Struct polars_core::schema::Schema
source · pub struct Schema { /* private fields */ }Implementations§
source§impl Schema
impl Schema
pub fn try_from_fallible<I>(flds: I) -> PolarsResult<Self>where
I: IntoIterator<Item = PolarsResult<Field>>,
pub fn new() -> Self
sourcepub fn with_capacity(capacity: usize) -> Self
pub fn with_capacity(capacity: usize) -> Self
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Examples found in repository?
src/schema.rs (line 18)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().zip(other.iter()).all(|(a, b)| a == b)
}
}
impl Debug for Schema {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
writeln!(f, "Schema:")?;
for (name, dtype) in self.inner.iter() {
writeln!(f, "name: {name}, data type: {dtype:?}")?;
}
Ok(())
}
}
impl<I, J> From<I> for Schema
where
I: Iterator<Item = J>,
J: Into<Field>,
{
fn from(iter: I) -> Self {
let mut map: PlIndexMap<_, _> =
IndexMap::with_capacity_and_hasher(iter.size_hint().0, ahash::RandomState::default());
for fld in iter {
let fld = fld.into();
map.insert(fld.name().clone(), fld.data_type().clone());
}
Self { inner: map }
}
}
impl<J> FromIterator<J> for Schema
where
J: Into<Field>,
{
fn from_iter<I: IntoIterator<Item = J>>(iter: I) -> Self {
Schema::from(iter.into_iter())
}
}
impl Schema {
// could not implement TryFrom
pub fn try_from_fallible<I>(flds: I) -> PolarsResult<Self>
where
I: IntoIterator<Item = PolarsResult<Field>>,
{
let iter = flds.into_iter();
let mut map: PlIndexMap<_, _> =
IndexMap::with_capacity_and_hasher(iter.size_hint().0, ahash::RandomState::default());
for fld in iter {
let fld = fld?;
map.insert(fld.name().clone(), fld.data_type().clone());
}
Ok(Self { inner: map })
}
pub fn new() -> Self {
Self::with_capacity(0)
}
pub fn with_capacity(capacity: usize) -> Self {
let map: PlIndexMap<_, _> =
IndexMap::with_capacity_and_hasher(capacity, ahash::RandomState::default());
Self { inner: map }
}
#[inline]
pub fn len(&self) -> usize {
self.inner.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
pub fn rename(&mut self, old: &str, new: String) -> Option<()> {
// we first append the new name
// and then remove the old name
// this works because the removed slot is swapped with the last value in the indexmap
let dtype = self.inner.get(old)?.clone();
self.inner.insert(new, dtype);
self.inner.swap_remove(old);
Some(())
}
pub fn insert_index(&self, index: usize, name: String, dtype: DataType) -> Option<Self> {
// 0 and self.len() 0 is allowed
if index > self.len() {
return None;
}
let mut new = Self::default();
let mut iter = self
.inner
.iter()
.map(|(name, dtype)| (name.clone(), dtype.clone()));
new.inner.extend((&mut iter).take(index));
new.inner.insert(name, dtype);
new.inner.extend(iter);
Some(new)
}pub fn is_empty(&self) -> bool
pub fn rename(&mut self, old: &str, new: String) -> Option<()>
pub fn insert_index(
&self,
index: usize,
name: String,
dtype: DataType
) -> Option<Self>
sourcepub fn get(&self, name: &str) -> Option<&DataType>
pub fn get(&self, name: &str) -> Option<&DataType>
Examples found in repository?
src/schema.rs (line 124)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
pub fn try_get(&self, name: &str) -> PolarsResult<&DataType> {
self.get(name)
.ok_or_else(|| PolarsError::NotFound(name.to_string().into()))
}
pub fn get_full(&self, name: &str) -> Option<(usize, &String, &DataType)> {
self.inner.get_full(name)
}
pub fn get_field(&self, name: &str) -> Option<Field> {
self.inner
.get(name)
.map(|dtype| Field::new(name, dtype.clone()))
}
pub fn try_get_field(&self, name: &str) -> PolarsResult<Field> {
self.inner
.get(name)
.ok_or_else(|| PolarsError::NotFound(name.to_string().into()))
.map(|dtype| Field::new(name, dtype.clone()))
}
pub fn get_index(&self, index: usize) -> Option<(&String, &DataType)> {
self.inner.get_index(index)
}
pub fn contains(&self, name: &str) -> bool {
self.get(name).is_some()
}More examples
src/frame/mod.rs (line 1172)
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
for (i, s) in columns.into_iter().enumerate() {
// we need to branch here
// because users can add multiple columns with the same name
if i == 0 || schema.get(s.name()).is_some() {
self.with_column_and_schema(s, schema)?;
} else {
self.with_column(s.clone())?;
}
}
Ok(())
}src/frame/explode.rs (line 254)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
pub fn melt2(&self, args: MeltArgs) -> PolarsResult<Self> {
let id_vars = args.id_vars;
let mut value_vars = args.value_vars;
let value_name = args.value_name.as_deref().unwrap_or("value");
let variable_name = args.variable_name.as_deref().unwrap_or("variable");
let len = self.height();
// if value vars is empty we take all columns that are not in id_vars.
