pub struct TrivialPcs<Val: TwoAdicField, Dft: TwoAdicSubgroupDft<Val>> {
pub dft: Dft,
pub log_n: usize,
pub _phantom: PhantomData<Val>,
}Expand description
A trivial PCS: its commitment is simply the coefficients of each poly.
Fields§
§dft: Dft§log_n: usize§_phantom: PhantomData<Val>Trait Implementations§
Source§impl<Val: Debug + TwoAdicField, Dft: Debug + TwoAdicSubgroupDft<Val>> Debug for TrivialPcs<Val, Dft>
impl<Val: Debug + TwoAdicField, Dft: Debug + TwoAdicSubgroupDft<Val>> Debug for TrivialPcs<Val, Dft>
Source§impl<Val, Dft, Challenge, Challenger> Pcs<Challenge, Challenger> for TrivialPcs<Val, Dft>where
Val: TwoAdicField,
Challenge: ExtensionField<Val>,
Challenger: CanSample<Challenge>,
Dft: TwoAdicSubgroupDft<Val>,
Vec<Vec<Val>>: Serialize + for<'de> Deserialize<'de>,
impl<Val, Dft, Challenge, Challenger> Pcs<Challenge, Challenger> for TrivialPcs<Val, Dft>where
Val: TwoAdicField,
Challenge: ExtensionField<Val>,
Challenger: CanSample<Challenge>,
Dft: TwoAdicSubgroupDft<Val>,
Vec<Vec<Val>>: Serialize + for<'de> Deserialize<'de>,
Source§type Domain = TwoAdicMultiplicativeCoset<Val>
type Domain = TwoAdicMultiplicativeCoset<Val>
The class of evaluation domains that this commitment scheme works over.
Source§type Commitment = Vec<Vec<Val>>
type Commitment = Vec<Vec<Val>>
The commitment that’s sent to the verifier.
Source§type ProverData = Vec<DenseMatrix<Val>>
type ProverData = Vec<DenseMatrix<Val>>
Data that the prover stores for committed polynomials, to help the prover with opening.
Source§type EvaluationsOnDomain<'a> = <Dft as TwoAdicSubgroupDft<Val>>::Evaluations
type EvaluationsOnDomain<'a> = <Dft as TwoAdicSubgroupDft<Val>>::Evaluations
Type of the output of
get_evaluations_on_domain.Source§fn natural_domain_for_degree(&self, degree: usize) -> Self::Domain
fn natural_domain_for_degree(&self, degree: usize) -> Self::Domain
This should return a domain such that
Domain::next_point returns Some.Source§fn commit(
&self,
evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val>)>,
) -> (Self::Commitment, Self::ProverData)
fn commit( &self, evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val>)>, ) -> (Self::Commitment, Self::ProverData)
Given a collection of evaluation matrices, produce a binding commitment to
the polynomials defined by those evaluations. If
zk is enabled, the evaluations are
first randomized as explained in Section 3 of https://eprint.iacr.org/2024/1037.pdf . Read moreSource§fn commit_quotient(
&self,
quotient_domain: Self::Domain,
quotient_evaluations: RowMajorMatrix<Val<Self::Domain>>,
num_chunks: usize,
) -> (Self::Commitment, Self::ProverData)
fn commit_quotient( &self, quotient_domain: Self::Domain, quotient_evaluations: RowMajorMatrix<Val<Self::Domain>>, num_chunks: usize, ) -> (Self::Commitment, Self::ProverData)
Commit to the quotient polynomial. We first decompose the quotient polynomial into
num_chunks many smaller polynomials each of degree degree / num_chunks.
This can have minor performance benefits, but is not strictly necessary in the non zk case.
When zk is enabled, this commitment will additionally include some randomization process
to hide the inputs. Read moreSource§fn get_quotient_ldes(
&self,
_evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val>)>,
_num_chunks: usize,
) -> Vec<RowMajorMatrix<Val<Self::Domain>>>
fn get_quotient_ldes( &self, _evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val>)>, _num_chunks: usize, ) -> Vec<RowMajorMatrix<Val<Self::Domain>>>
When committing to quotient polynomials in batch-STARK,
it is simpler to first compute the LDE evaluations before batch-committing to them. Read more
Source§fn commit_ldes(
&self,
_ldes: Vec<RowMajorMatrix<Val>>,
) -> (Self::Commitment, Self::ProverData)
fn commit_ldes( &self, _ldes: Vec<RowMajorMatrix<Val>>, ) -> (Self::Commitment, Self::ProverData)
Commits to a collection of LDE evaluation matrices.
