            groupby_threaded_num(keys, group_size_hint, n_partitions, sorted)
        }
    } else if !ca.has_validity() {
        groupby(ca.into_no_null_iter(), sorted)
    } else {
        groupby(ca.into_iter(), sorted)
    }
}
src/frame/asof_join/groups.rs (line 242)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
fn asof_join_by_numeric<T, S>(
    by_left: &ChunkedArray<S>,
    by_right: &ChunkedArray<S>,
    left_asof: &ChunkedArray<T>,
    right_asof: &ChunkedArray<T>,
    tolerance: Option<AnyValue<'static>>,
    strategy: AsofStrategy,
) -> PolarsResult<Vec<Option<IdxSize>>>
where
    T: PolarsNumericType,
    S: PolarsNumericType,
    S::Native: Hash + Eq + AsU64,
{
    #[allow(clippy::type_complexity)]
    let (join_asof_fn, tolerance, forward): (
        unsafe fn(T::Native, &[T::Native], &[IdxSize], T::Native) -> (Option<IdxSize>, usize),
        _,
        _,
    ) = match (tolerance, strategy) {
        (Some(tolerance), AsofStrategy::Backward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (
                join_asof_backward_with_indirection_and_tolerance,
                tol,
                false,
            )
        }
        (None, AsofStrategy::Backward) => (
            join_asof_backward_with_indirection,
            T::Native::zero(),
            false,
        ),
        (Some(tolerance), AsofStrategy::Forward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (join_asof_forward_with_indirection_and_tolerance, tol, true)
        }
        (None, AsofStrategy::Forward) => {
            (join_asof_forward_with_indirection, T::Native::zero(), true)
        }
    };

    let left_asof = left_asof.rechunk();
    let err = |_: PolarsError| {
        PolarsError::ComputeError("Keys are not allowed to have null values in asof join.".into())
    };
    let left_asof = left_asof.cont_slice().map_err(err)?;

    let right_asof = right_asof.rechunk();
    let right_asof = right_asof.cont_slice().map_err(err)?;

    let n_threads = POOL.current_num_threads();
    let splitted_left = split_ca(by_left, n_threads).unwrap();
    let splitted_right = split_ca(by_right, n_threads).unwrap();

    let vals_left = splitted_left
        .iter()
        .map(|ca| ca.cont_slice().unwrap())
        .collect::<Vec<_>>();
    let vals_right = splitted_right
        .iter()
        .map(|ca| ca.cont_slice().unwrap())
        .collect::<Vec<_>>();

    let hash_tbls = create_probe_table(vals_right);

    // we determine the offset so that we later know which index to store in the join tuples
    let offsets = vals_left
        .iter()
        .map(|ph| ph.len())
        .scan(0, |state, val| {
            let out = *state;
            *state += val;
            Some(out)
        })
        .collect::<Vec<_>>();

    let n_tables = hash_tbls.len() as u64;
    debug_assert!(n_tables.is_power_of_two());

    // next we probe the right relation
    Ok(POOL.install(|| {
        vals_left
            .into_par_iter()
            .zip(offsets)
            // probes_hashes: Vec<u64> processed by this thread
            // offset: offset index
            .map(|(vals_left, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                // assume the result tuples equal length of the no. of hashes processed by this thread.
                let mut results = Vec::with_capacity(vals_left.len());

                let mut right_tbl_offsets = PlHashMap::with_capacity(HASHMAP_INIT_SIZE);

                vals_left.iter().enumerate().for_each(|(idx_a, k)| {
                    let idx_a = (idx_a + offset) as IdxSize;
                    // probe table that contains the hashed value
                    let current_probe_table = unsafe {
                        get_hash_tbl_threaded_join_partitioned(k.as_u64(), hash_tbls, n_tables)
                    };

                    // we already hashed, so we don't have to hash again.
                    let value = current_probe_table.get(k);

                    match value {
                        // left and right matches
                        Some(indexes_b) => {
                            process_group(
                                *k,
                                idx_a,
                                tolerance,
                                indexes_b,
                                &mut right_tbl_offsets,
                                join_asof_fn,
                                left_asof,
                                right_asof,
                                &mut results,
                                forward,
                            );
                        }
                        // only left values, right = null
                        None => results.push(None),
                    }
                });
                results
            })
            .flatten()
            .collect()
    }))
}

fn asof_join_by_utf8<T>(
    by_left: &Utf8Chunked,
    by_right: &Utf8Chunked,
    left_asof: &ChunkedArray<T>,
    right_asof: &ChunkedArray<T>,
    tolerance: Option<AnyValue<'static>>,
    strategy: AsofStrategy,
) -> Vec<Option<IdxSize>>
where
    T: PolarsNumericType,
{
    #[allow(clippy::type_complexity)]
    let (join_asof_fn, tolerance, forward): (
        unsafe fn(T::Native, &[T::Native], &[IdxSize], T::Native) -> (Option<IdxSize>, usize),
        _,
        _,
    ) = match (tolerance, strategy) {
        (Some(tolerance), AsofStrategy::Backward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (
                join_asof_backward_with_indirection_and_tolerance,
                tol,
                false,
            )
        }
        (None, AsofStrategy::Backward) => (
            join_asof_backward_with_indirection,
            T::Native::zero(),
            false,
        ),
        (Some(tolerance), AsofStrategy::Forward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (join_asof_forward_with_indirection_and_tolerance, tol, true)
        }
        (None, AsofStrategy::Forward) => {
            (join_asof_forward_with_indirection, T::Native::zero(), true)
        }
    };

    let left_asof = left_asof.rechunk();
    let left_asof = left_asof.cont_slice().unwrap();

    let right_asof = right_asof.rechunk();
    let right_asof = right_asof.cont_slice().unwrap();

    let n_threads = POOL.current_num_threads();
    let splitted_by_left = split_ca(by_left, n_threads).unwrap();
    let splitted_right = split_ca(by_right, n_threads).unwrap();

    let hb = RandomState::default();
    let vals_left = prepare_strs(&splitted_by_left, &hb);
    let vals_right = prepare_strs(&splitted_right, &hb);

    let hash_tbls = create_probe_table(vals_right);

