Struct pixel_game_lib::Mat2 
source · #[repr(C)]pub struct Mat2<T> {
    pub cols: Vec2<Vec2<T>>,
}Expand description
Re-export vek types. 2x2 matrix.
Fields§
§cols: Vec2<Vec2<T>>Implementations§
source§impl<T> Mat2<T>
 
impl<T> Mat2<T>
sourcepub fn identity() -> Mat2<T>
 
pub fn identity() -> Mat2<T>
The identity matrix, which is also the default value for square matrices.
assert_eq!(Mat4::<f32>::default(), Mat4::<f32>::identity());sourcepub fn apply<F>(&mut self, f: F)
 
pub fn apply<F>(&mut self, f: F)
Applies the function f to each element of this matrix, in-place.
For an example, see the map() method.
sourcepub fn apply2<F, S>(&mut self, other: Mat2<S>, f: F)
 
pub fn apply2<F, S>(&mut self, other: Mat2<S>, f: F)
Applies the function f to each element of this matrix, in-place.
For an example, see the map2() method.
sourcepub fn numcast<D>(self) -> Option<Mat2<D>>
 
pub fn numcast<D>(self) -> Option<Mat2<D>>
Returns a memberwise-converted copy of this matrix, using NumCast.
let m = Mat4::<f32>::identity();
let m: Mat4<i32> = m.numcast().unwrap();
assert_eq!(m, Mat4::identity());sourcepub fn broadcast_diagonal(val: T) -> Mat2<T>
 
pub fn broadcast_diagonal(val: T) -> Mat2<T>
Initializes a new matrix with elements of the diagonal set to val
and the other to zero.
In a way, this is the same as single-argument matrix constructors in GLSL and GLM.
assert_eq!(Mat4::broadcast_diagonal(0), Mat4::zero());
assert_eq!(Mat4::broadcast_diagonal(1), Mat4::identity());
assert_eq!(Mat4::broadcast_diagonal(2), Mat4::new(
    2,0,0,0,
    0,2,0,0,
    0,0,2,0,
    0,0,0,2,
));sourcepub fn with_diagonal(d: Vec2<T>) -> Mat2<T>
 
pub fn with_diagonal(d: Vec2<T>) -> Mat2<T>
Initializes a matrix by its diagonal, setting other elements to zero.
sourcepub fn diagonal(self) -> Vec2<T>
 
pub fn diagonal(self) -> Vec2<T>
Gets the matrix’s diagonal into a vector.
assert_eq!(Mat4::<u32>::zero().diagonal(), Vec4::zero());
assert_eq!(Mat4::<u32>::identity().diagonal(), Vec4::one());
let mut m = Mat4::zero();
m[(0, 0)] = 1;
m[(1, 1)] = 2;
m[(2, 2)] = 3;
m[(3, 3)] = 4;
assert_eq!(m.diagonal(), Vec4::new(1, 2, 3, 4));
assert_eq!(m.diagonal(), Vec4::iota() + 1);sourcepub fn trace(self) -> Twhere
    T: Add<Output = T>,
 
pub fn trace(self) -> Twhere
    T: Add<Output = T>,
The sum of the diagonal’s elements.
assert_eq!(Mat4::<u32>::zero().trace(), 0);
assert_eq!(Mat4::<u32>::identity().trace(), 4);sourcepub fn mul_memberwise(self, m: Mat2<T>) -> Mat2<T>where
    T: Mul<Output = T>,
 
pub fn mul_memberwise(self, m: Mat2<T>) -> Mat2<T>where
    T: Mul<Output = T>,
Multiply elements of this matrix with another’s.
let m = Mat4::new(
    0, 1, 2, 3,
    1, 2, 3, 4,
    2, 3, 4, 5,
    3, 4, 5, 6,
);
let r = Mat4::new(
    0, 1, 4, 9,
    1, 4, 9, 16,
    4, 9, 16, 25,
    9, 16, 25, 36,
);
assert_eq!(m.mul_memberwise(m), r);sourcepub const ROW_COUNT: usize = 2usize
 
