Trait polars_core::chunked_array::ops::ChunkCumAgg
source · pub trait ChunkCumAgg<T: PolarsDataType> {
fn cummax(&self, _reverse: bool) -> ChunkedArray<T> { ... }
fn cummin(&self, _reverse: bool) -> ChunkedArray<T> { ... }
fn cumsum(&self, _reverse: bool) -> ChunkedArray<T> { ... }
fn cumprod(&self, _reverse: bool) -> ChunkedArray<T> { ... }
}Provided Methods§
sourcefn cummax(&self, _reverse: bool) -> ChunkedArray<T>
fn cummax(&self, _reverse: bool) -> ChunkedArray<T>
Get an array with the cumulative max computed at every element
sourcefn cummin(&self, _reverse: bool) -> ChunkedArray<T>
fn cummin(&self, _reverse: bool) -> ChunkedArray<T>
Get an array with the cumulative min computed at every element
sourcefn cumsum(&self, _reverse: bool) -> ChunkedArray<T>
fn cumsum(&self, _reverse: bool) -> ChunkedArray<T>
Get an array with the cumulative sum computed at every element
Examples found in repository?
src/series/mod.rs (line 577)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
pub fn cumsum(&self, reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::UInt32).unwrap().cumsum(reverse),
Int8 | UInt8 | Int16 | UInt16 => {
let s = self.cast(&Int64).unwrap();
s.cumsum(reverse)
}
Int32 => {
let ca = self.i32().unwrap();
ca.cumsum(reverse).into_series()
}
UInt32 => {
let ca = self.u32().unwrap();
ca.cumsum(reverse).into_series()
}
UInt64 => {
let ca = self.u64().unwrap();
ca.cumsum(reverse).into_series()
}
Int64 => {
let ca = self.i64().unwrap();
ca.cumsum(reverse).into_series()
}
Float32 => {
let ca = self.f32().unwrap();
ca.cumsum(reverse).into_series()
}
Float64 => {
let ca = self.f64().unwrap();
ca.cumsum(reverse).into_series()
}
dt => panic!("cumsum not supported for dtype: {dt:?}"),
}
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}sourcefn cumprod(&self, _reverse: bool) -> ChunkedArray<T>
fn cumprod(&self, _reverse: bool) -> ChunkedArray<T>
Get an array with the cumulative product computed at every element
Examples found in repository?
src/series/mod.rs (line 626)
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
pub fn cumprod(&self, reverse: bool) -> Series {
#[cfg(feature = "cum_agg")]
{
use DataType::*;
match self.dtype() {
Boolean => self.cast(&DataType::Int64).unwrap().cumprod(reverse),
Int8 | UInt8 | Int16 | UInt16 | Int32 | UInt32 => {
let s = self.cast(&Int64).unwrap();
s.cumprod(reverse)
}
Int64 => {
let ca = self.i64().unwrap();
ca.cumprod(reverse).into_series()
}
UInt64 => {
let ca = self.u64().unwrap();
ca.cumprod(reverse).into_series()
}
Float32 => {
let ca = self.f32().unwrap();
ca.cumprod(reverse).into_series()
}
Float64 => {
let ca = self.f64().unwrap();
ca.cumprod(reverse).into_series()
}
dt => panic!("cumprod not supported for dtype: {dt:?}"),
}
}
#[cfg(not(feature = "cum_agg"))]
{
panic!("activate 'cum_agg' feature")
}
}