Struct petgraph::csr::Csr [−][src]
Compressed Sparse Row ([CSR]) is a sparse adjacency matrix graph.
CSR is parameterized over:
- Associated data
Nfor nodes andEfor edges, called weights. The associated data can be of arbitrary type. - Edge type
Tythat determines whether the graph edges are directed or undirected. - Index type
Ix, which determines the maximum size of the graph.
Using O(|E| + |V|) space.
Self loops are allowed, no parallel edges.
Fast iteration of the outgoing edges of a vertex.
[CSR]: https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
Methods
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, pub fn new() -> Self[src]
pub fn new() -> SelfCreate an empty Csr.
pub fn with_nodes(n: usize) -> Self where
N: Default, [src]
pub fn with_nodes(n: usize) -> Self where
N: Default, impl<N, E, Ix> Csr<N, E, Directed, Ix> where
Ix: IndexType, [src]
impl<N, E, Ix> Csr<N, E, Directed, Ix> where
Ix: IndexType, pub fn from_sorted_edges<Edge>(edges: &[Edge]) -> Result<Self, EdgesNotSorted> where
Edge: Clone + IntoWeightedEdge<E, NodeId = NodeIndex<Ix>>,
N: Default, [src]
pub fn from_sorted_edges<Edge>(edges: &[Edge]) -> Result<Self, EdgesNotSorted> where
Edge: Clone + IntoWeightedEdge<E, NodeId = NodeIndex<Ix>>,
N: Default, Create a new Csr from a sorted sequence of edges
Edges must be sorted and unique, where the sort order is the default order for the pair (u, v) in Rust (u has priority).
Computes in O(|E| + |V|) time.
Example
use petgraph::csr::Csr; use petgraph::prelude::*; let graph = Csr::<(),()>::from_sorted_edges(&[ (0, 1), (0, 2), (1, 0), (1, 2), (1, 3), (2, 0), (3, 1), ]);
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, pub fn node_count(&self) -> usize[src]
pub fn node_count(&self) -> usizepub fn edge_count(&self) -> usize[src]
pub fn edge_count(&self) -> usizepub fn is_directed(&self) -> bool[src]
pub fn is_directed(&self) -> boolpub fn clear_edges(&mut self)[src]
pub fn clear_edges(&mut self)Remove all edges
pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>[src]
pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>Adds a new node with the given weight, returning the corresponding node index.
pub fn add_edge(
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> bool where
E: Clone, [src]
pub fn add_edge(
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> bool where
E: Clone, Return true if the edge was added
If you add all edges in row-major order, the time complexity is O(|V|·|E|) for the whole operation.
Panics if a or b are out of bounds.
pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool[src]
pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> boolComputes in O(log |V|) time.
Panics if the node a does not exist.
pub fn out_degree(&self, a: NodeIndex<Ix>) -> usize[src]
pub fn out_degree(&self, a: NodeIndex<Ix>) -> usizeComputes in O(1) time.
Panics if the node a does not exist.
pub fn neighbors_slice(&self, a: NodeIndex<Ix>) -> &[NodeIndex<Ix>][src]
pub fn neighbors_slice(&self, a: NodeIndex<Ix>) -> &[NodeIndex<Ix>]Computes in O(1) time.
Panics if the node a does not exist.
pub fn edges_slice(&self, a: NodeIndex<Ix>) -> &[E][src]
pub fn edges_slice(&self, a: NodeIndex<Ix>) -> &[E]Computes in O(1) time.
Panics if the node a does not exist.
ⓘImportant traits for Edges<'a, E, Ty, Ix>pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix>[src]
pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix>Return an iterator of all edges of a.
Directed: Outgoing edges froma.Undirected: All edges connected toa.
Panics if the node a does not exist.
Iterator element type is EdgeReference<E, Ty, Ix>.