pub const ROW_COUNT: usize = 2usize
Convenience constant representing the number of rows for matrices of this type.
source§impl<T> Mat2<T>
 
impl<T> Mat2<T>
sourcepub fn map_cols<D, F>(self, f: F) -> Mat2<D>
 
pub fn map_cols<D, F>(self, f: F) -> Mat2<D>
Returns a column-wise-converted copy of this matrix, using the given conversion closure.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<f32>::new(
    0.25, 1.25, 5.56, 8.66,
    8.53, 2.92, 3.86, 9.36,
    1.02, 0.28, 5.52, 6.06,
    6.20, 7.01, 4.90, 5.26
);
let m = m.map_cols(|col| col.map(|x| x.round() as i32));
assert_eq!(m, Mat4::new(
    0, 1, 6, 9,
    9, 3, 4, 9,
    1, 0, 6, 6,
    6, 7, 5, 5
));sourcepub fn into_col_array(self) -> [T; 4]
 
pub fn into_col_array(self) -> [T; 4]
Converts this matrix into a fixed-size array of elements.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    0, 4, 8, 12,
    1, 5, 9, 13,
    2, 6, 10, 14,
    3, 7, 11, 15
];
assert_eq!(m.into_col_array(), array);sourcepub fn into_col_arrays(self) -> [[T; 2]; 2]
 
pub fn into_col_arrays(self) -> [[T; 2]; 2]
Converts this matrix into a fixed-size array of fixed-size arrays of elements.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [ 0, 4,  8, 12, ],
    [ 1, 5,  9, 13, ],
    [ 2, 6, 10, 14, ],
    [ 3, 7, 11, 15, ],
];
assert_eq!(m.into_col_arrays(), array);sourcepub fn from_col_array(array: [T; 4]) -> Mat2<T>
 
pub fn from_col_array(array: [T; 4]) -> Mat2<T>
Converts a fixed-size array of elements into a matrix.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    0, 4, 8, 12,
    1, 5, 9, 13,
    2, 6, 10, 14,
    3, 7, 11, 15
];
assert_eq!(m, Mat4::from_col_array(array));sourcepub fn from_col_arrays(array: [[T; 2]; 2]) -> Mat2<T>
 
pub fn from_col_arrays(array: [[T; 2]; 2]) -> Mat2<T>
Converts a fixed-size array of fixed-size arrays of elements into a matrix.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [ 0, 4,  8, 12, ],
    [ 1, 5,  9, 13, ],
    [ 2, 6, 10, 14, ],
    [ 3, 7, 11, 15, ],
];
assert_eq!(m, Mat4::from_col_arrays(array));sourcepub fn into_row_array(self) -> [T; 4]
 
pub fn into_row_array(self) -> [T; 4]
Converts this matrix into a fixed-size array of elements.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
];
assert_eq!(m.into_row_array(), array);sourcepub fn into_row_arrays(self) -> [[T; 2]; 2]
 
pub fn into_row_arrays(self) -> [[T; 2]; 2]
Converts this matrix into a fixed-size array of fixed-size arrays of elements.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [  0,  1,  2,  3, ],
    [  4,  5,  6,  7, ],
    [  8,  9, 10, 11, ],
    [ 12, 13, 14, 15, ],
];
assert_eq!(m.into_row_arrays(), array);sourcepub fn from_row_array(array: [T; 4]) -> Mat2<T>
 
pub fn from_row_array(array: [T; 4]) -> Mat2<T>
Converts a fixed-size array of elements into a matrix.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
];
assert_eq!(m, Mat4::from_row_array(array));sourcepub fn from_row_arrays(array: [[T; 2]; 2]) -> Mat2<T>
 
pub fn from_row_arrays(array: [[T; 2]; 2]) -> Mat2<T>
Converts a fixed-size array of fixed-size array of elements into a matrix.
use vek::mat::repr_c::column_major::Mat4;
let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [  0,  1,  2,  3, ],
    [  4,  5,  6,  7, ],
    [  8,  9, 10, 11, ],
    [ 12, 13, 14, 15, ],
];
assert_eq!(m, Mat4::from_row_arrays(array));sourcepub fn as_col_ptr(&self) -> *const T
 
