pub struct ExtHeap<T> { /* private fields */ }
Expand description
A priority queue implemented with a binary heap.
This will be a max-heap.
It is a logic error for an item to be modified in such a way that the
item’s ordering relative to any other item, as determined by the Ord
trait, changes while it is in the heap. This is normally only possible
through Cell
, RefCell
, global state, I/O, or unsafe code. The
behavior resulting from such a logic error is not specified, but will
not result in undefined behavior. This could include panics, incorrect
results, aborts, memory leaks, and non-termination.
§Examples
use pi::ext_heap::ExtHeap;
// Type inference lets us omit an explicit type signature (which
// would be `ExtHeap<i32>` in this example).
let mut heap = ExtHeap::new();
// We can use peek to look at the next item in the heap. In this case,
// there's no items in there yet so we get None.
assert_eq!(heap.peek(), None);
// Let's add some scores...
heap.push(1);
heap.push(5);
heap.push(2);
// Now peek shows the most important item in the heap.
assert_eq!(heap.peek(), Some(&5));
// We can check the length of a heap.
assert_eq!(heap.len(), 3);
// We can iterate over the items in the heap, although they are returned in
// a random order.
for x in &heap {
println!("{}", x);
}
// If we instead pop these scores, they should come back in order.
assert_eq!(heap.pop(), Some(5));
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
// We can clear the heap of any remaining items.
heap.clear();
// The heap should now be empty.
assert!(heap.is_empty())
§Min-heap
Either std::cmp::Reverse
or a custom Ord
implementation can be used to
make ExtHeap
a min-heap. This makes heap.pop()
return the smallest
value instead of the greatest one.
use pi::ext_heap::ExtHeap;
use std::cmp::Reverse;
let mut heap = ExtHeap::new();
// Wrap values in `Reverse`
heap.push(Reverse(1));
heap.push(Reverse(5));
heap.push(Reverse(2));
// If we pop these scores now, they should come back in the reverse order.
assert_eq!(heap.pop(), Some(Reverse(1)));
assert_eq!(heap.pop(), Some(Reverse(2)));
assert_eq!(heap.pop(), Some(Reverse(5)));
assert_eq!(heap.pop(), None);
§Time complexity
The value for push
is an expected cost; the method documentation gives a
more detailed analysis.
Implementations§
Source§impl<T: Ord> ExtHeap<T>
impl<T: Ord> ExtHeap<T>
Sourcepub fn new() -> ExtHeap<T>
pub fn new() -> ExtHeap<T>
Creates an empty ExtHeap
as a max-heap.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
heap.push(4);
Sourcepub fn with_capacity(capacity: usize) -> ExtHeap<T>
pub fn with_capacity(capacity: usize) -> ExtHeap<T>
Creates an empty ExtHeap
with a specific capacity.
This preallocates enough memory for capacity
elements,
so that the ExtHeap
does not have to be reallocated
until it contains at least that many values.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::with_capacity(10);
heap.push(4);
Sourcepub fn pop<A>(
&mut self,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
) -> Option<T>
pub fn pop<A>( &mut self, arg: &mut A, func: fn(&mut A, &mut [T], usize), ) -> Option<T>
Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 3]);
assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
§Time complexity
The worst case cost of pop
on a heap containing n elements is O(log(n)).
Sourcepub fn remove<A>(
&mut self,
index: usize,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
) -> T
pub fn remove<A>( &mut self, index: usize, arg: &mut A, func: fn(&mut A, &mut [T], usize), ) -> T
Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 3, 4]);
assert_eq!(heap.remove(1), 3);
assert_eq!(heap.remove(1), 4);
assert_eq!(heap.pop(), Some(1));
§Time complexity
The worst case cost of pop
on a heap containing n elements is O(log(n)).
Sourcepub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 3, 4]);
assert_eq!(*heap.get_unchecked_mut(1), 3);
assert_eq!(*heap.get_unchecked_mut(2), 4);
assert_eq!(heap.pop(), Some(1));
§Time complexity
The worst case cost of pop
on a heap containing n elements is O(log(n)).