    // we determine the offset so that we later know which index to store in the join tuples
    let offsets = vals_left
        .iter()
        .map(|ph| ph.len())
        .scan(0, |state, val| {
            let out = *state;
            *state += val;
            Some(out)
        })
        .collect::<Vec<_>>();

    let n_tables = hash_tbls.len() as u64;
    debug_assert!(n_tables.is_power_of_two());

    // next we probe the right relation
    POOL.install(|| {
        vals_left
            .into_par_iter()
            .zip(offsets)
            // probes_hashes: Vec<u64> processed by this thread
            // offset: offset index
            .map(|(vals_left, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                // assume the result tuples equal length of the no. of hashes processed by this thread.
                let mut results = Vec::with_capacity(vals_left.len());

                let mut right_tbl_offsets = PlHashMap::with_capacity(HASHMAP_INIT_SIZE);

                vals_left.iter().enumerate().for_each(|(idx_a, k)| {
                    let idx_a = (idx_a + offset) as IdxSize;
                    // probe table that contains the hashed value
                    let current_probe_table = unsafe {
                        get_hash_tbl_threaded_join_partitioned(k.as_u64(), hash_tbls, n_tables)
                    };

                    // we already hashed, so we don't have to hash again.
                    let value = current_probe_table.get(k);

                    match value {
                        // left and right matches
                        Some(indexes_b) => {
                            process_group(
                                *k,
                                idx_a,
                                tolerance,
                                indexes_b,
                                &mut right_tbl_offsets,
                                join_asof_fn,
                                left_asof,
                                right_asof,
                                &mut results,
                                forward,
                            );
                        }
                        // only left values, right = null
                        None => results.push(None),
                    }
                });
                results
            })
            .flatten()
            .collect()
    })
}

// TODO! optimize this. This does a full scan backwards. Use the same strategy as in the single `by`
// implementations
fn asof_join_by_multiple<T>(
    a: &mut DataFrame,
    b: &mut DataFrame,
    left_asof: &ChunkedArray<T>,
    right_asof: &ChunkedArray<T>,
    tolerance: Option<AnyValue<'static>>,
    strategy: AsofStrategy,
) -> Vec<Option<IdxSize>>
where
    T: PolarsNumericType,
{
    #[allow(clippy::type_complexity)]
    let (join_asof_fn, tolerance, forward): (
        unsafe fn(T::Native, &[T::Native], &[IdxSize], T::Native) -> (Option<IdxSize>, usize),
        _,
        _,
    ) = match (tolerance, strategy) {
        (Some(tolerance), AsofStrategy::Backward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (
                join_asof_backward_with_indirection_and_tolerance,
                tol,
                false,
            )
        }
        (None, AsofStrategy::Backward) => (
            join_asof_backward_with_indirection,
            T::Native::zero(),
            false,
        ),
        (Some(tolerance), AsofStrategy::Forward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (join_asof_forward_with_indirection_and_tolerance, tol, true)
        }
        (None, AsofStrategy::Forward) => {
            (join_asof_forward_with_indirection, T::Native::zero(), true)
        }
    };
    let left_asof = left_asof.rechunk();
    let left_asof = left_asof.cont_slice().unwrap();

    let right_asof = right_asof.rechunk();
    let right_asof = right_asof.cont_slice().unwrap();

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = mk::create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = mk::get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(|| {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(|(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                // assume the result tuples equal length of the no. of hashes processed by this thread.
                let mut results = Vec::with_capacity(probe_hashes.len());
                let mut right_tbl_offsets = PlHashMap::with_capacity(HASHMAP_INIT_SIZE);

                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for (idx, &h) in probe_hashes.iter().enumerate() {
                        debug_assert!(idx + offset < left_asof.len());
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { mk::compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((k, indexes_b)) => {
                                process_group(
                                    // take the first idx as unique identifier of that group.
                                    k.idx,
                                    idx_a,
                                    tolerance,
                                    indexes_b,
                                    &mut right_tbl_offsets,
                                    join_asof_fn,
                                    left_asof,
                                    right_asof,
                                    &mut results,
                                    forward,
                                );
                            }
                            // only left values, right = null
                            None => results.push(None),
                        }
                        idx_a += 1;
                    }
                }

                results
            })
            .flatten()
            .collect()
    })
}

Get slices of the underlying arrow data. NOTE: null values should be taken into account by the user of these slices as they are handled separately

Examples found in repository?
src/chunked_array/mod.rs (line 481)
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        let mut ca = self.rechunk();
        mem::swap(&mut ca, self);
        let a = self.data_views().next().unwrap();
        let ptr = a.as_ptr();
        Ok(ptr as usize)
    }
}

impl AsSinglePtr for BooleanChunked {}
impl AsSinglePtr for ListChunked {}
impl AsSinglePtr for Utf8Chunked {}
#[cfg(feature = "dtype-binary")]
impl AsSinglePtr for BinaryChunked {}
#[cfg(feature = "object")]
impl<T: PolarsObject> AsSinglePtr for ObjectChunked<T> {}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// Contiguous slice
    pub fn cont_slice(&self) -> PolarsResult<&[T::Native]> {
        if self.chunks.len() == 1 && self.chunks[0].null_count() == 0 {
            Ok(self.downcast_iter().next().map(|arr| arr.values()).unwrap())
        } else {
            Err(PolarsError::ComputeError("cannot take slice".into()))
        }
    }

    /// Get slices of the underlying arrow data.
    /// NOTE: null values should be taken into account by the user of these slices as they are handled
    /// separately
    pub fn data_views(&self) -> impl Iterator<Item = &[T::Native]> + DoubleEndedIterator {
        self.downcast_iter().map(|arr| arr.values().as_slice())
    }

