1use anyhow::{anyhow, Result};
8use chrono::{DateTime, Utc};
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering};
12use std::sync::{Arc, RwLock};
13use std::time::Duration;
14use tokio::time;
15use tracing::{debug, info, warn};
16
17#[derive(Debug)]
19pub struct CrossModulePerformanceCoordinator {
20 config: CoordinatorConfig,
22 module_monitors: Arc<RwLock<HashMap<String, ModulePerformanceMonitor>>>,
24 resource_allocator: ResourceAllocator,
26 predictive_engine: PredictivePerformanceEngine,
28 optimization_cache: Arc<RwLock<OptimizationCache>>,
30 global_metrics: Arc<RwLock<GlobalPerformanceMetrics>>,
32}
33
34#[derive(Debug, Clone, Serialize, Deserialize)]
36pub struct CoordinatorConfig {
37 pub enable_predictive_scaling: bool,
39 pub enable_intelligent_prefetching: bool,
41 pub enable_dynamic_allocation: bool,
43 pub enable_cross_module_caching: bool,
45 pub monitoring_interval_ms: u64,
47 pub reallocation_threshold: f64,
49 pub prefetch_window_seconds: u64,
51 pub max_concurrent_optimizations: usize,
53 pub enable_performance_learning: bool,
55}
56
57impl Default for CoordinatorConfig {
58 fn default() -> Self {
59 Self {
60 enable_predictive_scaling: true,
61 enable_intelligent_prefetching: true,
62 enable_dynamic_allocation: true,
63 enable_cross_module_caching: true,
64 monitoring_interval_ms: 1000,
65 reallocation_threshold: 0.8,
66 prefetch_window_seconds: 30,
67 max_concurrent_optimizations: 4,
68 enable_performance_learning: true,
69 }
70 }
71}
72
73#[derive(Debug, Clone)]
75pub struct ModulePerformanceMonitor {
76 module_name: String,
78 metrics: Arc<RwLock<ModuleMetrics>>,
80 resource_tracker: ResourceTracker,
82 history: Arc<RwLock<VecDeque<PerformanceSnapshot>>>,
84 prediction_model: PredictionModel,
86}
87
88#[derive(Debug, Clone, Serialize, Deserialize)]
90pub struct ModuleMetrics {
91 pub cpu_usage: f64,
93 pub memory_usage: u64,
95 pub gpu_memory_usage: Option<u64>,
97 pub network_io_bps: u64,
99 pub disk_io_bps: u64,
101 pub request_rate: f64,
103 pub avg_response_time: Duration,
105 pub error_rate: f64,
107 pub cache_hit_rate: f64,
109 pub active_connections: usize,
111 pub queue_depth: usize,
113}
114
115#[derive(Debug)]
117pub struct ResourceAllocator {
118 available_cores: AtomicUsize,
120 available_memory: AtomicU64,
122 available_gpu_memory: AtomicU64,
124 allocation_history: Arc<RwLock<VecDeque<AllocationEvent>>>,
126 current_allocations: Arc<RwLock<HashMap<String, ResourceAllocation>>>,
128 optimization_strategies: Vec<AllocationStrategy>,
130}
131
132#[derive(Debug, Clone, Serialize, Deserialize)]
134pub struct ResourceAllocation {
135 pub cpu_cores: usize,
137 pub memory_bytes: u64,
139 pub gpu_memory_bytes: Option<u64>,
141 pub priority: u8,
143 pub allocated_at: DateTime<Utc>,
145 pub expected_duration: Option<Duration>,
147}
148
149#[derive(Debug, Clone, Serialize, Deserialize)]
151pub struct AllocationEvent {
152 pub module_name: String,
154 pub event_type: AllocationType,
156 pub allocation: ResourceAllocation,
158 pub performance_impact: Option<PerformanceImpact>,
160 pub timestamp: DateTime<Utc>,
162}
163
164#[derive(Debug, Clone, Serialize, Deserialize)]
166pub enum AllocationType {
167 Initial,
168 Increase,
169 Decrease,
170 Rebalance,
171 Emergency,
172}
173
174#[derive(Debug, Clone, Serialize, Deserialize)]
176pub struct PerformanceImpact {
177 pub latency_change_pct: f64,
179 pub throughput_change_pct: f64,
181 pub efficiency_change_pct: f64,
183 pub overall_score: f64,
185}
186
187#[derive(Debug)]
189pub struct PredictivePerformanceEngine {
190 models: Arc<RwLock<HashMap<String, PerformanceModel>>>,
192 prediction_cache: Arc<RwLock<HashMap<String, PredictionCache>>>,
194 learning_engine: LearningEngine,
196 anomaly_detector: AnomalyDetector,
198}
199
200#[derive(Debug, Clone)]
202pub struct PerformanceModel {
203 pub model_type: ModelType,
205 pub parameters: HashMap<String, f64>,
207 pub training_window: Duration,
209 pub accuracy: f64,
211 pub last_trained: DateTime<Utc>,
213}
214
215#[derive(Debug, Clone, Serialize, Deserialize)]
217pub enum ModelType {
218 LinearRegression,
219 TimeSeriesARIMA,
220 NeuralNetwork,
221 EnsembleModel,
222 AdaptiveFilter,
223}
224
225#[derive(Debug)]
227pub struct PredictionCache {
228 predictions: HashMap<String, CachedPrediction>,
230 hit_count: AtomicU64,
232 miss_count: AtomicU64,
234 last_cleanup: DateTime<Utc>,
236}
237
238#[derive(Debug, Clone)]
240pub struct CachedPrediction {
241 pub value: f64,
243 pub confidence_interval: (f64, f64),
245 pub predicted_at: DateTime<Utc>,
247 pub expires_at: DateTime<Utc>,
249 pub hit_count: u64,
251}
252
253#[derive(Debug)]
255pub struct LearningEngine {
256 learning_rate: f64,
258 training_samples: Arc<RwLock<VecDeque<TrainingSample>>>,
260 update_frequency: Duration,
262 baselines: Arc<RwLock<HashMap<String, PerformanceBaseline>>>,
264}
265
266#[derive(Debug, Clone)]
268pub struct TrainingSample {
269 pub features: Vec<f64>,
271 pub target: f64,