pub fn as_col_ptr(&self) -> *const T
Gets a const pointer to this matrix’s elements.
Panics
Panics if the matrix’s elements are not tightly packed in memory,
which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.
sourcepub fn as_mut_col_ptr(&mut self) -> *mut T
 
pub fn as_mut_col_ptr(&mut self) -> *mut T
Gets a mut pointer to this matrix’s elements.
Panics
Panics if the matrix’s elements are not tightly packed in memory,
which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.
sourcepub fn as_col_slice(&self) -> &[T]
 
pub fn as_col_slice(&self) -> &[T]
View this matrix as an immutable slice.
Panics
Panics if the matrix’s elements are not tightly packed in memory,
which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.
sourcepub fn as_mut_col_slice(&mut self) -> &mut [T]
 
pub fn as_mut_col_slice(&mut self) -> &mut [T]
View this matrix as a mutable slice.
Panics
Panics if the matrix’s elements are not tightly packed in memory,
which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.
source§impl<T> Mat2<T>
 
impl<T> Mat2<T>
sourcepub fn gl_should_transpose(&self) -> bool
 
pub fn gl_should_transpose(&self) -> bool
Gets the transpose parameter to pass to OpenGL glUniformMatrix*() functions.
The return value is a plain bool which you may directly cast
to a GLboolean.
This takes &self to prevent surprises when changing the type
of matrix you plan to send.
sourcepub const GL_SHOULD_TRANSPOSE: bool = false
 
pub const GL_SHOULD_TRANSPOSE: bool = false
The transpose parameter to pass to OpenGL glUniformMatrix*() functions.
source§impl<T> Mat2<T>
 
impl<T> Mat2<T>
sourcepub fn map<D, F>(self, f: F) -> Mat2<D>where
    F: FnMut(T) -> D,
 
pub fn map<D, F>(self, f: F) -> Mat2<D>where
    F: FnMut(T) -> D,
Returns an element-wise-converted copy of this matrix, using the given conversion closure.
use vek::mat::repr_c::row_major::Mat4;
let m = Mat4::<f32>::new(
    0.25, 1.25, 5.56, 8.66,
    8.53, 2.92, 3.86, 9.36,
    1.02, 0.28, 5.52, 6.06,
    6.20, 7.01, 4.90, 5.26
);
let m = m.map(|x| x.round() as i32);
assert_eq!(m, Mat4::new(
    0, 1, 6, 9,
    9, 3, 4, 9,
    1, 0, 6, 6,
    6, 7, 5, 5
));sourcepub fn as_<D>(self) -> Mat2<D>where
    T: AsPrimitive<D>,
    D: 'static + Copy,
 
pub fn as_<D>(self) -> Mat2<D>where
    T: AsPrimitive<D>,
    D: 'static + Copy,
Returns a memberwise-converted copy of this matrix, using AsPrimitive.
Examples
let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.as_();
assert_eq!(i, Vec4::new(0, 1, 2, 3));Safety
In Rust versions before 1.45.0, some uses of the as operator were not entirely safe.
In particular, it was undefined behavior if
a truncated floating point value could not fit in the target integer
type (#10184);
let x: u8 = (1.04E+17).as_(); // UBsourcepub fn map2<D, F, S>(self, other: Mat2<S>, f: F) -> Mat2<D>where
    F: FnMut(T, S) -> D,
 
pub fn map2<D, F, S>(self, other: Mat2<S>, f: F) -> Mat2<D>where
    F: FnMut(T, S) -> D,
Applies the function f to each element of two matrices, pairwise, and returns the result.
use vek::mat::repr_c::row_major::Mat4;
let a = Mat4::<f32>::new(
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99
);
let b = Mat4::<i32>::new(
    0, 1, 0, 0,
    1, 0, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 1
);
let m = a.map2(b, |a, b| a.round() as i32 + b);
assert_eq!(m, Mat4::new(
    0, 2, 3, 3,
    1, 1, 3, 3,
    0, 1, 4, 3,
    0, 1, 3, 4
));sourcepub fn transposed(self) -> Mat2<T>
 