    #[allow(clippy::wrong_self_convention)]
    pub fn into_no_null_iter(
        &self,
    ) -> impl Iterator<Item = T::Native>
           + '_
           + Send
           + Sync
           + ExactSizeIterator
           + DoubleEndedIterator
           + TrustedLen {
        // .copied was significantly slower in benchmark, next call did not inline?
        #[allow(clippy::map_clone)]
        // we know the iterators len
        unsafe {
            self.data_views()
                .flatten()
                .map(|v| *v)
                .trust_my_length(self.len())
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/apply.rs (line 137)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    fn apply_cast_numeric<F, S>(&self, f: F) -> ChunkedArray<S>
    where
        F: Fn(T::Native) -> S::Native + Copy,
        S: PolarsNumericType,
    {
        let chunks = self
            .data_views()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let values = Vec::<_>::from_trusted_len_iter(slice.iter().map(|&v| f(v)));
                to_array::<S>(values, validity.cloned())
            })
            .collect();
        ChunkedArray::<S>::from_chunks(self.name(), chunks)
    }

    fn branch_apply_cast_numeric_no_null<F, S>(&self, f: F) -> ChunkedArray<S>
    where
        F: Fn(Option<T::Native>) -> S::Native,
        S: PolarsNumericType,
    {
        let chunks = self
            .downcast_iter()
            .map(|array| {
                let values = if !array.has_validity() {
                    let values = array.values().iter().map(|&v| f(Some(v)));
                    Vec::<_>::from_trusted_len_iter(values)
                } else {
                    let values = array.into_iter().map(|v| f(v.copied()));
                    Vec::<_>::from_trusted_len_iter(values)
                };
                to_array::<S>(values, None)
            })
            .collect();
        ChunkedArray::<S>::from_chunks(self.name(), chunks)
    }

    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(T::Native) -> T::Native + Copy,
    {
        let chunks = self
            .data_views()
            .into_iter()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let values = slice.iter().copied().map(f);
                let values = Vec::<_>::from_trusted_len_iter(values);
                to_array::<T>(values, validity.cloned())
            })
            .collect();
        ChunkedArray::<T>::from_chunks(self.name(), chunks)
    }

    fn try_apply<F>(&'a self, f: F) -> PolarsResult<Self>
    where
        F: Fn(T::Native) -> PolarsResult<T::Native> + Copy,
    {
        let mut ca: ChunkedArray<T> = self
            .data_views()
            .into_iter()
            .zip(self.iter_validities())
            .map(|(slice, validity)| {
                let vec: PolarsResult<Vec<_>> = slice.iter().copied().map(f).collect();
                Ok((vec?, validity.cloned()))
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        Ok(ca)
    }
src/frame/hash_join/multiple_keys.rs (line 49)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
pub(crate) fn create_probe_table(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher>> {
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || vec![idx],
                                |v| v.push(idx),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

fn create_build_table_outer(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher>> {
    // Outer join equivalent of create_build_table() adds a bool in the hashmap values for tracking
    // whether a value in the hash table has already been matched to a value in the probe hashes.
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || (false, vec![idx]),
                                |v| v.1.push(idx),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

/// Probe the build table and add tuples to the results (inner join)
#[allow(clippy::too_many_arguments)]
fn probe_inner<F>(
    probe_hashes: &UInt64Chunked,
    hash_tbls: &[HashMap<IdxHash, Vec<IdxSize>, IdBuildHasher>],
    results: &mut Vec<(IdxSize, IdxSize)>,
    local_offset: usize,
    n_tables: u64,
    a: &DataFrame,
    b: &DataFrame,
    swap_fn: F,
) where
    F: Fn(IdxSize, IdxSize) -> (IdxSize, IdxSize),
{
    let mut idx_a = local_offset as IdxSize;
    for probe_hashes in probe_hashes.data_views() {
        for &h in probe_hashes {
            // probe table that contains the hashed value
            let current_probe_table =
                unsafe { get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables) };

            let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                let idx_b = idx_hash.idx;
                // Safety:
                // indices in a join operation are always in bounds.
                unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
            });

            if let Some((_, indexes_b)) = entry {
                let tuples = indexes_b.iter().map(|&idx_b| swap_fn(idx_a, idx_b));
                results.extend(tuples);
            }
            idx_a += 1;
        }
    }
}

pub(crate) fn get_offsets(probe_hashes: &[UInt64Chunked]) -> Vec<usize> {
    probe_hashes
        .iter()
        .map(|ph| ph.len())
        .scan(0, |state, val| {
            let out = *state;
            *state += val;
            Some(out)
        })
        .collect()
}

pub fn _inner_join_multiple_keys(
    a: &mut DataFrame,
    b: &mut DataFrame,
    swap: bool,
) -> (Vec<IdxSize>, Vec<IdxSize>) {
    // we assume that the b DataFrame is the shorter relation.
    // b will be used for the build phase.

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);
    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(|| {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(|(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;
                let mut results =
                    Vec::with_capacity(probe_hashes.len() / POOL.current_num_threads());
                let local_offset = offset;
                // code duplication is to hoist swap out of the inner loop.
                if swap {
                    probe_inner(
                        &probe_hashes,
                        hash_tbls,
                        &mut results,
                        local_offset,
                        n_tables,
                        a,
                        b,
                        |idx_a, idx_b| (idx_b, idx_a),
                    )
                } else {
                    probe_inner(
                        &probe_hashes,
                        hash_tbls,
                        &mut results,
                        local_offset,
                        n_tables,
                        a,
                        b,
                        |idx_a, idx_b| (idx_a, idx_b),
                    )
                }

                results
            })
            .flatten()
            .unzip()
    })
}

#[cfg(feature = "private")]
pub fn private_left_join_multiple_keys(
    a: &DataFrame,
    b: &DataFrame,
    // map the global indices to [chunk_idx, array_idx]
    // only needed if we have non contiguous memory
    chunk_mapping_left: Option<&[ChunkId]>,
    chunk_mapping_right: Option<&[ChunkId]>,
) -> LeftJoinIds {
    let mut a = DataFrame::new_no_checks(_to_physical_and_bit_repr(a.get_columns()));
    let mut b = DataFrame::new_no_checks(_to_physical_and_bit_repr(b.get_columns()));
    _left_join_multiple_keys(&mut a, &mut b, chunk_mapping_left, chunk_mapping_right)
}

pub fn _left_join_multiple_keys(
    a: &mut DataFrame,
    b: &mut DataFrame,
    // map the global indices to [chunk_idx, array_idx]
    // only needed if we have non contiguous memory
    chunk_mapping_left: Option<&[ChunkId]>,
    chunk_mapping_right: Option<&[ChunkId]>,
) -> LeftJoinIds {
    // we should not join on logical types
    debug_assert!(!a.iter().any(|s| s.dtype().is_logical()));
    debug_assert!(!b.iter().any(|s| s.dtype().is_logical()));