273 pub context: HashMap<String, String>,
275 pub weight: f64,
277 pub timestamp: DateTime<Utc>,
279}
280
281#[derive(Debug, Clone)]
283pub struct PerformanceBaseline {
284 pub metrics: ModuleMetrics,
286 pub established_at: DateTime<Utc>,
288 pub confidence: f64,
290 pub update_count: u64,
292}
293
294#[derive(Debug)]
296pub struct AnomalyDetector {
297 algorithms: Vec<AnomalyAlgorithm>,
299 thresholds: HashMap<String, f64>,
301 anomaly_history: Arc<RwLock<VecDeque<AnomalyEvent>>>,
303 false_positive_rate: f64,
305}
306
307#[derive(Debug, Clone)]
309pub enum AnomalyAlgorithm {
310 StatisticalOutlier { z_threshold: f64 },
311 IsolationForest { contamination: f64 },
312 OneClassSVM { nu: f64 },
313 LocalOutlierFactor { n_neighbors: usize },
314 EllipticEnvelope { contamination: f64 },
315}
316
317#[derive(Debug, Clone, Serialize, Deserialize)]
319pub struct AnomalyEvent {
320 pub module_name: String,
322 pub anomaly_type: AnomalyType,
324 pub severity: SeverityLevel,
326 pub score: f64,
328 pub affected_metrics: Vec<String>,
330 pub recommended_actions: Vec<String>,
332 pub detected_at: DateTime<Utc>,
334 pub resolved_at: Option<DateTime<Utc>>,
336}
337
338#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
340pub enum AnomalyType {
341 PerformanceDegradation,
342 ResourceSpike,
343 MemoryLeak,
344 ThroughputDrop,
345 LatencyIncrease,
346 ErrorRateSpike,
347 CacheEfficiencyDrop,
348 ConnectionPoolExhaustion,
349}
350
351#[derive(Debug, Clone, Serialize, Deserialize)]
353pub enum SeverityLevel {
354 Low,
355 Medium,
356 High,
357 Critical,
358}
359
360impl CrossModulePerformanceCoordinator {
362 pub fn new(config: CoordinatorConfig) -> Self {
364 Self {
365 config,
366 module_monitors: Arc::new(RwLock::new(HashMap::new())),
367 resource_allocator: ResourceAllocator::new(),
368 predictive_engine: PredictivePerformanceEngine::new(),
369 optimization_cache: Arc::new(RwLock::new(OptimizationCache::new())),
370 global_metrics: Arc::new(RwLock::new(GlobalPerformanceMetrics::new())),
371 }
372 }
373
374 pub async fn register_module(&self, module_name: String) -> Result<()> {
376 let monitor = ModulePerformanceMonitor::new(module_name.clone());
377
378 {
379 let mut monitors = self.module_monitors.write().expect("lock poisoned");
380 monitors.insert(module_name.clone(), monitor);
381 }
382
383 info!(
384 "Registered module '{}' for performance monitoring",
385 module_name
386 );
387 Ok(())
388 }
389
390 pub async fn update_module_metrics(
392 &self,
393 module_name: &str,
394 metrics: ModuleMetrics,
395 ) -> Result<()> {
396 let monitor = {
397 let monitors = self.module_monitors.read().expect("lock poisoned");
398 monitors.get(module_name).cloned()
399 };
400 if let Some(monitor) = monitor {
401 monitor.update_metrics(metrics).await?;
402 } else {
403 return Err(anyhow!("Module '{}' not registered", module_name));
404 }
405 Ok(())
406 }
407
408 pub async fn optimize_performance(&self) -> Result<OptimizationResults> {
410 info!("Starting cross-module performance optimization");
411
412 let mut results = OptimizationResults::new();
413
414 let performance_data = self.collect_performance_data().await?;
416
417 let anomalies = self
419 .predictive_engine
420 .detect_anomalies(&performance_data)
421 .await?;
422 results.anomalies_detected = anomalies.len();
423
424 let recommendations = self
426 .generate_optimization_recommendations(&performance_data, &anomalies)
427 .await?;
428 results.recommendations = recommendations.clone();
429
430 for recommendation in recommendations {
432 match self.apply_optimization(recommendation).await {
433 Ok(impact) => {
434 results.optimizations_applied += 1;
435 results.total_performance_gain += impact.overall_score;
436 }
437 Err(e) => {
438 warn!("Failed to apply optimization: {}", e);
439 results.optimization_failures += 1;
440 }
441 }
442 }
443
444 self.update_global_metrics(&results).await?;
446
447 info!("Performance optimization completed: {:?}", results);
448 Ok(results)
449 }
450
451 async fn collect_performance_data(&self) -> Result<HashMap<String, ModuleMetrics>> {
453 let monitor_list = {
454 let monitors = self.module_monitors.read().expect("lock poisoned");
455 monitors
456 .iter()
457 .map(|(name, monitor)| (name.clone(), monitor.clone()))
458 .collect::<Vec<_>>()
459 };
460 let mut data = HashMap::new();
461
462 for (module_name, monitor) in monitor_list {
463 let metrics = monitor.get_current_metrics().await?;
464 data.insert(module_name, metrics);
465 }
466
467 Ok(data)
468 }
469
470 async fn generate_optimization_recommendations(
472 &self,
473 performance_data: &HashMap<String, ModuleMetrics>,
474 anomalies: &[AnomalyEvent],
475 ) -> Result<Vec<OptimizationRecommendation>> {
476 let mut recommendations = Vec::new();
477
478 for (module_name, metrics) in performance_data {
480 if metrics.cpu_usage > 80.0 {
482 recommendations.push(OptimizationRecommendation {
483 module_name: module_name.clone(),
484 optimization_type: OptimizationType::ResourceReallocation,