if value_vars.is_empty() {
let id_vars_set = PlHashSet::from_iter(id_vars.iter().map(|s| s.as_str()));
value_vars = self
.get_columns()
.iter()
.filter_map(|s| {
if id_vars_set.contains(s.name()) {
None
} else {
Some(s.name().to_string())
}
})
.collect();
}
// values will all be placed in single column, so we must find their supertype
let schema = self.schema();
let mut iter = value_vars.iter().map(|v| {
schema
.get(v)
.ok_or_else(|| PolarsError::NotFound(v.to_string().into()))
});
let mut st = iter.next().unwrap()?.clone();
for dt in iter {
st = try_get_supertype(&st, dt?)?;
}
let values_len = value_vars.iter().map(|name| name.len()).sum::<usize>();
// The column name of the variable that is melted
let mut variable_col = MutableUtf8Array::<i64>::with_capacities(
len * value_vars.len() + 1,
len * values_len + 1,
);
// prepare ids
let ids_ = self.select(id_vars)?;
let mut ids = ids_.clone();
if ids.width() > 0 {
for _ in 0..value_vars.len() - 1 {
ids.vstack_mut_unchecked(&ids_)
}
}
ids.as_single_chunk_par();
drop(ids_);
let mut values = Vec::with_capacity(value_vars.len());
for value_column_name in &value_vars {
variable_col.extend_trusted_len_values(std::iter::repeat(value_column_name).take(len));
let value_col = self.column(value_column_name)?.cast(&st)?;
values.extend_from_slice(value_col.chunks())
}
let values_arr = concatenate_owned_unchecked(&values)?;
// Safety
// The give dtype is correct
let values =
unsafe { Series::from_chunks_and_dtype_unchecked(value_name, vec![values_arr], &st) };
let variable_col = variable_col.as_box();
// Safety
// The give dtype is correct
let variables = unsafe {
Series::from_chunks_and_dtype_unchecked(
variable_name,
vec![variable_col],
&DataType::Utf8,
)
};
ids.hstack_mut(&[variables, values])?;
Ok(ids)
}pub fn try_get(&self, name: &str) -> PolarsResult<&DataType>
sourcepub fn get_full(&self, name: &str) -> Option<(usize, &String, &DataType)>
pub fn get_full(&self, name: &str) -> Option<(usize, &String, &DataType)>
Examples found in repository?
src/frame/mod.rs (line 1155)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
let name = s.name();
if let Some((idx, _, _)) = schema.get_full(name) {
// schema is incorrect fallback to search
if self.columns.get(idx).map(|s| s.name()) != Some(name) {
self.add_column_by_search(s)?;
} else {
self.replace_at_idx(idx, s)?;
}
} else {
self.columns.push(s);
}
Ok(())
}pub fn get_field(&self, name: &str) -> Option<Field>
pub fn try_get_field(&self, name: &str) -> PolarsResult<Field>
pub fn get_index(&self, index: usize) -> Option<(&String, &DataType)>
pub fn contains(&self, name: &str) -> bool
pub fn get_index_mut(
&mut self,
index: usize
) -> Option<(&mut String, &mut DataType)>
pub fn coerce_by_name(&mut self, name: &str, dtype: DataType) -> Option<()>
sourcepub fn coerce_by_index(&mut self, index: usize, dtype: DataType) -> Option<()>
pub fn coerce_by_index(&mut self, index: usize, dtype: DataType) -> Option<()>
Examples found in repository?
src/frame/row.rs (line 360)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
pub fn rows_to_schema_first_non_null(rows: &[Row], infer_schema_length: Option<usize>) -> Schema {
// no of rows to use to infer dtype
let max_infer = infer_schema_length.unwrap_or(rows.len());
let mut schema: Schema = (&rows[0]).into();
// the first row that has no nulls will be used to infer the schema.