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    let results = POOL.install(move || {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(move |(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                let len = probe_hashes.len() / POOL.current_num_threads();
                let mut result_idx_left = Vec::with_capacity(len);
                let mut result_idx_right = Vec::with_capacity(len);
                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for &h in probe_hashes {
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((_, indexes_b)) => {
                                result_idx_left
                                    .extend(std::iter::repeat(idx_a).take(indexes_b.len()));
                                result_idx_right.extend(indexes_b.iter().copied().map(Some))
                            }
                            // only left values, right = null
                            None => {
                                result_idx_left.push(idx_a);
                                result_idx_right.push(None);
                            }
                        }
                        idx_a += 1;
                    }
                }

                finish_left_join_mappings(
                    result_idx_left,
                    result_idx_right,
                    chunk_mapping_left,
                    chunk_mapping_right,
                )
            })
            .collect::<Vec<_>>()
    });
    flatten_left_join_ids(results)
}

#[cfg(feature = "semi_anti_join")]
pub(crate) fn create_build_table_semi_anti(
    hashes: &[UInt64Chunked],
    keys: &DataFrame,
) -> Vec<HashMap<IdxHash, (), IdBuildHasher>> {
    let n_partitions = _set_partition_size();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    POOL.install(|| {
        (0..n_partitions).into_par_iter().map(|part_no| {
            let part_no = part_no as u64;
            let mut hash_tbl: HashMap<IdxHash, (), IdBuildHasher> =
                HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

            let n_partitions = n_partitions as u64;
            let mut offset = 0;
            for hashes in hashes {
                for hashes in hashes.data_views() {
                    let len = hashes.len();
                    let mut idx = 0;
                    hashes.iter().for_each(|h| {
                        // partition hashes by thread no.
                        // So only a part of the hashes go to this hashmap
                        if this_partition(*h, part_no, n_partitions) {
                            let idx = idx + offset;
                            populate_multiple_key_hashmap(
                                &mut hash_tbl,
                                idx,
                                *h,
                                keys,
                                || (),
                                |_| (),
                            )
                        }
                        idx += 1;
                    });

                    offset += len as IdxSize;
                }
            }
            hash_tbl
        })
    })
    .collect()
}

#[cfg(feature = "semi_anti_join")]
pub(crate) fn semi_anti_join_multiple_keys_impl<'a>(
    a: &'a mut DataFrame,
    b: &'a mut DataFrame,
) -> impl ParallelIterator<Item = (IdxSize, bool)> + 'a {
    // we should not join on logical types
    debug_assert!(!a.iter().any(|s| s.dtype().is_logical()));
    debug_assert!(!b.iter().any(|s| s.dtype().is_logical()));

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = create_build_table_semi_anti(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(move || {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(move |(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;
                let mut results =
                    Vec::with_capacity(probe_hashes.len() / POOL.current_num_threads());
                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for &h in probe_hashes {
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((_, _)) => results.push((idx_a, true)),
                            // only left values, right = null
                            None => results.push((idx_a, false)),
                        }
                        idx_a += 1;
                    }
                }

                results
            })
            .flatten()
    })
}

#[cfg(feature = "semi_anti_join")]
pub fn _left_anti_multiple_keys(a: &mut DataFrame, b: &mut DataFrame) -> Vec<IdxSize> {
    semi_anti_join_multiple_keys_impl(a, b)
        .filter(|tpls| !tpls.1)
        .map(|tpls| tpls.0)
        .collect()
}

#[cfg(feature = "semi_anti_join")]
pub fn _left_semi_multiple_keys(a: &mut DataFrame, b: &mut DataFrame) -> Vec<IdxSize> {
    semi_anti_join_multiple_keys_impl(a, b)
        .filter(|tpls| tpls.1)
        .map(|tpls| tpls.0)
        .collect()
}

/// Probe the build table and add tuples to the results (inner join)
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn probe_outer<F, G, H>(
    probe_hashes: &[UInt64Chunked],
    hash_tbls: &mut [HashMap<IdxHash, (bool, Vec<IdxSize>), IdBuildHasher>],
    results: &mut Vec<(Option<IdxSize>, Option<IdxSize>)>,
    n_tables: u64,
    a: &DataFrame,
    b: &DataFrame,
    // Function that get index_a, index_b when there is a match and pushes to result
    swap_fn_match: F,
    // Function that get index_a when there is no match and pushes to result
    swap_fn_no_match: G,
    // Function that get index_b from the build table that did not match any in A and pushes to result
    swap_fn_drain: H,
) where
    // idx_a, idx_b -> ...
    F: Fn(IdxSize, IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
    // idx_a -> ...
    G: Fn(IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
    // idx_b -> ...
    H: Fn(IdxSize) -> (Option<IdxSize>, Option<IdxSize>),
{
    let mut idx_a = 0;