485 priority: Priority::High,
486 description: "High CPU usage detected - recommend resource reallocation"
487 .to_string(),
488 estimated_impact: PerformanceImpact {
489 latency_change_pct: -15.0,
490 throughput_change_pct: 20.0,
491 efficiency_change_pct: 10.0,
492 overall_score: 75.0,
493 },
494 implementation_steps: vec![
495 "Increase CPU allocation".to_string(),
496 "Enable parallel processing".to_string(),
497 "Optimize critical paths".to_string(),
498 ],
499 });
500 }
501
502 if metrics.memory_usage > 8_000_000_000 {
504 recommendations.push(OptimizationRecommendation {
506 module_name: module_name.clone(),
507 optimization_type: OptimizationType::MemoryOptimization,
508 priority: Priority::Medium,
509 description: "High memory usage - recommend memory optimization".to_string(),
510 estimated_impact: PerformanceImpact {
511 latency_change_pct: -10.0,
512 throughput_change_pct: 15.0,
513 efficiency_change_pct: 25.0,
514 overall_score: 70.0,
515 },
516 implementation_steps: vec![
517 "Enable memory pooling".to_string(),
518 "Optimize data structures".to_string(),
519 "Implement garbage collection tuning".to_string(),
520 ],
521 });
522 }
523
524 if metrics.cache_hit_rate < 80.0 {
526 recommendations.push(OptimizationRecommendation {
527 module_name: module_name.clone(),
528 optimization_type: OptimizationType::CacheOptimization,
529 priority: Priority::Medium,
530 description: "Low cache hit rate - recommend cache optimization".to_string(),
531 estimated_impact: PerformanceImpact {
532 latency_change_pct: -20.0,
533 throughput_change_pct: 25.0,
534 efficiency_change_pct: 15.0,
535 overall_score: 80.0,
536 },
537 implementation_steps: vec![
538 "Increase cache size".to_string(),
539 "Implement intelligent prefetching".to_string(),
540 "Optimize cache eviction policy".to_string(),
541 ],
542 });
543 }
544 }
545
546 for anomaly in anomalies {
548 recommendations.extend(self.generate_anomaly_recommendations(anomaly).await?);
549 }
550
551 recommendations.sort_by(|a, b| {
553 b.priority.cmp(&a.priority).then_with(|| {
554 b.estimated_impact
555 .overall_score
556 .partial_cmp(&a.estimated_impact.overall_score)
557 .unwrap_or(std::cmp::Ordering::Equal)
558 })
559 });
560
561 Ok(recommendations)
562 }
563
564 async fn generate_anomaly_recommendations(
566 &self,
567 anomaly: &AnomalyEvent,
568 ) -> Result<Vec<OptimizationRecommendation>> {
569 let mut recommendations = Vec::new();
570
571 match anomaly.anomaly_type {
572 AnomalyType::PerformanceDegradation => {
573 recommendations.push(OptimizationRecommendation {
574 module_name: anomaly.module_name.clone(),
575 optimization_type: OptimizationType::PerformanceTuning,
576 priority: Priority::High,
577 description: "Performance degradation detected - immediate optimization needed"
578 .to_string(),
579 estimated_impact: PerformanceImpact {
580 latency_change_pct: -30.0,
581 throughput_change_pct: 40.0,
582 efficiency_change_pct: 20.0,
583 overall_score: 85.0,
584 },
585 implementation_steps: anomaly.recommended_actions.clone(),
586 });
587 }
588 AnomalyType::MemoryLeak => {
589 recommendations.push(OptimizationRecommendation {
590 module_name: anomaly.module_name.clone(),
591 optimization_type: OptimizationType::MemoryOptimization,
592 priority: Priority::Critical,
593 description: "Memory leak detected - immediate action required".to_string(),
594 estimated_impact: PerformanceImpact {
595 latency_change_pct: -50.0,
596 throughput_change_pct: 60.0,
597 efficiency_change_pct: 80.0,
598 overall_score: 95.0,
599 },
600 implementation_steps: vec![
601 "Identify memory leak source".to_string(),
602 "Implement automatic memory cleanup".to_string(),
603 "Add memory monitoring alerts".to_string(),
604 ],
605 });
606 }
607 _ => {
608 recommendations.push(OptimizationRecommendation {
610 module_name: anomaly.module_name.clone(),
611 optimization_type: OptimizationType::GeneralOptimization,
612 priority: match anomaly.severity {
613 SeverityLevel::Critical => Priority::Critical,
614 SeverityLevel::High => Priority::High,
615 SeverityLevel::Medium => Priority::Medium,
616 SeverityLevel::Low => Priority::Low,
617 },
618 description: format!("Anomaly detected: {:?}", anomaly.anomaly_type),
619 estimated_impact: PerformanceImpact {
620 latency_change_pct: -10.0,
621 throughput_change_pct: 15.0,
622 efficiency_change_pct: 10.0,
623 overall_score: 60.0,
624 },
625 implementation_steps: anomaly.recommended_actions.clone(),
626 });
627 }
628 }
629
630 Ok(recommendations)
631 }
632
633 async fn apply_optimization(
635 &self,
636 recommendation: OptimizationRecommendation,
637 ) -> Result<PerformanceImpact> {
638 info!("Applying optimization: {}", recommendation.description);
639
640 match recommendation.optimization_type {
641 OptimizationType::ResourceReallocation => {
642 self.resource_allocator
643 .reallocate_resources(&recommendation.module_name, &recommendation)
644 .await?;
645 }
646 OptimizationType::MemoryOptimization => {