// if there is a null, we check the next row and see if we can update the schema
for row in rows.iter().take(max_infer).skip(1) {
// for i in 1..max_infer {
let nulls: Vec<_> = schema
.iter_dtypes()
.enumerate()
.filter_map(|(i, dtype)| {
// double check struct and list types types
// nested null values can be wrongly inferred by front ends
match dtype {
DataType::Null | DataType::List(_) => Some(i),
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => Some(i),
_ => None,
}
})
.collect();
if nulls.is_empty() {
break;
} else {
for i in nulls {
let val = &row.0[i];
if !is_nested_null(val) {
let dtype = val.into();
schema.coerce_by_index(i, dtype).unwrap();
}
}
}
}
schema
}pub fn with_column(&mut self, name: String, dtype: DataType)
pub fn merge(&mut self, other: Self)
pub fn to_arrow(&self) -> ArrowSchema
pub fn iter_fields(
&self
) -> impl Iterator<Item = Field> + ExactSizeIterator + '_
sourcepub fn iter_dtypes(
&self
) -> impl Iterator<Item = &DataType> + ExactSizeIterator + '_
pub fn iter_dtypes(
&self
) -> impl Iterator<Item = &DataType> + ExactSizeIterator + '_
Examples found in repository?
src/frame/row.rs (line 76)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
pub fn from_rows_iter_and_schema<'a, I>(mut rows: I, schema: &Schema) -> PolarsResult<Self>
where
I: Iterator<Item = &'a Row<'a>>,
{
let capacity = rows.size_hint().0;
let mut buffers: Vec<_> = schema
.iter_dtypes()
.map(|dtype| {
let buf: AnyValueBuffer = (dtype, capacity).into();
buf
})
.collect();
let mut expected_len = 0;
rows.try_for_each::<_, PolarsResult<()>>(|row| {
expected_len += 1;
for (value, buf) in row.0.iter().zip(&mut buffers) {
buf.add_fallible(value)?
}
Ok(())
})?;
let v = buffers
.into_iter()
.zip(schema.iter_names())
.map(|(b, name)| {
let mut s = b.into_series();
// if the schema adds a column not in the rows, we
// fill it with nulls
if s.is_empty() {
Series::full_null(name, expected_len, s.dtype())
} else {
s.rename(name);
s
}
})
.collect();
DataFrame::new(v)
}
/// Create a new DataFrame from rows. This should only be used when you have row wise data,
/// as this is a lot slower than creating the `Series` in a columnar fashion
#[cfg_attr(docsrs, doc(cfg(feature = "rows")))]
pub fn from_rows(rows: &[Row]) -> PolarsResult<Self> {
let schema = rows_to_schema_first_non_null(rows, Some(50));
let has_nulls = schema
.iter_dtypes()
.any(|dtype| matches!(dtype, DataType::Null));
if has_nulls {
return Err(PolarsError::ComputeError(
"Could not infer row types, because of the null values".into(),
));
}
Self::from_rows_and_schema(rows, &schema)
}
pub(crate) fn transpose_from_dtype(&self, dtype: &DataType) -> PolarsResult<DataFrame> {
let new_width = self.height();
let new_height = self.width();
match dtype {
#[cfg(feature = "dtype-i8")]
DataType::Int8 => numeric_transpose::<Int8Type>(&self.columns),
#[cfg(feature = "dtype-i16")]
DataType::Int16 => numeric_transpose::<Int16Type>(&self.columns),
DataType::Int32 => numeric_transpose::<Int32Type>(&self.columns),
DataType::Int64 => numeric_transpose::<Int64Type>(&self.columns),
#[cfg(feature = "dtype-u8")]
DataType::UInt8 => numeric_transpose::<UInt8Type>(&self.columns),
#[cfg(feature = "dtype-u16")]
DataType::UInt16 => numeric_transpose::<UInt16Type>(&self.columns),
DataType::UInt32 => numeric_transpose::<UInt32Type>(&self.columns),
DataType::UInt64 => numeric_transpose::<UInt64Type>(&self.columns),
DataType::Float32 => numeric_transpose::<Float32Type>(&self.columns),
DataType::Float64 => numeric_transpose::<Float64Type>(&self.columns),
_ => {
let mut buffers = (0..new_width)
.map(|_| {
let buf: AnyValueBuffer = (dtype, new_height).into();
buf
})
.collect::<Vec<_>>();
let columns = self
.columns
.iter()
.map(|s| s.cast(dtype).unwrap())
.collect::<Vec<_>>();
// this is very expensive. A lot of cache misses here.