Trait Implementations
impl<N: Debug, E: Debug, Ty: Debug, Ix: Debug> Debug for Csr<N, E, Ty, Ix>[src]
impl<N: Debug, E: Debug, Ty: Debug, Ix: Debug> Debug for Csr<N, E, Ty, Ix>fn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl<N, E, Ty, Ix> Default for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Default for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, impl<N: Clone, E: Clone, Ty, Ix: Clone> Clone for Csr<N, E, Ty, Ix>[src]
impl<N: Clone, E: Clone, Ty, Ix: Clone> Clone for Csr<N, E, Ty, Ix>fn clone(&self) -> Self[src]
fn clone(&self) -> SelfReturns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl<N, E, Ty, Ix> Data for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Data for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type NodeWeight = N
type EdgeWeight = E
impl<'a, N, E, Ty, Ix> IntoEdgeReferences for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<'a, N, E, Ty, Ix> IntoEdgeReferences for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type EdgeRef = EdgeReference<'a, E, Ty, Ix>
type EdgeReferences = EdgeReferences<'a, E, Ty, Ix>
fn edge_references(self) -> Self::EdgeReferences[src]
fn edge_references(self) -> Self::EdgeReferencesimpl<'a, N, E, Ty, Ix> IntoEdges for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<'a, N, E, Ty, Ix> IntoEdges for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, impl<N, E, Ty, Ix> GraphBase for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> GraphBase for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, impl<N, E, Ty, Ix> Visitable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Visitable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type Map = FixedBitSet
The associated map type
fn visit_map(&self) -> FixedBitSet[src]
fn visit_map(&self) -> FixedBitSetCreate a new visitor map
fn reset_map(&self, map: &mut Self::Map)[src]
fn reset_map(&self, map: &mut Self::Map)Reset the visitor map (and resize to new size of graph if needed)
impl<'a, N, E, Ty, Ix> IntoNeighbors for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<'a, N, E, Ty, Ix> IntoNeighbors for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type Neighbors = Neighbors<'a, Ix>
fn neighbors(self, a: Self::NodeId) -> Self::Neighbors[src]
fn neighbors(self, a: Self::NodeId) -> Self::NeighborsReturn an iterator of all neighbors of a.
Directed: Targets of outgoing edges froma.Undirected: Opposing endpoints of all edges connected toa.
Panics if the node a does not exist.
Iterator element type is NodeIndex<Ix>.
impl<N, E, Ty, Ix> NodeIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> NodeIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, fn node_bound(&self) -> usize[src]
fn node_bound(&self) -> usizeReturn an upper bound of the node indices in the graph (suitable for the size of a bitmap). Read more
fn to_index(&self, a: Self::NodeId) -> usize[src]
fn to_index(&self, a: Self::NodeId) -> usizeConvert a to an integer index.
fn from_index(&self, ix: usize) -> Self::NodeId[src]
fn from_index(&self, ix: usize) -> Self::NodeIdConvert i to a node index
impl<N, E, Ty, Ix> NodeCompactIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> NodeCompactIndexable for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type Output = N
The returned type after indexing.
fn index(&self, ix: NodeIndex<Ix>) -> &N[src]
fn index(&self, ix: NodeIndex<Ix>) -> &NPerforms the indexing (container[index]) operation.
impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, fn index_mut(&mut self, ix: NodeIndex<Ix>) -> &mut N[src]
fn index_mut(&mut self, ix: NodeIndex<Ix>) -> &mut NPerforms the mutable indexing (container[index]) operation.
impl<'a, N, E, Ty, Ix> IntoNodeIdentifiers for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<'a, N, E, Ty, Ix> IntoNodeIdentifiers for &'a Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, type NodeIdentifiers = NodeIdentifiers<Ix>
fn node_identifiers(self) -> Self::NodeIdentifiers[src]
fn node_identifiers(self) -> Self::NodeIdentifiersimpl<N, E, Ty, Ix> NodeCount for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> NodeCount for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, fn node_count(&self) -> usize[src]
fn node_count(&self) -> usizeimpl<N, E, Ty, Ix> GraphProp for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType, [src]
impl<N, E, Ty, Ix> GraphProp for Csr<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,