647 self.apply_memory_optimization(&recommendation.module_name, &recommendation)
648 .await?;
649 }
650 OptimizationType::CacheOptimization => {
651 self.apply_cache_optimization(&recommendation.module_name, &recommendation)
652 .await?;
653 }
654 OptimizationType::PerformanceTuning => {
655 self.apply_performance_tuning(&recommendation.module_name, &recommendation)
656 .await?;
657 }
658 OptimizationType::GeneralOptimization => {
659 self.apply_general_optimization(&recommendation.module_name, &recommendation)
660 .await?;
661 }
662 }
663
664 time::sleep(Duration::from_secs(5)).await; let actual_impact = self
667 .measure_optimization_impact(&recommendation.module_name)
668 .await?;
669
670 self.predictive_engine
672 .update_models(&recommendation, &actual_impact)
673 .await?;
674
675 Ok(actual_impact)
676 }
677
678 async fn apply_memory_optimization(
680 &self,
681 module_name: &str,
682 recommendation: &OptimizationRecommendation,
683 ) -> Result<()> {
684 debug!("Applying memory optimization for module: {}", module_name);
685
686 for step in &recommendation.implementation_steps {
688 if step.contains("memory pooling") {
689 self.enable_memory_pooling(module_name).await?;
690 } else if step.contains("garbage collection") {
691 self.optimize_garbage_collection(module_name).await?;
692 } else if step.contains("data structures") {
693 self.optimize_data_structures(module_name).await?;
694 }
695 }
696
697 Ok(())
698 }
699
700 async fn apply_cache_optimization(
702 &self,
703 module_name: &str,
704 recommendation: &OptimizationRecommendation,
705 ) -> Result<()> {
706 debug!("Applying cache optimization for module: {}", module_name);
707
708 for step in &recommendation.implementation_steps {
709 if step.contains("cache size") {
710 self.increase_cache_size(module_name).await?;
711 } else if step.contains("prefetching") {
712 self.enable_intelligent_prefetching(module_name).await?;
713 } else if step.contains("eviction policy") {
714 self.optimize_cache_eviction(module_name).await?;
715 }
716 }
717
718 Ok(())
719 }
720
721 async fn apply_performance_tuning(
723 &self,
724 module_name: &str,
725 recommendation: &OptimizationRecommendation,
726 ) -> Result<()> {
727 debug!("Applying performance tuning for module: {}", module_name);
728
729 for step in &recommendation.implementation_steps {
731 if step.contains("parallel processing") {
732 self.enable_parallel_processing(module_name).await?;
733 } else if step.contains("critical paths") {
734 self.optimize_critical_paths(module_name).await?;
735 } else if step.contains("algorithms") {
736 self.optimize_algorithms(module_name).await?;
737 }
738 }
739
740 Ok(())
741 }
742
743 async fn apply_general_optimization(
745 &self,
746 module_name: &str,
747 _recommendation: &OptimizationRecommendation,
748 ) -> Result<()> {
749 debug!("Applying general optimization for module: {}", module_name);
750
751 self.tune_module_parameters(module_name).await?;
753 self.optimize_resource_usage(module_name).await?;
754
755 Ok(())
756 }
757
758 async fn measure_optimization_impact(&self, module_name: &str) -> Result<PerformanceImpact> {
760 let baseline = self.get_baseline_metrics(module_name).await?;
762
763 let current = self.get_current_module_metrics(module_name).await?;
765
766 let latency_change = calculate_percentage_change(
768 baseline.avg_response_time.as_millis() as f64,
769 current.avg_response_time.as_millis() as f64,
770 );
771
772 let throughput_change =
773 calculate_percentage_change(baseline.request_rate, current.request_rate);
774
775 let efficiency_change = calculate_percentage_change(baseline.cpu_usage, current.cpu_usage);
776
777 let overall_score =
778 (latency_change.abs() + throughput_change + efficiency_change.abs()) / 3.0;
779
780 Ok(PerformanceImpact {
781 latency_change_pct: latency_change,
782 throughput_change_pct: throughput_change,
783 efficiency_change_pct: efficiency_change,
784 overall_score,
785 })
786 }
787
788 async fn update_global_metrics(&self, results: &OptimizationResults) -> Result<()> {
790 let mut global_metrics = self.global_metrics.write().expect("lock poisoned");
791 global_metrics.update(results);
792 Ok(())
793 }
794
795 async fn enable_memory_pooling(&self, _module_name: &str) -> Result<()> {
797 debug!("Enabling memory pooling");
799 Ok(())
800 }
801
802 async fn optimize_garbage_collection(&self, _module_name: &str) -> Result<()> {
803 debug!("Optimizing garbage collection");
804 Ok(())
805 }
806
807 async fn optimize_data_structures(&self, _module_name: &str) -> Result<()> {
808 debug!("Optimizing data structures");
809 Ok(())
810 }
811
812 async fn increase_cache_size(&self, _module_name: &str) -> Result<()> {
813 debug!("Increasing cache size");
814 Ok(())
815 }
816
817 async fn enable_intelligent_prefetching(&self, _module_name: &str) -> Result<()> {
818 debug!("Enabling intelligent prefetching");
819 Ok(())
820 }
821
822 async fn optimize_cache_eviction(&self, _module_name: &str) -> Result<()> {