// This is the part that is performance critical.
columns.iter().for_each(|s| {
s.iter().zip(buffers.iter_mut()).for_each(|(av, buf)| {
let _out = buf.add(av);
debug_assert!(_out.is_some());
});
});
let cols = buffers
.into_iter()
.enumerate()
.map(|(i, buf)| {
let mut s = buf.into_series();
s.rename(&format!("column_{i}"));
s
})
.collect::<Vec<_>>();
Ok(DataFrame::new_no_checks(cols))
}
}
}
#[cfg_attr(docsrs, doc(cfg(feature = "rows")))]
/// Transpose a DataFrame. This is a very expensive operation.
pub fn transpose(&self) -> PolarsResult<DataFrame> {
let height = self.height();
let width = self.width();
if height == 0 || width == 0 {
return Err(PolarsError::NoData("empty dataframe".into()));
}
let dtype = self.get_supertype().unwrap()?;
self.transpose_from_dtype(&dtype)
}
}
type Tracker = PlIndexMap<String, PlHashSet<DataType>>;
pub fn infer_schema(
iter: impl Iterator<Item = Vec<(String, impl Into<DataType>)>>,
infer_schema_length: usize,
) -> Schema {
let mut values: Tracker = Tracker::default();
let len = iter.size_hint().1.unwrap_or(infer_schema_length);
let max_infer = std::cmp::min(len, infer_schema_length);
for inner in iter.take(max_infer) {
for (key, value) in inner {
add_or_insert(&mut values, &key, value.into());
}
}
Schema::from(resolve_fields(values).into_iter())
}
fn add_or_insert(values: &mut Tracker, key: &str, data_type: DataType) {
if data_type == DataType::Null {
return;
}
if values.contains_key(key) {
let x = values.get_mut(key).unwrap();
x.insert(data_type);
} else {
// create hashset and add value type
let mut hs = PlHashSet::new();
hs.insert(data_type);
values.insert(key.to_string(), hs);
}
}
fn resolve_fields(spec: Tracker) -> Vec<Field> {
spec.iter()
.map(|(k, hs)| {
let v: Vec<&DataType> = hs.iter().collect();
Field::new(k, coerce_data_type(&v))
})
.collect()
}
/// Coerces a slice of datatypes into a single supertype.
pub fn coerce_data_type<A: Borrow<DataType>>(datatypes: &[A]) -> DataType {
use DataType::*;
let are_all_equal = datatypes.windows(2).all(|w| w[0].borrow() == w[1].borrow());
if are_all_equal {
return datatypes[0].borrow().clone();
}
if datatypes.len() > 2 {
return Utf8;
}
let (lhs, rhs) = (datatypes[0].borrow(), datatypes[1].borrow());
try_get_supertype(lhs, rhs).unwrap_or(Utf8)
}
fn is_nested_null(av: &AnyValue) -> bool {
match av {
AnyValue::Null => true,
AnyValue::List(s) => s.null_count() == s.len(),
#[cfg(feature = "dtype-struct")]
AnyValue::Struct(_, _, _) => av._iter_struct_av().all(|av| is_nested_null(&av)),
_ => false,
}
}
// nested dtypes that are all null, will be set as null leave dtype
fn infer_dtype_dynamic(av: &AnyValue) -> DataType {
match av {
AnyValue::List(s) if s.null_count() == s.len() => DataType::List(Box::new(DataType::Null)),
#[cfg(feature = "dtype-struct")]
AnyValue::Struct(_, _, _) => DataType::Struct(
av._iter_struct_av()
.map(|av| {
let dtype = infer_dtype_dynamic(&av);
Field::new("", dtype)
})
.collect(),
),
av => av.into(),
}
}
pub fn any_values_to_dtype(column: &[AnyValue]) -> PolarsResult<DataType> {
// we need an index-map as the order of dtypes influences how the
// struct fields are constructed.
let mut types_set = PlIndexSet::new();
for val in column.iter() {
let dtype = infer_dtype_dynamic(val);
types_set.insert(dtype);
}
types_set_to_dtype(types_set)
}
fn types_set_to_dtype(types_set: PlIndexSet<DataType>) -> PolarsResult<DataType> {
types_set
.into_iter()
.map(Ok)
.fold_first_(|a, b| try_get_supertype(&a?, &b?))