    // vec<ca>
    for probe_hashes in probe_hashes {
        // ca
        for probe_hashes in probe_hashes.data_views() {
            // chunk slices
            for &h in probe_hashes {
                // probe table that contains the hashed value
                let current_probe_table =
                    unsafe { get_hash_tbl_threaded_join_mut_partitioned(h, hash_tbls, n_tables) };

                let entry = current_probe_table
                    .raw_entry_mut()
                    .from_hash(h, |idx_hash| {
                        let idx_b = idx_hash.idx;
                        // Safety:
                        // indices in a join operation are always in bounds.
                        unsafe { compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                    });

                match entry {
                    // match and remove
                    RawEntryMut::Occupied(mut occupied) => {
                        let (tracker, indexes_b) = occupied.get_mut();
                        *tracker = true;
                        results.extend(indexes_b.iter().map(|&idx_b| swap_fn_match(idx_a, idx_b)))
                    }
                    // no match
                    RawEntryMut::Vacant(_) => results.push(swap_fn_no_match(idx_a)),
                }
                idx_a += 1;
            }
        }
    }

    for hash_tbl in hash_tbls {
        hash_tbl.iter().for_each(|(_k, (tracker, indexes_b))| {
            // remaining unmatched joined values from the right table
            if !*tracker {
                results.extend(indexes_b.iter().map(|&idx_b| swap_fn_drain(idx_b)))
            }
        });
    }
}
src/frame/groupby/hashing.rs (line 319)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
pub(crate) fn groupby_threaded_multiple_keys_flat(
    mut keys: DataFrame,
    n_partitions: usize,
    sorted: bool,
) -> PolarsResult<GroupsProxy> {
    let dfs = split_df(&mut keys, n_partitions).unwrap();
    let (hashes, _random_state) = df_rows_to_hashes_threaded(&dfs, None)?;
    let n_partitions = n_partitions as u64;

    // trait object to compare inner types.
    let keys_cmp = keys
        .iter()
        .map(|s| s.into_partial_eq_inner())
        .collect::<Vec<_>>();

    // We will create a hashtable in every thread.
    // We use the hash to partition the keys to the matching hashtable.
    // Every thread traverses all keys/hashes and ignores the ones that doesn't fall in that partition.
    let groups = POOL
        .install(|| {
            (0..n_partitions).into_par_iter().map(|thread_no| {
                let hashes = &hashes;

                let mut hash_tbl: HashMap<IdxHash, (IdxSize, Vec<IdxSize>), IdBuildHasher> =
                    HashMap::with_capacity_and_hasher(HASHMAP_INIT_SIZE, Default::default());

                let mut offset = 0;
                for hashes in hashes {
                    let len = hashes.len() as IdxSize;

                    let mut idx = 0;
                    for hashes_chunk in hashes.data_views() {
                        for &h in hashes_chunk {
                            // partition hashes by thread no.
                            // So only a part of the hashes go to this hashmap
                            if this_partition(h, thread_no, n_partitions) {
                                let idx = idx + offset;
                                populate_multiple_key_hashmap2(
                                    &mut hash_tbl,
                                    idx,
                                    h,
                                    &keys_cmp,
                                    || (idx, vec![idx]),
                                    |v| v.1.push(idx),
                                );
                            }
                            idx += 1;
                        }
                    }

                    offset += len;
                }
                hash_tbl.into_iter().map(|(_k, v)| v).collect::<Vec<_>>()
            })
        })
        .collect::<Vec<_>>();
    Ok(finish_group_order(groups, sorted))
}
src/frame/asof_join/groups.rs (line 528)
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
fn asof_join_by_multiple<T>(
    a: &mut DataFrame,
    b: &mut DataFrame,
    left_asof: &ChunkedArray<T>,
    right_asof: &ChunkedArray<T>,
    tolerance: Option<AnyValue<'static>>,
    strategy: AsofStrategy,
) -> Vec<Option<IdxSize>>
where
    T: PolarsNumericType,
{
    #[allow(clippy::type_complexity)]
    let (join_asof_fn, tolerance, forward): (
        unsafe fn(T::Native, &[T::Native], &[IdxSize], T::Native) -> (Option<IdxSize>, usize),
        _,
        _,
    ) = match (tolerance, strategy) {
        (Some(tolerance), AsofStrategy::Backward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (
                join_asof_backward_with_indirection_and_tolerance,
                tol,
                false,
            )
        }
        (None, AsofStrategy::Backward) => (
            join_asof_backward_with_indirection,
            T::Native::zero(),
            false,
        ),
        (Some(tolerance), AsofStrategy::Forward) => {
            let tol = tolerance.extract::<T::Native>().unwrap();
            (join_asof_forward_with_indirection_and_tolerance, tol, true)
        }
        (None, AsofStrategy::Forward) => {
            (join_asof_forward_with_indirection, T::Native::zero(), true)
        }
    };
    let left_asof = left_asof.rechunk();
    let left_asof = left_asof.cont_slice().unwrap();

    let right_asof = right_asof.rechunk();
    let right_asof = right_asof.cont_slice().unwrap();

    let n_threads = POOL.current_num_threads();
    let dfs_a = split_df(a, n_threads).unwrap();
    let dfs_b = split_df(b, n_threads).unwrap();

    let (build_hashes, random_state) = df_rows_to_hashes_threaded(&dfs_b, None).unwrap();
    let (probe_hashes, _) = df_rows_to_hashes_threaded(&dfs_a, Some(random_state)).unwrap();

    let hash_tbls = mk::create_probe_table(&build_hashes, b);
    // early drop to reduce memory pressure
    drop(build_hashes);

    let n_tables = hash_tbls.len() as u64;
    let offsets = mk::get_offsets(&probe_hashes);

    // next we probe the other relation
    // code duplication is because we want to only do the swap check once
    POOL.install(|| {
        probe_hashes
            .into_par_iter()
            .zip(offsets)
            .map(|(probe_hashes, offset)| {
                // local reference
                let hash_tbls = &hash_tbls;

                // assume the result tuples equal length of the no. of hashes processed by this thread.
                let mut results = Vec::with_capacity(probe_hashes.len());
                let mut right_tbl_offsets = PlHashMap::with_capacity(HASHMAP_INIT_SIZE);

                let local_offset = offset;

                let mut idx_a = local_offset as IdxSize;
                for probe_hashes in probe_hashes.data_views() {
                    for (idx, &h) in probe_hashes.iter().enumerate() {
                        debug_assert!(idx + offset < left_asof.len());
                        // probe table that contains the hashed value
                        let current_probe_table = unsafe {
                            get_hash_tbl_threaded_join_partitioned(h, hash_tbls, n_tables)
                        };

                        let entry = current_probe_table.raw_entry().from_hash(h, |idx_hash| {
                            let idx_b = idx_hash.idx;
                            // Safety:
                            // indices in a join operation are always in bounds.
                            unsafe { mk::compare_df_rows2(a, b, idx_a as usize, idx_b as usize) }
                        });