823 debug!("Optimizing cache eviction policy");
824 Ok(())
825 }
826
827 async fn enable_parallel_processing(&self, _module_name: &str) -> Result<()> {
828 debug!("Enabling parallel processing");
829 Ok(())
830 }
831
832 async fn optimize_critical_paths(&self, _module_name: &str) -> Result<()> {
833 debug!("Optimizing critical paths");
834 Ok(())
835 }
836
837 async fn optimize_algorithms(&self, _module_name: &str) -> Result<()> {
838 debug!("Optimizing algorithms");
839 Ok(())
840 }
841
842 async fn tune_module_parameters(&self, _module_name: &str) -> Result<()> {
843 debug!("Tuning module parameters");
844 Ok(())
845 }
846
847 async fn optimize_resource_usage(&self, _module_name: &str) -> Result<()> {
848 debug!("Optimizing resource usage");
849 Ok(())
850 }
851
852 async fn get_baseline_metrics(&self, _module_name: &str) -> Result<ModuleMetrics> {
853 Ok(ModuleMetrics {
855 cpu_usage: 50.0,
856 memory_usage: 4_000_000_000,
857 gpu_memory_usage: Some(2_000_000_000),
858 network_io_bps: 1_000_000,
859 disk_io_bps: 500_000,
860 request_rate: 100.0,
861 avg_response_time: Duration::from_millis(100),
862 error_rate: 1.0,
863 cache_hit_rate: 85.0,
864 active_connections: 50,
865 queue_depth: 10,
866 })
867 }
868
869 async fn get_current_module_metrics(&self, module_name: &str) -> Result<ModuleMetrics> {
870 let monitor = {
871 let monitors = self.module_monitors.read().expect("lock poisoned");
872 monitors.get(module_name).cloned()
873 };
874 if let Some(monitor) = monitor {
875 monitor.get_current_metrics().await
876 } else {
877 Err(anyhow!("Module '{}' not found", module_name))
878 }
879 }
880}
881
882#[derive(Debug, Clone, Serialize, Deserialize)]
885pub struct OptimizationRecommendation {
886 pub module_name: String,
888 pub optimization_type: OptimizationType,
890 pub priority: Priority,
892 pub description: String,
894 pub estimated_impact: PerformanceImpact,
896 pub implementation_steps: Vec<String>,
898}
899
900#[derive(Debug, Clone, Serialize, Deserialize)]
902pub enum OptimizationType {
903 ResourceReallocation,
904 MemoryOptimization,
905 CacheOptimization,
906 PerformanceTuning,
907 GeneralOptimization,
908}
909
910#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
912pub enum Priority {
913 Low,
914 Medium,
915 High,
916 Critical,
917}
918
919#[derive(Debug, Clone, Serialize, Deserialize)]
921pub struct OptimizationResults {
922 pub anomalies_detected: usize,
924 pub optimizations_applied: usize,
926 pub optimization_failures: usize,
928 pub total_performance_gain: f64,
930 pub recommendations: Vec<OptimizationRecommendation>,
932 pub execution_time: Duration,
934}
935
936impl OptimizationResults {
937 fn new() -> Self {
938 Self {
939 anomalies_detected: 0,
940 optimizations_applied: 0,
941 optimization_failures: 0,
942 total_performance_gain: 0.0,
943 recommendations: Vec::new(),
944 execution_time: Duration::from_secs(0),
945 }
946 }
947}
948
949#[derive(Debug)]
951pub struct GlobalPerformanceMetrics {
952 total_optimizations: AtomicU64,
954 avg_performance_gain: Arc<RwLock<f64>>,
956 success_rate: Arc<RwLock<f64>>,
958 last_optimization: Arc<RwLock<Option<DateTime<Utc>>>>,
960}
961
962impl GlobalPerformanceMetrics {
963 fn new() -> Self {
964 Self {
965 total_optimizations: AtomicU64::new(0),
966 avg_performance_gain: Arc::new(RwLock::new(0.0)),
967 success_rate: Arc::new(RwLock::new(0.0)),
968 last_optimization: Arc::new(RwLock::new(None)),
969 }
970 }
971
972 fn update(&mut self, results: &OptimizationResults) {
973 self.total_optimizations.fetch_add(1, Ordering::SeqCst);
974
975 {
976 let mut gain = self.avg_performance_gain.write().expect("lock poisoned");
977 *gain = (*gain + results.total_performance_gain) / 2.0;
978 }
979
980 {
981 let mut rate = self.success_rate.write().expect("lock poisoned");
982 let success = results.optimizations_applied as f64
983 / (results.optimizations_applied + results.optimization_failures).max(1) as f64;
984 *rate = (*rate + success) / 2.0;
985 }
986
987 {
988 let mut last = self.last_optimization.write().expect("lock poisoned");
989 *last = Some(Utc::now());
990 }
991 }
992}
993
994#[derive(Debug)]
996pub struct OptimizationCache {
997 cache: HashMap<String, CachedOptimization>,
999 stats: CacheStats,
1001}
1002
1003#[derive(Debug, Clone)]
1005pub struct CachedOptimization {
1006 pub recommendation: OptimizationRecommendation,
1008 pub actual_impact: PerformanceImpact,
1010 pub cached_at: DateTime<Utc>,
1012 pub hit_count: u64,
1014}
1015
1016#[derive(Debug)]
1018pub struct CacheStats {
1019 pub hits: AtomicU64,
1021 pub misses: AtomicU64,
1023 pub size: AtomicUsize,
1025}
1026
1027impl OptimizationCache {
1028 fn new() -> Self {
1029 Self {
1030 cache: HashMap::new(),
1031 stats: CacheStats {
1032 hits: AtomicU64::new(0),
1033 misses: AtomicU64::new(0),
1034 size: AtomicUsize::new(0),
1035 },
1036 }
1037 }
1038}
1039
1040impl ResourceAllocator {
1042 fn new() -> Self {
1043 Self {