.unwrap()
}
/// Infer schema from rows and set the supertypes of the columns as column data type.
pub fn rows_to_schema_supertypes(
rows: &[Row],
infer_schema_length: Option<usize>,
) -> PolarsResult<Schema> {
// no of rows to use to infer dtype
let max_infer = infer_schema_length.unwrap_or(rows.len());
let mut dtypes: Vec<PlIndexSet<DataType>> = vec![PlIndexSet::new(); rows[0].0.len()];
for row in rows.iter().take(max_infer) {
for (val, types_set) in row.0.iter().zip(dtypes.iter_mut()) {
let dtype = infer_dtype_dynamic(val);
types_set.insert(dtype);
}
}
dtypes
.into_iter()
.enumerate()
.map(|(i, types_set)| {
let dtype = types_set_to_dtype(types_set)?;
Ok(Field::new(format!("column_{i}").as_ref(), dtype))
})
.collect::<PolarsResult<_>>()
}
/// Infer schema from rows and set the first no null type as column data type.
pub fn rows_to_schema_first_non_null(rows: &[Row], infer_schema_length: Option<usize>) -> Schema {
// no of rows to use to infer dtype
let max_infer = infer_schema_length.unwrap_or(rows.len());
let mut schema: Schema = (&rows[0]).into();
// the first row that has no nulls will be used to infer the schema.
// if there is a null, we check the next row and see if we can update the schema
for row in rows.iter().take(max_infer).skip(1) {
// for i in 1..max_infer {
let nulls: Vec<_> = schema
.iter_dtypes()
.enumerate()
.filter_map(|(i, dtype)| {
// double check struct and list types types
// nested null values can be wrongly inferred by front ends
match dtype {
DataType::Null | DataType::List(_) => Some(i),
#[cfg(feature = "dtype-struct")]
DataType::Struct(_) => Some(i),
_ => None,
}
})
.collect();
if nulls.is_empty() {
break;
} else {
for i in nulls {
let val = &row.0[i];
if !is_nested_null(val) {
let dtype = val.into();
schema.coerce_by_index(i, dtype).unwrap();
}
}
}
}
schema
}sourcepub fn iter_names(
&self
) -> impl Iterator<Item = &String> + '_ + ExactSizeIterator
pub fn iter_names(
&self
) -> impl Iterator<Item = &String> + '_ + ExactSizeIterator
Examples found in repository?
src/frame/row.rs (line 93)
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
pub fn from_rows_iter_and_schema<'a, I>(mut rows: I, schema: &Schema) -> PolarsResult<Self>
where
I: Iterator<Item = &'a Row<'a>>,
{
let capacity = rows.size_hint().0;
let mut buffers: Vec<_> = schema
.iter_dtypes()
.map(|dtype| {
let buf: AnyValueBuffer = (dtype, capacity).into();
buf
})
.collect();
let mut expected_len = 0;
rows.try_for_each::<_, PolarsResult<()>>(|row| {
expected_len += 1;
for (value, buf) in row.0.iter().zip(&mut buffers) {
buf.add_fallible(value)?
}
Ok(())
})?;
let v = buffers
.into_iter()
.zip(schema.iter_names())
.map(|(b, name)| {
let mut s = b.into_series();
// if the schema adds a column not in the rows, we
// fill it with nulls
if s.is_empty() {
Series::full_null(name, expected_len, s.dtype())
} else {
s.rename(name);
s
}
})
.collect();
DataFrame::new(v)
}Trait Implementations§
source§impl<J> FromIterator<J> for Schemawhere
J: Into<Field>,
impl<J> FromIterator<J> for Schemawhere
J: Into<Field>,
source§fn from_iter<I: IntoIterator<Item = J>>(iter: I) -> Self
fn from_iter<I: IntoIterator<Item = J>>(iter: I) -> Self
Creates a value from an iterator. Read more
source§impl IndexOfSchema for Schema
impl IndexOfSchema for Schema
source§impl IntoIterator for Schema
impl IntoIterator for Schema
source§impl PartialEq<Schema> for Schema
impl PartialEq<Schema> for Schema
impl Eq for Schema
impl StructuralEq for Schema
Auto Trait Implementations§
impl RefUnwindSafe for Schema
impl Send for Schema
impl Sync for Schema
impl Unpin for Schema
impl UnwindSafe for Schema
Blanket Implementations§
source§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Compare self to
key and return true if they are equal.