                        match entry {
                            // left and right matches
                            Some((k, indexes_b)) => {
                                process_group(
                                    // take the first idx as unique identifier of that group.
                                    k.idx,
                                    idx_a,
                                    tolerance,
                                    indexes_b,
                                    &mut right_tbl_offsets,
                                    join_asof_fn,
                                    left_asof,
                                    right_asof,
                                    &mut results,
                                    forward,
                                );
                            }
                            // only left values, right = null
                            None => results.push(None),
                        }
                        idx_a += 1;
                    }
                }

                results
            })
            .flatten()
            .collect()
    })
}
Examples found in repository?
src/chunked_array/ops/unique/mod.rs (line 244)
240
241
242
243
244
245
246
    fn n_unique(&self) -> PolarsResult<usize> {
        if self.null_count() > 0 {
            Ok(fill_set(self.into_iter().flatten()).len() + 1)
        } else {
            Ok(fill_set(self.into_no_null_iter()).len())
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/take/take_every.rs (line 10)
8
9
10
11
12
13
14
15
16
17
    fn take_every(&self, n: usize) -> ChunkedArray<T> {
        let mut ca = if !self.has_validity() {
            let a: NoNull<_> = self.into_no_null_iter().step_by(n).collect();
            a.into_inner()
        } else {
            self.into_iter().step_by(n).collect()
        };
        ca.rename(self.name());
        ca
    }
src/chunked_array/ops/apply.rs (line 224)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    fn apply_with_idx<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, T::Native)) -> T::Native + Copy,
    {
        if !self.has_validity() {
            let ca: NoNull<_> = self
                .into_no_null_iter()
                .enumerate()
                .map(f)
                .collect_trusted();
            ca.into_inner()
        } else {
            // we know that we only iterate over length == self.len()
            unsafe {
                self.downcast_iter()
                    .flatten()
                    .trust_my_length(self.len())
                    .enumerate()
                    .map(|(idx, opt_v)| opt_v.map(|v| f((idx, *v))))
                    .collect_trusted()
            }
        }
    }
src/chunked_array/logical/categorical/mod.rs (line 167)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    fn cast(&self, dtype: &DataType) -> PolarsResult<Series> {
        match dtype {
            DataType::Utf8 => {
                let mapping = &**self.get_rev_map();

                let mut builder =
                    Utf8ChunkedBuilder::new(self.logical.name(), self.len(), self.len() * 5);

                let f = |idx: u32| mapping.get(idx);

                if !self.logical.has_validity() {
                    self.logical
                        .into_no_null_iter()
                        .for_each(|idx| builder.append_value(f(idx)));
                } else {
                    self.logical.into_iter().for_each(|opt_idx| {
                        builder.append_option(opt_idx.map(f));
                    });
                }

                let ca = builder.finish();
                Ok(ca.into_series())
            }
            DataType::UInt32 => {
                let ca =
                    UInt32Chunked::from_chunks(self.logical.name(), self.logical.chunks.clone());
                Ok(ca.into_series())
            }
            #[cfg(feature = "dtype-categorical")]
            DataType::Categorical(_) => Ok(self.clone().into_series()),
            _ => self.logical.cast(dtype),
        }
    }
src/frame/hash_join/single_keys_dispatch.rs (line 299)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    fn hash_join_outer(&self, other: &ChunkedArray<T>) -> Vec<(Option<IdxSize>, Option<IdxSize>)> {
        let (a, b, swap) = det_hash_prone_order!(self, other);

        let n_partitions = _set_partition_size();
        let splitted_a = split_ca(a, n_partitions).unwrap();
        let splitted_b = split_ca(b, n_partitions).unwrap();

        match (a.null_count(), b.null_count()) {
            (0, 0) => {
                let iters_a = splitted_a
                    .iter()
                    .map(|ca| ca.into_no_null_iter())
                    .collect::<Vec<_>>();
                let iters_b = splitted_b
                    .iter()
                    .map(|ca| ca.into_no_null_iter())
                    .collect::<Vec<_>>();
                hash_join_tuples_outer(iters_a, iters_b, swap)
            }
            _ => {
                let iters_a = splitted_a
                    .iter()
                    .map(|ca| ca.into_iter())
                    .collect::<Vec<_>>();
                let iters_b = splitted_b
                    .iter()
                    .map(|ca| ca.into_iter())
                    .collect::<Vec<_>>();
                hash_join_tuples_outer(iters_a, iters_b, swap)
            }
        }
    }
src/chunked_array/ops/set.rs (line 77)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    fn set_at_idx<I: IntoIterator<Item = IdxSize>>(
        &'a self,
        idx: I,
        value: Option<T::Native>,
    ) -> PolarsResult<Self> {
        if !self.has_validity() {
            if let Some(value) = value {
                // fast path uses kernel
                if self.chunks.len() == 1 {
                    let arr = set_at_idx_no_null(
                        self.downcast_iter().next().unwrap(),
                        idx.into_iter(),
                        value,
                        T::get_dtype().to_arrow(),
                    )?;
                    return Ok(Self::from_chunks(self.name(), vec![Box::new(arr)]));
                }
                // Other fast path. Slightly slower as it does not do a memcpy
                else {
                    let mut av = self.into_no_null_iter().collect::<Vec<_>>();
                    let data = av.as_mut_slice();

                    idx.into_iter().try_for_each::<_, PolarsResult<_>>(|idx| {
                        let val = data.get_mut(idx as usize).ok_or_else(|| {
                            PolarsError::ComputeError(
                                format!("{} out of bounds on array of length: {}", idx, self.len())
                                    .into(),
                            )
                        })?;
                        *val = value;
                        Ok(())
                    })?;
                    return Ok(Self::from_vec(self.name(), av));
                }
            }
        }
        self.set_at_idx_with(idx, |_| value)
    }

Get the inner data type of the list.