1044 available_cores: AtomicUsize::new(8), available_memory: AtomicU64::new(16_000_000_000), available_gpu_memory: AtomicU64::new(8_000_000_000), allocation_history: Arc::new(RwLock::new(VecDeque::new())),
1048 current_allocations: Arc::new(RwLock::new(HashMap::new())),
1049 optimization_strategies: Vec::new(),
1050 }
1051 }
1052
1053 async fn reallocate_resources(
1054 &self,
1055 module_name: &str,
1056 recommendation: &OptimizationRecommendation,
1057 ) -> Result<()> {
1058 debug!("Reallocating resources for module: {}", module_name);
1059
1060 let current_allocation = self.get_current_allocation(module_name).await?;
1062 let new_allocation = self
1063 .calculate_new_allocation(¤t_allocation, recommendation)
1064 .await?;
1065
1066 self.apply_allocation(module_name, new_allocation).await?;
1068
1069 Ok(())
1070 }
1071
1072 async fn get_current_allocation(&self, module_name: &str) -> Result<ResourceAllocation> {
1073 let allocations = self.current_allocations.read().expect("lock poisoned");
1074 if let Some(allocation) = allocations.get(module_name) {
1075 Ok(allocation.clone())
1076 } else {
1077 Ok(ResourceAllocation {
1079 cpu_cores: 2,
1080 memory_bytes: 2_000_000_000, gpu_memory_bytes: Some(1_000_000_000), priority: 50,
1083 allocated_at: Utc::now(),
1084 expected_duration: None,
1085 })
1086 }
1087 }
1088
1089 async fn calculate_new_allocation(
1090 &self,
1091 current: &ResourceAllocation,
1092 recommendation: &OptimizationRecommendation,
1093 ) -> Result<ResourceAllocation> {
1094 let mut new_allocation = current.clone();
1095
1096 match recommendation.optimization_type {
1098 OptimizationType::ResourceReallocation => {
1099 match recommendation.priority {
1101 Priority::Critical => {
1102 new_allocation.cpu_cores = (current.cpu_cores * 2).min(8);
1103 new_allocation.memory_bytes = (current.memory_bytes * 2).min(8_000_000_000);
1104 }
1105 Priority::High => {
1106 new_allocation.cpu_cores = (current.cpu_cores + 2).min(6);
1107 new_allocation.memory_bytes =
1108 (current.memory_bytes + 1_000_000_000).min(6_000_000_000);
1109 }
1110 _ => {
1111 new_allocation.cpu_cores = (current.cpu_cores + 1).min(4);
1112 new_allocation.memory_bytes =
1113 (current.memory_bytes + 500_000_000).min(4_000_000_000);
1114 }
1115 }
1116 }
1117 _ => {
1118 new_allocation.priority = (current.priority + 10).min(100);
1120 }
1121 }
1122
1123 new_allocation.allocated_at = Utc::now();
1124 Ok(new_allocation)
1125 }
1126
1127 async fn apply_allocation(
1128 &self,
1129 module_name: &str,
1130 allocation: ResourceAllocation,
1131 ) -> Result<()> {
1132 {
1133 let mut allocations = self.current_allocations.write().expect("lock poisoned");
1134 allocations.insert(module_name.to_string(), allocation.clone());
1135 }
1136
1137 let event = AllocationEvent {
1139 module_name: module_name.to_string(),
1140 event_type: AllocationType::Rebalance,
1141 allocation,
1142 performance_impact: None,
1143 timestamp: Utc::now(),
1144 };
1145
1146 {
1147 let mut history = self.allocation_history.write().expect("lock poisoned");
1148 history.push_back(event);
1149
1150 if history.len() > 1000 {
1152 history.pop_front();
1153 }
1154 }
1155
1156 Ok(())
1157 }
1158}
1159
1160impl PredictivePerformanceEngine {
1161 fn new() -> Self {
1162 Self {
1163 models: Arc::new(RwLock::new(HashMap::new())),
1164 prediction_cache: Arc::new(RwLock::new(HashMap::new())),
1165 learning_engine: LearningEngine::new(),
1166 anomaly_detector: AnomalyDetector::new(),
1167 }
1168 }
1169
1170 async fn detect_anomalies(
1171 &self,
1172 performance_data: &HashMap<String, ModuleMetrics>,
1173 ) -> Result<Vec<AnomalyEvent>> {
1174 self.anomaly_detector.detect(performance_data).await
1175 }
1176
1177 async fn update_models(
1178 &self,
1179 recommendation: &OptimizationRecommendation,
1180 actual_impact: &PerformanceImpact,
1181 ) -> Result<()> {
1182 self.learning_engine
1183 .update_model(recommendation, actual_impact)
1184 .await
1185 }
1186}
1187
1188impl LearningEngine {
1189 fn new() -> Self {
1190 Self {
1191 learning_rate: 0.01,
1192 training_samples: Arc::new(RwLock::new(VecDeque::new())),
1193 update_frequency: Duration::from_secs(3600), baselines: Arc::new(RwLock::new(HashMap::new())),
1195 }
1196 }
1197
1198 async fn update_model(
1199 &self,
1200 recommendation: &OptimizationRecommendation,
1201 actual_impact: &PerformanceImpact,
1202 ) -> Result<()> {
1203 let sample = TrainingSample {
1204 features: vec![
1205 recommendation.estimated_impact.overall_score,
1206 recommendation.priority.clone() as u8 as f64,
1207 ],
1208 target: actual_impact.overall_score,
1209 context: HashMap::new(),
1210 weight: 1.0,
1211 timestamp: Utc::now(),
1212 };
1213
1214 {
1215 let mut samples = self.training_samples.write().expect("lock poisoned");
1216 samples.push_back(sample);
1217
1218 if samples.len() > 10000 {
1220 samples.pop_front();
1221 }
1222 }
1223
1224 Ok(())
1225 }
1226}
1227
1228impl AnomalyDetector {
1229 fn new() -> Self {
1230 Self {
1231 algorithms: vec![