pub fn transposed(self) -> Mat2<T>
The matrix’s transpose.
let m = Mat2::new(
    0, 1,
    4, 5
);
let t = Mat2::new(
    0, 4,
    1, 5
);
assert_eq!(m.transposed(), t);
assert_eq!(m, m.transposed().transposed());sourcepub fn transpose(&mut self)
 
pub fn transpose(&mut self)
Transpose this matrix.
let mut m = Mat2::new(
    0, 1,
    4, 5
);
let t = Mat2::new(
    0, 4,
    1, 5
);
m.transpose();
assert_eq!(m, t);sourcepub fn determinant(self) -> T
 
pub fn determinant(self) -> T
Get this matrix’s determinant.
A matrix is invertible if its determinant is non-zero.
let (a,b,c,d) = (0,1,2,3);
let m = Mat2::new(a,b,c,d);
assert_eq!(m.determinant(), a*d - c*b);sourcepub fn rotate_z(&mut self, angle_radians: T)
 
pub fn rotate_z(&mut self, angle_radians: T)
Rotates this matrix around the Z axis (counter-clockwise rotation in 2D).
sourcepub fn rotated_z(self, angle_radians: T) -> Mat2<T>
 
pub fn rotated_z(self, angle_radians: T) -> Mat2<T>
Rotates this matrix around the Z axis (counter-clockwise rotation in 2D).
sourcepub fn rotation_z(angle_radians: T) -> Mat2<T>where
    T: Real,
 
pub fn rotation_z(angle_radians: T) -> Mat2<T>where
    T: Real,
Creates a matrix that rotates around the Z axis (counter-clockwise rotation in 2D).
sourcepub fn scaling_2d<V>(v: V) -> Mat2<T>
 
pub fn scaling_2d<V>(v: V) -> Mat2<T>
Creates a 2D scaling matrix.
sourcepub fn shearing_x(k: T) -> Mat2<T>
 
pub fn shearing_x(k: T) -> Mat2<T>
Creates a 2D shearing matrix along the X axis.
sourcepub fn shearing_y(k: T) -> Mat2<T>
 
pub fn shearing_y(k: T) -> Mat2<T>
Creates a 2D shearing matrix along the Y axis.
Trait Implementations§
source§impl<T> AbsDiffEq for Mat2<T>
 
impl<T> AbsDiffEq for Mat2<T>
source§fn default_epsilon() -> <T as AbsDiffEq>::Epsilon
 
fn default_epsilon() -> <T as AbsDiffEq>::Epsilon
source§fn abs_diff_eq(
    &self,
    other: &Mat2<T>,
    epsilon: <Mat2<T> as AbsDiffEq>::Epsilon
) -> bool
 
fn abs_diff_eq( &self, other: &Mat2<T>, epsilon: <Mat2<T> as AbsDiffEq>::Epsilon ) -> bool
§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
 
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq.source§impl<T> AddAssign<T> for Mat2<T>
 
impl<T> AddAssign<T> for Mat2<T>
source§fn add_assign(&mut self, rhs: T)
 
fn add_assign(&mut self, rhs: T)
+= operation. Read moresource§impl<T> AddAssign for Mat2<T>
 
impl<T> AddAssign for Mat2<T>
source§fn add_assign(&mut self, rhs: Mat2<T>)
 
fn add_assign(&mut self, rhs: Mat2<T>)
+= operation. Read moresource§impl<T> Default for Mat2<T>
 
impl<T> Default for Mat2<T>
The default value for a square matrix is the identity.
assert_eq!(Mat4::<f32>::default(), Mat4::<f32>::identity());source§impl<'de, T> Deserialize<'de> for Mat2<T>where
    T: Deserialize<'de>,
 
impl<'de, T> Deserialize<'de> for Mat2<T>where
    T: Deserialize<'de>,
source§fn deserialize<__D>(
    __deserializer: __D
) -> Result<Mat2<T>, <__D as Deserializer<'de>>::Error>where
    __D: Deserializer<'de>,
 
