pub struct Pca<A>where
A: Scalar,{ /* private fields */ }Expand description
Principal component analysis.
This reduces the dimensionality of the input data using Singular Value Decomposition (SVD). The data is centered for each feature before applying SVD.
§Examples
use petal_decomposition::PcaBuilder;
let x = ndarray::arr2(&[[0_f64, 0_f64], [1_f64, 1_f64], [2_f64, 2_f64]]);
let y = PcaBuilder::new(1).build().fit_transform(&x).unwrap(); // [-2_f64.sqrt(), 0_f64, 2_f64.sqrt()]
assert!((y[(0, 0)].abs() - 2_f64.sqrt()).abs() < 1e-8);
assert!(y[(1, 0)].abs() < 1e-8);
assert!((y[(2, 0)].abs() - 2_f64.sqrt()).abs() < 1e-8);Implementations§
Source§impl<A> Pca<A>
impl<A> Pca<A>
Sourcepub fn components(&self) -> &Array2<A>
pub fn components(&self) -> &Array2<A>
Returns the principal axes in feature space.
Sourcepub fn n_components(&self) -> usize
pub fn n_components(&self) -> usize
Returns the number of components.
Sourcepub fn singular_values(&self) -> &Array1<A::Real>
pub fn singular_values(&self) -> &Array1<A::Real>
Returns sigular values.
Sourcepub fn explained_variance_ratio(&self) -> Array1<A::Real>
pub fn explained_variance_ratio(&self) -> Array1<A::Real>
Returns the ratio of explained variance for each component.
Sourcepub fn fit<S>(
&mut self,
input: &ArrayBase<S, Ix2>,
) -> Result<(), DecompositionError>where
S: Data<Elem = A>,
pub fn fit<S>(
&mut self,
input: &ArrayBase<S, Ix2>,
) -> Result<(), DecompositionError>where
S: Data<Elem = A>,
Fits the model with input.
§Errors
DecompositionError::InvalidInputif any of the dimensions ofinputis less than the number of components, or the layout ofinputis incompatible with LAPACK.DecompositionError::LinalgErrorif the underlying Singular Vector Decomposition routine fails.
Sourcepub fn transform<S>(
&self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
pub fn transform<S>(
&self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
Applies dimensionality reduction to input.
§Errors
DecompositionError::InvalidInputif the number of features ininputdoes not match that of the training data.
Sourcepub fn fit_transform<S>(
&mut self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
pub fn fit_transform<S>(
&mut self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
Fits the model with input and apply the dimensionality reduction on
input.
This is equivalent to calling both fit and transform for the
same input, but more efficient.
§Errors
DecompositionError::InvalidInputif any of the dimensions ofinputis less than the number of components, or the layout ofinputis incompatible with LAPACK.DecompositionError::LinalgErrorif the underlying Singular Vector Decomposition routine fails.
Sourcepub fn inverse_transform<S>(
&self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
pub fn inverse_transform<S>(
&self,
input: &ArrayBase<S, Ix2>,
) -> Result<Array2<A>, DecompositionError>where
S: Data<Elem = A>,
Transforms data back to its original space.
§Errors
Returns DecompositionError::InvalidInput if the number of rows of
input is different from that of the training data, or the number of
columns of input is different from the number of components.
Trait Implementations§
Source§impl<'de, A> Deserialize<'de> for Pca<A>
impl<'de, A> Deserialize<'de> for Pca<A>
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Auto Trait Implementations§
impl<A> Freeze for Pca<A>
impl<A> RefUnwindSafe for Pca<A>
impl<A> Send for Pca<A>
impl<A> Sync for Pca<A>
impl<A> Unpin for Pca<A>
impl<A> UnwindSafe for Pca<A>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more