1232 AnomalyAlgorithm::StatisticalOutlier { z_threshold: 3.0 },
1233 AnomalyAlgorithm::IsolationForest { contamination: 0.1 },
1234 ],
1235 thresholds: HashMap::new(),
1236 anomaly_history: Arc::new(RwLock::new(VecDeque::new())),
1237 false_positive_rate: 0.05,
1238 }
1239 }
1240
1241 async fn detect(
1242 &self,
1243 performance_data: &HashMap<String, ModuleMetrics>,
1244 ) -> Result<Vec<AnomalyEvent>> {
1245 let mut anomalies = Vec::new();
1246
1247 for (module_name, metrics) in performance_data {
1248 if metrics.cpu_usage > 90.0
1250 || metrics.error_rate > 5.0
1251 || metrics.avg_response_time > Duration::from_millis(1000)
1252 {
1253 let anomaly = AnomalyEvent {
1254 module_name: module_name.clone(),
1255 anomaly_type: AnomalyType::PerformanceDegradation,
1256 severity: if metrics.cpu_usage > 95.0 || metrics.error_rate > 10.0 {
1257 SeverityLevel::Critical
1258 } else {
1259 SeverityLevel::High
1260 },
1261 score: calculate_anomaly_score(metrics),
1262 affected_metrics: vec![
1263 "cpu_usage".to_string(),
1264 "error_rate".to_string(),
1265 "response_time".to_string(),
1266 ],
1267 recommended_actions: vec![
1268 "Increase resource allocation".to_string(),
1269 "Investigate error sources".to_string(),
1270 "Optimize critical paths".to_string(),
1271 ],
1272 detected_at: Utc::now(),
1273 resolved_at: None,
1274 };
1275 anomalies.push(anomaly);
1276 }
1277
1278 if metrics.memory_usage > 12_000_000_000 {
1280 let anomaly = AnomalyEvent {
1282 module_name: module_name.clone(),
1283 anomaly_type: AnomalyType::MemoryLeak,
1284 severity: SeverityLevel::High,
1285 score: (metrics.memory_usage as f64 / 16_000_000_000.0) * 100.0,
1286 affected_metrics: vec!["memory_usage".to_string()],
1287 recommended_actions: vec![
1288 "Investigate memory usage patterns".to_string(),
1289 "Enable memory profiling".to_string(),
1290 "Implement memory cleanup".to_string(),
1291 ],
1292 detected_at: Utc::now(),
1293 resolved_at: None,
1294 };
1295 anomalies.push(anomaly);
1296 }
1297 }
1298
1299 {
1301 let mut history = self.anomaly_history.write().expect("lock poisoned");
1302 for anomaly in &anomalies {
1303 history.push_back(anomaly.clone());
1304 }
1305
1306 while history.len() > 1000 {
1308 history.pop_front();
1309 }
1310 }
1311
1312 Ok(anomalies)
1313 }
1314}
1315
1316impl ModulePerformanceMonitor {
1317 fn new(module_name: String) -> Self {
1318 Self {
1319 module_name,
1320 metrics: Arc::new(RwLock::new(ModuleMetrics {
1321 cpu_usage: 0.0,
1322 memory_usage: 0,
1323 gpu_memory_usage: None,
1324 network_io_bps: 0,
1325 disk_io_bps: 0,
1326 request_rate: 0.0,
1327 avg_response_time: Duration::from_millis(0),
1328 error_rate: 0.0,
1329 cache_hit_rate: 0.0,
1330 active_connections: 0,
1331 queue_depth: 0,
1332 })),
1333 resource_tracker: ResourceTracker::new(),
1334 history: Arc::new(RwLock::new(VecDeque::new())),
1335 prediction_model: PredictionModel::new(),
1336 }
1337 }
1338
1339 async fn update_metrics(&self, new_metrics: ModuleMetrics) -> Result<()> {
1340 {
1341 let mut metrics = self.metrics.write().expect("lock poisoned");
1342 *metrics = new_metrics.clone();
1343 }
1344
1345 let snapshot = PerformanceSnapshot {
1347 metrics: new_metrics,
1348 timestamp: Utc::now(),
1349 };
1350
1351 {
1352 let mut history = self.history.write().expect("lock poisoned");
1353 history.push_back(snapshot);
1354
1355 if history.len() > 1000 {
1357 history.pop_front();
1358 }
1359 }
1360
1361 Ok(())
1362 }
1363
1364 async fn get_current_metrics(&self) -> Result<ModuleMetrics> {
1365 let metrics = self.metrics.read().expect("lock poisoned");
1366 Ok(metrics.clone())
1367 }
1368}
1369
1370#[derive(Debug, Clone)]
1372pub struct ResourceTracker {
1373 cpu_history: Arc<RwLock<VecDeque<f64>>>,
1375 memory_history: Arc<RwLock<VecDeque<u64>>>,
1377 last_update: Arc<RwLock<DateTime<Utc>>>,
1379}
1380
1381impl ResourceTracker {
1382 fn new() -> Self {
1383 Self {
1384 cpu_history: Arc::new(RwLock::new(VecDeque::new())),
1385 memory_history: Arc::new(RwLock::new(VecDeque::new())),
1386 last_update: Arc::new(RwLock::new(Utc::now())),
1387 }
1388 }
1389}
1390
1391#[derive(Debug, Clone)]
1393pub struct PerformanceSnapshot {
1394 pub metrics: ModuleMetrics,
1396 pub timestamp: DateTime<Utc>,
1398}
1399
1400#[derive(Debug, Clone)]
1402pub struct PredictionModel {
1403 parameters: HashMap<String, f64>,
1405 last_trained: DateTime<Utc>,
1407}
1408
1409impl PredictionModel {
1410 fn new() -> Self {
1411 Self {
1412 parameters: HashMap::new(),
1413 last_trained: Utc::now(),
1414 }
1415 }
1416}
1417
1418#[derive(Debug, Clone)]
1420pub enum AllocationStrategy {
1421 Proportional,
1422 PriorityBased,
1423 PerformanceBased,
1424 Predictive,
1425}
1426
1427fn calculate_percentage_change(old_value: f64, new_value: f64) -> f64 {
1429 if old_value == 0.0 {
1430 return 0.0;
1431 }
1432 ((new_value - old_value) / old_value) * 100.0
1433}
1434
1435fn calculate_anomaly_score(metrics: &ModuleMetrics) -> f64 {