fn deserialize<__D>(
    __deserializer: __D
) -> Result<Mat2<T>, <__D as Deserializer<'de>>::Error>where
    __D: Deserializer<'de>,
source§impl<T> Display for Mat2<T>where
    T: Display,
 
impl<T> Display for Mat2<T>where
    T: Display,
Displays this matrix using the following format:
(i being the number of rows and j the number of columns)
( m00 ... m0j
  ... ... ...
  mi0 ... mij )
Note that elements are not comma-separated. This format doesn’t depend on the matrix’s storage layout.
source§impl<T> DivAssign<T> for Mat2<T>
 
impl<T> DivAssign<T> for Mat2<T>
source§fn div_assign(&mut self, rhs: T)
 
fn div_assign(&mut self, rhs: T)
/= operation. Read moresource§impl<T> DivAssign for Mat2<T>
 
impl<T> DivAssign for Mat2<T>
source§fn div_assign(&mut self, rhs: Mat2<T>)
 
fn div_assign(&mut self, rhs: Mat2<T>)
/= operation. Read moresource§impl<T> Index<(usize, usize)> for Mat2<T>
 
impl<T> Index<(usize, usize)> for Mat2<T>
Index this matrix in a layout-agnostic way with an (i, j) (row index, column index) tuple.
Matrices cannot be indexed by Vec2s because that would be likely to cause confusion:
should x be the row index (because it’s the first element) or the column index
(because it’s a horizontal position) ?
source§impl<T> Mul<CubicBezier2<T>> for Mat2<T>
 
impl<T> Mul<CubicBezier2<T>> for Mat2<T>
§type Output = CubicBezier2<T>
 
type Output = CubicBezier2<T>
* operator.source§fn mul(self, rhs: CubicBezier2<T>) -> CubicBezier2<T>
 
fn mul(self, rhs: CubicBezier2<T>) -> CubicBezier2<T>
* operation. Read moresource§impl<T> Mul<Mat2<T>> for Mat2<T>
 
impl<T> Mul<Mat2<T>> for Mat2<T>
Multiplies a row-major matrix with a column-major matrix, producing a column-major matrix.
use vek::mat::row_major::Mat4 as Rows4;
use vek::mat::column_major::Mat4 as Cols4;
let m = Rows4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let b = Cols4::from(m);
let r = Cols4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * b, r);
assert_eq!(m * Cols4::<u32>::identity(), m.into());
assert_eq!(Rows4::<u32>::identity() * b, m.into());source§impl<T> Mul<Mat2<T>> for Mat2<T>
 
impl<T> Mul<Mat2<T>> for Mat2<T>
Multiplies a column-major matrix with a row-major matrix.
use vek::mat::row_major::Mat4 as Rows4;
use vek::mat::column_major::Mat4 as Cols4;
let m = Cols4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let b = Rows4::from(m);
let r = Rows4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * b, r);
assert_eq!(m * Rows4::<u32>::identity(), m.into());
assert_eq!(Cols4::<u32>::identity() * b, m.into());source§impl<T> Mul<Mat2<T>> for Vec2<T>
 
impl<T> Mul<Mat2<T>> for Vec2<T>
Multiplies a row vector with a column-major matrix, giving a row vector.
use vek::mat::column_major::Mat4;
use vek::vec::Vec4;
let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);source§impl<T> Mul<QuadraticBezier2<T>> for Mat2<T>
 
impl<T> Mul<QuadraticBezier2<T>> for Mat2<T>
§type Output = QuadraticBezier2<T>
 
type Output = QuadraticBezier2<T>
* operator.source§fn mul(self, rhs: QuadraticBezier2<T>) -> QuadraticBezier2<T>
 
fn mul(self, rhs: QuadraticBezier2<T>) -> QuadraticBezier2<T>
* operation. Read moresource§impl<T> Mul<Vec2<T>> for Mat2<T>
 
impl<T> Mul<Vec2<T>> for Mat2<T>
Multiplies a column-major matrix with a column vector, giving a column vector.
With SIMD vectors, this is the most efficient way.
use vek::mat::column_major::Mat4;
use vek::vec::Vec4;
let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(14, 38, 12, 26);
assert_eq!(m * v, r);source§impl<T> Mul for Mat2<T>
 