Source§fn get_evaluations_on_domain<'a>(
&self,
prover_data: &'a Self::ProverData,
idx: usize,
domain: Self::Domain,
) -> Self::EvaluationsOnDomain<'a>
fn get_evaluations_on_domain<'a>( &self, prover_data: &'a Self::ProverData, idx: usize, domain: Self::Domain, ) -> Self::EvaluationsOnDomain<'a>
Given prover data corresponding to a commitment to a collection of evaluation matrices,
return the evaluations of those matrices on the given domain. Read more
Source§fn open(
&self,
rounds: Vec<(&Self::ProverData, Vec<Vec<Challenge>>)>,
_challenger: &mut Challenger,
) -> (OpenedValues<Challenge>, Self::Proof)
fn open( &self, rounds: Vec<(&Self::ProverData, Vec<Vec<Challenge>>)>, _challenger: &mut Challenger, ) -> (OpenedValues<Challenge>, Self::Proof)
Open a collection of polynomial commitments at a set of points. Produce the values at those points along with a proof
of correctness. Read more
Source§fn verify(
&self,
rounds: Vec<(Self::Commitment, Vec<(Self::Domain, Vec<(Challenge, Vec<Challenge>)>)>)>,
_proof: &Self::Proof,
_challenger: &mut Challenger,
) -> Result<(), Self::Error>
fn verify( &self, rounds: Vec<(Self::Commitment, Vec<(Self::Domain, Vec<(Challenge, Vec<Challenge>)>)>)>, _proof: &Self::Proof, _challenger: &mut Challenger, ) -> Result<(), Self::Error>
Verify that a collection of opened values is correct. Read more
Source§const QUOTIENT_IDX: usize = _
const QUOTIENT_IDX: usize = _
Index of the quotient commitments in the computed opened values.
Source§const PREPROCESSED_TRACE_IDX: usize = _
const PREPROCESSED_TRACE_IDX: usize = _
Index of the preprocessed trace commitment in the computed opened values.
Source§fn commit_preprocessing(
&self,
evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val<Self::Domain>>)>,
) -> (Self::Commitment, Self::ProverData)
fn commit_preprocessing( &self, evaluations: impl IntoIterator<Item = (Self::Domain, RowMajorMatrix<Val<Self::Domain>>)>, ) -> (Self::Commitment, Self::ProverData)
Same as
commit but without randomization. This is used for preprocessed columns
which do not have to be randomized even when ZK is enabled. Note that the preprocessed columns still
need to be padded to the extended domain height. Read moreSource§fn get_evaluations_on_domain_no_random<'a>(
&self,
prover_data: &'a Self::ProverData,
idx: usize,
domain: Self::Domain,
) -> Self::EvaluationsOnDomain<'a>
fn get_evaluations_on_domain_no_random<'a>( &self, prover_data: &'a Self::ProverData, idx: usize, domain: Self::Domain, ) -> Self::EvaluationsOnDomain<'a>
This is the same as
get_evaluations_on_domain but without randomization.
This is used for preprocessed columns which do not have to be randomized even when ZK is enabled.Source§fn open_with_preprocessing(
&self,
commitment_data_with_opening_points: Vec<(&Self::ProverData, Vec<Vec<Challenge>>)>,
fiat_shamir_challenger: &mut Challenger,
_is_preprocessing: bool,
) -> (OpenedValues<Challenge>, Self::Proof)
fn open_with_preprocessing( &self, commitment_data_with_opening_points: Vec<(&Self::ProverData, Vec<Vec<Challenge>>)>, fiat_shamir_challenger: &mut Challenger, _is_preprocessing: bool, ) -> (OpenedValues<Challenge>, Self::Proof)
Open a collection of polynomial commitments at a set of points, when there is preprocessing data.
It is the same as
open when ZK is disabled.
Produce the values at those points along with a proof of correctness. Read morefn get_opt_randomization_poly_commitment( &self, _domain: impl IntoIterator<Item = Self::Domain>, ) -> Option<(Self::Commitment, Self::ProverData)>
Auto Trait Implementations§
impl<Val, Dft> Freeze for TrivialPcs<Val, Dft>where
Dft: Freeze,
impl<Val, Dft> RefUnwindSafe for TrivialPcs<Val, Dft>where
Dft: RefUnwindSafe,
Val: RefUnwindSafe,
impl<Val, Dft> Send for TrivialPcs<Val, Dft>where
Dft: Send,
impl<Val, Dft> Sync for TrivialPcs<Val, Dft>where
Dft: Sync,
impl<Val, Dft> Unpin for TrivialPcs<Val, Dft>
impl<Val, Dft> UnwindSafe for TrivialPcs<Val, Dft>where
Dft: UnwindSafe,
Val: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more