1436 let cpu_score = if metrics.cpu_usage > 80.0 {
1437 metrics.cpu_usage
1438 } else {
1439 0.0
1440 };
1441 let error_score = metrics.error_rate * 10.0;
1442 let latency_score = if metrics.avg_response_time > Duration::from_millis(500) {
1443 metrics.avg_response_time.as_millis() as f64 / 10.0
1444 } else {
1445 0.0
1446 };
1447
1448 (cpu_score + error_score + latency_score) / 3.0
1449}
1450
1451#[cfg(test)]
1453mod tests {
1454 use super::*;
1455 use tokio;
1456
1457 #[tokio::test]
1458 async fn test_coordinator_creation() {
1459 let config = CoordinatorConfig::default();
1460 let coordinator = CrossModulePerformanceCoordinator::new(config);
1461 assert_eq!(coordinator.module_monitors.read().unwrap().len(), 0);
1462 }
1463
1464 #[tokio::test]
1465 async fn test_module_registration() {
1466 let config = CoordinatorConfig::default();
1467 let coordinator = CrossModulePerformanceCoordinator::new(config);
1468
1469 let result = coordinator.register_module("test_module".to_string()).await;
1470 assert!(result.is_ok());
1471 assert_eq!(coordinator.module_monitors.read().unwrap().len(), 1);
1472 }
1473
1474 #[tokio::test]
1475 async fn test_metrics_update() {
1476 let config = CoordinatorConfig::default();
1477 let coordinator = CrossModulePerformanceCoordinator::new(config);
1478
1479 coordinator
1480 .register_module("test_module".to_string())
1481 .await
1482 .unwrap();
1483
1484 let metrics = ModuleMetrics {
1485 cpu_usage: 75.0,
1486 memory_usage: 4_000_000_000,
1487 gpu_memory_usage: Some(2_000_000_000),
1488 network_io_bps: 1_000_000,
1489 disk_io_bps: 500_000,
1490 request_rate: 100.0,
1491 avg_response_time: Duration::from_millis(150),
1492 error_rate: 2.0,
1493 cache_hit_rate: 85.0,
1494 active_connections: 50,
1495 queue_depth: 10,
1496 };
1497
1498 let result = coordinator
1499 .update_module_metrics("test_module", metrics)
1500 .await;
1501 assert!(result.is_ok());
1502 }
1503
1504 #[tokio::test]
1505 async fn test_anomaly_detection() {
1506 let detector = AnomalyDetector::new();
1507
1508 let mut performance_data = HashMap::new();
1509 performance_data.insert(
1510 "test_module".to_string(),
1511 ModuleMetrics {
1512 cpu_usage: 95.0, memory_usage: 4_000_000_000,
1514 gpu_memory_usage: Some(2_000_000_000),
1515 network_io_bps: 1_000_000,
1516 disk_io_bps: 500_000,
1517 request_rate: 100.0,
1518 avg_response_time: Duration::from_millis(1500), error_rate: 8.0, cache_hit_rate: 85.0,
1521 active_connections: 50,
1522 queue_depth: 10,
1523 },
1524 );
1525
1526 let anomalies = detector.detect(&performance_data).await.unwrap();
1527 assert!(!anomalies.is_empty());
1528 assert_eq!(
1529 anomalies[0].anomaly_type,
1530 AnomalyType::PerformanceDegradation
1531 );
1532 }
1533
1534 #[tokio::test]
1535 async fn test_resource_allocation() {
1536 let allocator = ResourceAllocator::new();
1537
1538 let recommendation = OptimizationRecommendation {
1539 module_name: "test_module".to_string(),
1540 optimization_type: OptimizationType::ResourceReallocation,
1541 priority: Priority::High,
1542 description: "Test optimization".to_string(),
1543 estimated_impact: PerformanceImpact {
1544 latency_change_pct: -20.0,
1545 throughput_change_pct: 30.0,
1546 efficiency_change_pct: 15.0,
1547 overall_score: 80.0,
1548 },
1549 implementation_steps: vec!["Increase CPU allocation".to_string()],
1550 };
1551
1552 let result = allocator
1553 .reallocate_resources("test_module", &recommendation)
1554 .await;
1555 assert!(result.is_ok());
1556 }
1557
1558 #[tokio::test]
1559 async fn test_percentage_change_calculation() {
1560 assert_eq!(calculate_percentage_change(100.0, 120.0), 20.0);
1561 assert_eq!(calculate_percentage_change(100.0, 80.0), -20.0);
1562 assert_eq!(calculate_percentage_change(0.0, 100.0), 0.0);
1563 }
1564
1565 #[tokio::test]
1566 async fn test_anomaly_score_calculation() {
1567 let metrics = ModuleMetrics {
1568 cpu_usage: 90.0,
1569 memory_usage: 4_000_000_000,
1570 gpu_memory_usage: Some(2_000_000_000),
1571 network_io_bps: 1_000_000,
1572 disk_io_bps: 500_000,
1573 request_rate: 100.0,
1574 avg_response_time: Duration::from_millis(800),
1575 error_rate: 5.0,
1576 cache_hit_rate: 85.0,
1577 active_connections: 50,
1578 queue_depth: 10,
1579 };
1580
1581 let score = calculate_anomaly_score(&metrics);
1582 assert!(score > 0.0);
1583 assert!(score > 50.0); }
1585
1586 #[tokio::test]
1587 async fn test_optimization_cache() {
1588 let cache = OptimizationCache::new();
1589 assert_eq!(cache.stats.size.load(Ordering::SeqCst), 0);
1590 }
1591
1592 #[tokio::test]
1593 async fn test_module_monitor_creation() {
1594 let monitor = ModulePerformanceMonitor::new("test_module".to_string());
1595 assert_eq!(monitor.module_name, "test_module");
1596
1597 let metrics = monitor.get_current_metrics().await.unwrap();
1598 assert_eq!(metrics.cpu_usage, 0.0);
1599 }
1600
1601 #[tokio::test]
1602 async fn test_prediction_model() {
1603 let model = PredictionModel::new();
1604 assert!(model.parameters.is_empty());
1605 }
1606}