impl<T> Mul for Mat2<T>
Multiplies a column-major matrix with another.
use vek::mat::column_major::Mat4;
let m = Mat4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let r = Mat4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * m, r);
assert_eq!(m, m * Mat4::<u32>::identity());
assert_eq!(m, Mat4::<u32>::identity() * m);source§impl<T> MulAssign<T> for Mat2<T>
 
impl<T> MulAssign<T> for Mat2<T>
source§fn mul_assign(&mut self, rhs: T)
 
fn mul_assign(&mut self, rhs: T)
*= operation. Read moresource§impl<T> MulAssign for Mat2<T>
 
impl<T> MulAssign for Mat2<T>
source§fn mul_assign(&mut self, rhs: Mat2<T>)
 
fn mul_assign(&mut self, rhs: Mat2<T>)
*= operation. Read moresource§impl<T> PartialEq for Mat2<T>where
    T: PartialEq,
 
impl<T> PartialEq for Mat2<T>where
    T: PartialEq,
source§impl<T> RelativeEq for Mat2<T>
 
impl<T> RelativeEq for Mat2<T>
source§fn default_max_relative() -> <T as AbsDiffEq>::Epsilon
 
fn default_max_relative() -> <T as AbsDiffEq>::Epsilon
source§fn relative_eq(
    &self,
    other: &Mat2<T>,
    epsilon: <T as AbsDiffEq>::Epsilon,
    max_relative: <T as AbsDiffEq>::Epsilon
) -> bool
 
fn relative_eq( &self, other: &Mat2<T>, epsilon: <T as AbsDiffEq>::Epsilon, max_relative: <T as AbsDiffEq>::Epsilon ) -> bool
§fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool
 
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq.source§impl<T> RemAssign<T> for Mat2<T>
 
impl<T> RemAssign<T> for Mat2<T>
source§fn rem_assign(&mut self, rhs: T)
 
fn rem_assign(&mut self, rhs: T)
%= operation. Read moresource§impl<T> RemAssign for Mat2<T>
 
impl<T> RemAssign for Mat2<T>
source§fn rem_assign(&mut self, rhs: Mat2<T>)
 
fn rem_assign(&mut self, rhs: Mat2<T>)
%= operation. Read moresource§impl<T> Serialize for Mat2<T>where
    T: Serialize,
 
impl<T> Serialize for Mat2<T>where
    T: Serialize,
source§fn serialize<__S>(
    &self,
    __serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
    __S: Serializer,
 
fn serialize<__S>(
    &self,
    __serializer: __S
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
    __S: Serializer,
source§impl<T> SubAssign<T> for Mat2<T>
 
impl<T> SubAssign<T> for Mat2<T>
source§fn sub_assign(&mut self, rhs: T)
 
fn sub_assign(&mut self, rhs: T)
-= operation. Read moresource§impl<T> SubAssign for Mat2<T>
 
impl<T> SubAssign for Mat2<T>
source§fn sub_assign(&mut self, rhs: Mat2<T>)
 
fn sub_assign(&mut self, rhs: Mat2<T>)
-= operation. Read moresource§impl<T> UlpsEq for Mat2<T>
 
impl<T> UlpsEq for Mat2<T>
source§fn default_max_ulps() -> u32
 
fn default_max_ulps() -> u32
impl<T> Copy for Mat2<T>where
    T: Copy,
impl<T> Eq for Mat2<T>where
    T: Eq,
impl<T> StructuralEq for Mat2<T>
impl<T> StructuralPartialEq for Mat2<T>
Auto Trait Implementations§
impl<T> RefUnwindSafe for Mat2<T>where
    T: RefUnwindSafe,
impl<T> Send for Mat2<T>where
    T: Send,
impl<T> Sync for Mat2<T>where
    T: Sync,
impl<T> Unpin for Mat2<T>where
    T: Unpin,
impl<T> UnwindSafe for Mat2<T>where
    T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
source§impl<Q, K> Equivalent<K> for Q
 
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
 
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.