Sourcepub fn repair<A>(
&mut self,
index: usize,
ord: Ordering,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
) -> usize
pub fn repair<A>( &mut self, index: usize, ord: Ordering, arg: &mut A, func: fn(&mut A, &mut [T], usize), ) -> usize
Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 3, 4]);
heap.repair(1, Ordering::Greater})
assert_eq!(heap.pop(), Some(5));
§Time complexity
The worst case cost of pop
on a heap containing n elements is O(log(n)).
Sourcepub fn push<A>(
&mut self,
item: T,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
) -> usize
pub fn push<A>( &mut self, item: T, arg: &mut A, func: fn(&mut A, &mut [T], usize), ) -> usize
Pushes an item onto the binary heap.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
heap.push(3);
heap.push(5);
heap.push(1);
assert_eq!(heap.len(), 3);
assert_eq!(heap.peek(), Some(&5));
§Time complexity
The expected cost of push
, averaged over every possible ordering of
the elements being pushed, and over a sufficiently large number of
pushes, is O(1). This is the most meaningful cost metric when pushing
elements that are not already in any sorted pattern.
The time complexity degrades if elements are pushed in predominantly ascending order. In the worst case, elements are pushed in ascending sorted order and the amortized cost per push is O(log(n)) against a heap containing n elements.
The worst case cost of a single call to push
is O(n). The worst case
occurs when capacity is exhausted and needs a resize. The resize cost
has been amortized in the previous figures.
Sourcepub fn into_sorted_vec(self) -> Vec<T>
pub fn into_sorted_vec(self) -> Vec<T>
Consumes the ExtHeap
and returns a vector in sorted
(ascending) order.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 2, 4, 5, 7]);
heap.push(6);
heap.push(3);
let vec = heap.into_sorted_vec();
assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
Sourcepub fn append<A>(
&mut self,
other: &mut Self,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
)
pub fn append<A>( &mut self, other: &mut Self, arg: &mut A, func: fn(&mut A, &mut [T], usize), )
Moves all the elements of other
into self
, leaving other
empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let v = vec![-10, 1, 2, 3, 3];
let mut a = ExtHeap::from(v);
let v = vec![-20, 5, 43];
let mut b = ExtHeap::from(v);
a.append(&mut b);
assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
assert!(b.is_empty());
Sourcepub fn drain_sorted(&mut self) -> DrainSorted<'_, T> ⓘ
pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> ⓘ
Returns an iterator which retrieves elements in heap order. The retrieved elements are removed from the original heap. The remaining elements will be removed on drop in heap order.
Note:
.drain_sorted()
is O(n * log(n)); much slower than.drain()
. You should use the latter for most cases.
§Examples
Basic usage:
#![feature(binary_heap_drain_sorted)]
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 2, 3, 4, 5]);
assert_eq!(heap.len(), 5);
drop(heap.drain_sorted()); // removes all elements in heap order
assert_eq!(heap.len(), 0);
Sourcepub fn retain<F, A>(
&mut self,
f: F,
arg: &mut A,
func: fn(&mut A, &mut [T], usize),
)
pub fn retain<F, A>( &mut self, f: F, arg: &mut A, func: fn(&mut A, &mut [T], usize), )
Retains only the elements specified by the predicate.
In other words, remove all elements e
such that f(&e)
returns
false
. The elements are visited in unsorted (and unspecified) order.
§Examples
Basic usage:
#![feature(binary_heap_retain)]
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![-10, -5, 1, 2, 4, 13]);
heap.retain(|x| x % 2 == 0); // only keep even numbers
assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
Source§impl<T> ExtHeap<T>
impl<T> ExtHeap<T>
Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Returns an iterator visiting all values in the underlying vector, in arbitrary order.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let heap = ExtHeap::from(vec![1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.iter() {
println!("{}", x);
}
Sourcepub fn into_iter_sorted(self) -> IntoIterSorted<T> ⓘ
pub fn into_iter_sorted(self) -> IntoIterSorted<T> ⓘ
Returns an iterator which retrieves elements in heap order. This method consumes the original heap.
§Examples
Basic usage:
#![feature(binary_heap_into_iter_sorted)]
use pi::ext_heap::ExtHeap;
let heap = ExtHeap::from(vec![1, 2, 3, 4, 5]);
assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), vec![5, 4]);
Sourcepub fn peek(&self) -> Option<&T>
pub fn peek(&self) -> Option<&T>
Returns the greatest item in the binary heap, or None
if it is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
assert_eq!(heap.peek(), None);
heap.push(1);
heap.push(5);
heap.push(2);
assert_eq!(heap.peek(), Some(&5));
§Time complexity
Cost is O(1) in the worst case.
Sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the binary heap can hold without reallocating.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.push(4);
Sourcepub fn reserve_exact(&mut self, additional: usize)
pub fn reserve_exact(&mut self, additional: usize)
Reserves the minimum capacity for exactly additional
more elements to be inserted in the
given ExtHeap
. Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it requests. Therefore
capacity can not be relied upon to be precisely minimal. Prefer reserve
if future
insertions are expected.
§Panics
Panics if the new capacity overflows usize
.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
heap.reserve_exact(100);
assert!(heap.capacity() >= 100);
heap.push(4);
Sourcepub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted in the
ExtHeap
. The collection may reserve more space to avoid frequent reallocations.
§Panics
Panics if the new capacity overflows usize
.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
heap.reserve(100);
assert!(heap.capacity() >= 100);
heap.push(4);
Sourcepub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Discards as much additional capacity as possible.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap: ExtHeap<i32> = ExtHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to_fit();
assert!(heap.capacity() == 0);
Sourcepub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Discards capacity with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
If the current capacity is less than the lower limit, this is a no-op.
§Examples
#![feature(shrink_to)]
use pi::ext_heap::ExtHeap;
let mut heap: ExtHeap<i32> = ExtHeap::with_capacity(100);
assert!(heap.capacity() >= 100);
heap.shrink_to(10);
assert!(heap.capacity() >= 10);
Sourcepub fn as_slice(&self) -> &[T]
pub fn as_slice(&self) -> &[T]
Returns a slice of all values in the underlying vector, in arbitrary order.
§Examples
Basic usage:
#![feature(binary_heap_as_slice)]
use pi::ext_heap::ExtHeap;
use std::io::{self, Write};
let heap = ExtHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
io::sink().write(heap.as_slice()).unwrap();
Sourcepub fn into_vec(self) -> Vec<T>
pub fn into_vec(self) -> Vec<T>
Consumes the ExtHeap
and returns the underlying vector
in arbitrary order.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let heap = ExtHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
let vec = heap.into_vec();
// Will print in some order
for x in vec {
println!("{}", x);
}
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of the binary heap.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let heap = ExtHeap::from(vec![1, 3]);
assert_eq!(heap.len(), 2);
Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Checks if the binary heap is empty.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::new();
assert!(heap.is_empty());
heap.push(3);
heap.push(5);
heap.push(1);
assert!(!heap.is_empty());
Sourcepub fn drain(&mut self) -> Drain<'_, T> ⓘ
pub fn drain(&mut self) -> Drain<'_, T> ⓘ
Clears the binary heap, returning an iterator over the removed elements.
The elements are removed in arbitrary order.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let mut heap = ExtHeap::from(vec![1, 3]);
assert!(!heap.is_empty());
for x in heap.drain() {
println!("{}", x);
}
assert!(heap.is_empty());
Trait Implementations§
Source§impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for ExtHeap<T>
impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for ExtHeap<T>
Source§fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: &'a T)
fn extend_one(&mut self, item: &'a T)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T: Ord> Extend<T> for ExtHeap<T>
impl<T: Ord> Extend<T> for ExtHeap<T>
Source§fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
Source§fn extend_one(&mut self, item: T)
fn extend_one(&mut self, item: T)
extend_one
)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)Source§impl<T: Ord> FromIterator<T> for ExtHeap<T>
impl<T: Ord> FromIterator<T> for ExtHeap<T>
Source§impl<'a, T> IntoIterator for &'a ExtHeap<T>
impl<'a, T> IntoIterator for &'a ExtHeap<T>
Source§impl<T> IntoIterator for ExtHeap<T>
impl<T> IntoIterator for ExtHeap<T>
Source§fn into_iter(self) -> IntoIter<T> ⓘ
fn into_iter(self) -> IntoIter<T> ⓘ
Creates a consuming iterator, that is, one that moves each value out of the binary heap in arbitrary order. The binary heap cannot be used after calling this.
§Examples
Basic usage:
use pi::ext_heap::ExtHeap;
let heap = ExtHeap::from(vec![1, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order
for x in heap.into_iter() {
// x has type i32, not &i32
println!("{}", x);
}