Examples found in repository?
src/chunked_array/ops/aggregate.rs (line 815)
814
815
816
817
818
819
820
821
822
    fn sum_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn max_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
    fn min_as_series(&self) -> Series {
        ListChunked::full_null_with_dtype(self.name(), 1, &self.inner_dtype()).into_series()
    }
More examples
Hide additional examples
src/chunked_array/list/mod.rs (line 28)
27
28
29
30
31
    pub fn to_logical(&mut self, inner_dtype: DataType) {
        assert_eq!(inner_dtype.to_physical(), self.inner_dtype());
        let fld = Arc::make_mut(&mut self.field);
        fld.coerce(DataType::List(Box::new(inner_dtype)))
    }
src/chunked_array/mod.rs (line 590)
589
590
591
592
593
    pub fn set_inner_dtype(&mut self, dtype: DataType) {
        assert_eq!(dtype.to_physical(), self.inner_dtype().to_physical());
        let field = Arc::make_mut(&mut self.field);
        field.coerce(DataType::List(Box::new(dtype)));
    }
src/chunked_array/ops/mod.rs (line 653)
649
650
651
652
653
654
655
    fn new_from_index(&self, index: usize, length: usize) -> ListChunked {
        let opt_val = self.get(index);
        match opt_val {
            Some(val) => ListChunked::full(self.name(), &val, length),
            None => ListChunked::full_null_with_dtype(self.name(), length, &self.inner_dtype()),
        }
    }
src/chunked_array/iterator/par/list.rs (line 20)
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    pub fn par_iter(&self) -> impl ParallelIterator<Item = Option<Series>> + '_ {
        self.chunks
            .par_iter()
            .map(move |arr| {
                let dtype = self.inner_dtype();
                // Safety:
                // guarded by the type system
                let arr = &**arr;
                let arr = unsafe { &*(arr as *const dyn Array as *const ListArray<i64>) };
                (0..arr.len())
                    .into_par_iter()
                    .map(move |idx| unsafe { idx_to_array(idx, arr, &dtype) })
            })
            .flatten()
    }

    // Get an indexed parallel iterator over the [`Series`] in this [`ListChunked`].
    pub fn par_iter_indexed(&mut self) -> impl IndexedParallelIterator<Item = Option<Series>> + '_ {
        *self = self.rechunk();
        let arr = self.downcast_iter().next().unwrap();

        let dtype = self.inner_dtype();
        (0..arr.len())
            .into_par_iter()
            .map(move |idx| unsafe { idx_to_array(idx, arr, &dtype) })
    }
src/chunked_array/ops/shift.rs (line 96)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    fn shift_and_fill(&self, periods: i64, fill_value: Option<&Series>) -> ListChunked {
        // This has its own implementation because a ListChunked cannot have a full-null without
        // knowing the inner type
        let periods = clamp(periods, -(self.len() as i64), self.len() as i64);
        let slice_offset = (-periods).max(0);
        let length = self.len() - abs(periods) as usize;
        let mut slice = self.slice(slice_offset, length);

        let fill_length = abs(periods) as usize;
        let mut fill = match fill_value {
            Some(val) => Self::full(self.name(), val, fill_length),
            None => {
                ListChunked::full_null_with_dtype(self.name(), fill_length, &self.inner_dtype())
            }
        };

        if periods < 0 {
            slice.append(&fill).unwrap();
            slice
        } else {
            fill.append(&slice).unwrap();
            fill
        }
    }
Examples found in repository?
src/series/ops/to_list.rs (line 23)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
fn reshape_fast_path(name: &str, s: &Series) -> Series {
    let chunks = match s.dtype() {
        #[cfg(feature = "dtype-struct")]
        DataType::Struct(_) => {
            vec![Box::new(array_to_unit_list(s.array_ref(0).clone())) as ArrayRef]
        }
        _ => s
            .chunks()
            .iter()
            .map(|arr| Box::new(array_to_unit_list(arr.clone())) as ArrayRef)
            .collect::<Vec<_>>(),
    };

    let mut ca = ListChunked::from_chunks(name, chunks);
    ca.set_inner_dtype(s.dtype().clone());
    ca.set_fast_explode();
    ca.into_series()
}
More examples
Hide additional examples
src/chunked_array/cast.rs (line 190)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        match data_type {
            DataType::List(child_type) => {
                let phys_child = child_type.to_physical();

                if phys_child.is_primitive() {
                    let mut ca = if child_type.to_physical() != self.inner_dtype().to_physical() {
                        let chunks = self
                            .downcast_iter()
                            .map(|list| cast_inner_list_type(list, &phys_child))
                            .collect::<PolarsResult<_>>()?;
                        ListChunked::from_chunks(self.name(), chunks)
                    } else {
                        self.clone()
                    };
                    ca.set_inner_dtype(*child_type.clone());
                    Ok(ca.into_series())
                } else {
                    let ca = self.rechunk();
                    let arr = ca.downcast_iter().next().unwrap();
                    let s = Series::try_from(("", arr.values().clone())).unwrap();
                    let new_inner = s.cast(child_type)?;
                    let new_values = new_inner.array_ref(0).clone();

                    let data_type =
                        ListArray::<i64>::default_datatype(new_values.data_type().clone());
                    let new_arr = ListArray::<i64>::new(
                        data_type,
                        arr.offsets().clone(),
                        new_values,
                        arr.validity().cloned(),
                    );
                    Series::try_from((self.name(), Box::new(new_arr) as ArrayRef))
                }
            }
            _ => Err(PolarsError::ComputeError("Cannot cast list type".into())),
        }
    }

Specialization that prevents an allocation prefer this over ChunkedArray::new when you have a Vec<T::Native> and no null values.

