pub struct SmoothingKernelIntensity<K: RegKernel> { /* private fields */ }Expand description
Estimate the intensity function of an event sequence under a variable Poisson model using a kernel smoother (see A kernel method for smoothing point process data by P. Diggle). The regressor is given by $$ \hat\lambda(t) = e_h(t)^{-1} \sum_i K_h(t - t_i) $$ where $e_h(t) = \int_0^T K_h(t - u)\, du$ is an edge-correction term.
Implementations§
Source§impl<K> SmoothingKernelIntensity<K>where
K: RegKernelMass,
impl<K> SmoothingKernelIntensity<K>where
K: RegKernelMass,
Auto Trait Implementations§
impl<K> Freeze for SmoothingKernelIntensity<K>where
K: Freeze,
impl<K> RefUnwindSafe for SmoothingKernelIntensity<K>where
K: RefUnwindSafe,
impl<K> Send for SmoothingKernelIntensity<K>where
K: Send,
impl<K> Sync for SmoothingKernelIntensity<K>where
K: Sync,
impl<K> Unpin for SmoothingKernelIntensity<K>where
K: Unpin,
impl<K> UnwindSafe for SmoothingKernelIntensity<K>where
K: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more