Examples found in repository?
src/chunked_array/random.rs (line 36)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
fn create_rand_index_no_replacement(
    n: usize,
    len: usize,
    seed: Option<u64>,
    shuffle: bool,
) -> IdxCa {
    let mut rng = SmallRng::seed_from_u64(seed.unwrap_or_else(get_random_seed));
    let mut buf = vec![0; n];
    (0..len as IdxSize).choose_multiple_fill(&mut rng, &mut buf);
    if shuffle {
        buf.shuffle(&mut rng)
    }
    IdxCa::new_vec("", buf)
}

We cannot override the left hand side behaviour. So we create a trait LhsNumOps. This allows for 1.add(&Series)

Apply lhs - self

Apply lhs / self

Apply lhs % self

Trait Implementations§

The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
The resulting type after applying the + operator.
Performs the + operation. Read more
Safety Read more
Get the index of the minimal value
Get the index of the maximal value
Converts this type into a mutable reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the & operator.
Performs the & operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the | operator.
Performs the | operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
The resulting type after applying the ^ operator.
Performs the ^ operation. Read more
Aggregate the sum of the ChunkedArray. Returns None if the array is empty or only contains null values.
Returns the maximum value in the array, according to the natural order. Returns None if the array is empty or only contains null values.
Returns the mean value in the array. Returns None if the array is empty or only contains null values.
Get the sum of the ChunkedArray as a new Series of length 1.
Get the max of the ChunkedArray as a new Series of length 1.
Get the min of the ChunkedArray as a new Series of length 1.
Get the product of the ChunkedArray as a new Series of length 1.
Get a single value. Beware this is slow. If you need to use this slightly performant, cast Categorical to UInt32 Read more
Get a single value. Beware this is slow.
Apply a closure elementwise and cast to a Numeric ChunkedArray. This is fastest when the null check branching is more expensive than the closure application. Read more
Apply a closure on optional values and cast to Numeric ChunkedArray without null values.
Apply a closure elementwise. This is fastest when the null check branching is more expensive than the closure application. Often it is. Read more
Apply a closure elementwise including null values.
Apply a closure elementwise. The closure gets the index of the element as first argument.
Apply a closure elementwise. The closure gets the index of the element as first argument.
Apply a closure elementwise and write results to a mutable slice.
Apply kernel and return result as a new ChunkedArray.
Apply a kernel that outputs an array of different type.
Cast a [ChunkedArray] to [DataType]
Does not check if the cast is a valid one and may over/underflow
Check for equality.
Check for inequality.
Greater than comparison.
Greater than or equal comparison.
Less than comparison.
Less than or equal comparison
Check for equality.
Check for inequality.
Greater than comparison.
Greater than or equal comparison.
Less than comparison.
Less than or equal comparison
Check for equality.
Check for inequality.
Greater than comparison.
Greater than or equal comparison.
Less than comparison.
Less than or equal comparison
Check for equality.
Check for inequality.
Greater than comparison.
Greater than or equal comparison.
Less than comparison.
Less than or equal comparison
Check for equality.
Check for inequality.
Greater than comparison.
Greater than or equal comparison.
Less than comparison.
Less than or equal comparison
Get an array with the cumulative max computed at every element
Get an array with the cumulative min computed at every element
Get an array with the cumulative sum computed at every element
Get an array with the cumulative product computed at every element
Create a new ChunkedArray filled with values at that index.
Replace None values with one of the following strategies: Read more
Replace None values with a give value T.
Filter values in the ChunkedArray with a boolean mask. Read more
Create a ChunkedArray with a single value.

Get a boolean mask of the local maximum peaks.

Get a boolean mask of the local minimum peaks.

Aggregate a given quantile of the ChunkedArray. Returns None if the array is empty or only contains null values.
Returns the mean value in the array. Returns None if the array is empty or only contains null values.
Return a reversed version of this array.

Apply a rolling custom function. This is pretty slow because of dynamic dispatch.

Set the values at indexes idx to some optional value Option<T>. Read more
Set the values at indexes idx by applying a closure to these values. Read more
Set the values where the mask evaluates to true to some optional value Option<T>. Read more
Shift the values by a given period and fill the parts that will be empty due to this operation with fill_value.
Panics

This function is very opinionated. We assume that all numeric Series are of the same type, if not it will panic

Returned a sorted ChunkedArray.
Retrieve the indexes needed to sort this array.
Take values from ChunkedArray by index. Read more
Take values from ChunkedArray by index. Note that the iterator will be cloned, so prefer an iterator that takes the owned memory by reference.
Traverse and collect every nth element in a new array.
Get unique values of a ChunkedArray
Get first index of the unique values in a ChunkedArray. This Vec is sorted.
Get a mask of all the unique values.
Get a mask of all the duplicated values.
Number of unique values in the ChunkedArray
Available on crate feature mode only.
The most occurring value(s). Can return multiple Values
Compute the variance of this ChunkedArray/Series.
Compute the standard deviation of this ChunkedArray/Series.
Create a new ChunkedArray with values from self where the mask evaluates true and values from other where the mask evaluates false
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
The resulting type after applying the / operator.
Performs the / operation. Read more
Executes the destructor for this type. Read more
Converts to this type from the input type.
Converts to this type from the input type.

Conversion from UInt32Chunked to Unchecked TakeIdx

Converts to this type from the input type.

From trait

Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Converts to this type from the input type.
Creates a value from an iterator. Read more

FromIterator trait

Creates a value from an iterator. Read more
Creates a value from an iterator. Read more
Creates an instance of the collection from the parallel iterator par_iter. Read more
Create the tuples need for a groupby operation. * The first value in the tuple is the first index of the group. * The second value in the tuple is are the indexes of the groups including the first value.
The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
Available on crate feature is_first only.
Available on crate feature is_in only.
Check if elements of this array are in the right Series, or List values of the right Series.
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
The resulting type after applying the * operator.
Performs the * operation. Read more
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.
Initialize by name and values.

Create a new ChunkedArray from an iterator.

Create a new ChunkedArray from an iterator.
Checked integer division. Computes self / rhs, returning None if rhs == 0 or the division results in overflow.
Get the quantile of the ChunkedArray as a new Series of length 1.
Get the median of the ChunkedArray as a new Series of length 1.
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
The resulting type after applying the % operator.
Performs the % operation. Read more
Available on crate feature repeat_by only.
Repeat the values n times, where n is determined by the values in by.
Available on crate feature concat_str only.
Concat the values into a string array. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
The resulting type after applying the - operator.
Performs the - operation. Read more
Get a nullable value by index. Read more
Get a value by index and ignore the null bit. Read more
Get a nullable value by index. Read more
Get a value by index and ignore the null bit. Read more
Get the variance of the ChunkedArray as a new Series of length 1.
Get the standard deviation of the ChunkedArray as a new Series of length 1.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.