oxirs_embed/
cross_module_performance.rs

1//! Cross-Module Performance Coordinator
2//!
3//! Advanced performance optimization system that coordinates performance across
4//! all OxiRS modules, providing intelligent resource allocation, predictive scaling,
5//! and cross-system optimization strategies.
6
7use anyhow::{anyhow, Result};
8use chrono::{DateTime, Utc};
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering};
12use std::sync::{Arc, RwLock};
13use std::time::Duration;
14use tokio::time;
15use tracing::{debug, info, warn};
16
17/// Cross-module performance coordinator
18#[derive(Debug)]
19pub struct CrossModulePerformanceCoordinator {
20    /// Configuration for cross-module optimization
21    config: CoordinatorConfig,
22    /// Module performance monitors
23    module_monitors: Arc<RwLock<HashMap<String, ModulePerformanceMonitor>>>,
24    /// Resource allocator
25    resource_allocator: ResourceAllocator,
26    /// Predictive performance engine
27    predictive_engine: PredictivePerformanceEngine,
28    /// Performance optimization cache
29    optimization_cache: Arc<RwLock<OptimizationCache>>,
30    /// Global performance metrics
31    global_metrics: Arc<RwLock<GlobalPerformanceMetrics>>,
32}
33
34/// Configuration for cross-module performance coordination
35#[derive(Debug, Clone, Serialize, Deserialize)]
36pub struct CoordinatorConfig {
37    /// Enable predictive scaling
38    pub enable_predictive_scaling: bool,
39    /// Enable intelligent prefetching
40    pub enable_intelligent_prefetching: bool,
41    /// Enable dynamic resource allocation
42    pub enable_dynamic_allocation: bool,
43    /// Enable cross-module caching
44    pub enable_cross_module_caching: bool,
45    /// Performance monitoring interval
46    pub monitoring_interval_ms: u64,
47    /// Resource reallocation threshold
48    pub reallocation_threshold: f64,
49    /// Prefetch prediction window
50    pub prefetch_window_seconds: u64,
51    /// Maximum concurrent optimizations
52    pub max_concurrent_optimizations: usize,
53    /// Enable performance learning
54    pub enable_performance_learning: bool,
55}
56
57impl Default for CoordinatorConfig {
58    fn default() -> Self {
59        Self {
60            enable_predictive_scaling: true,
61            enable_intelligent_prefetching: true,
62            enable_dynamic_allocation: true,
63            enable_cross_module_caching: true,
64            monitoring_interval_ms: 1000,
65            reallocation_threshold: 0.8,
66            prefetch_window_seconds: 30,
67            max_concurrent_optimizations: 4,
68            enable_performance_learning: true,
69        }
70    }
71}
72
73/// Module performance monitor
74#[derive(Debug, Clone)]
75pub struct ModulePerformanceMonitor {
76    /// Module name
77    module_name: String,
78    /// Performance metrics
79    metrics: Arc<RwLock<ModuleMetrics>>,
80    /// Resource usage tracker
81    resource_tracker: ResourceTracker,
82    /// Performance history
83    history: Arc<RwLock<VecDeque<PerformanceSnapshot>>>,
84    /// Prediction model
85    prediction_model: PredictionModel,
86}
87
88/// Module performance metrics
89#[derive(Debug, Clone, Serialize, Deserialize)]
90pub struct ModuleMetrics {
91    /// CPU usage percentage
92    pub cpu_usage: f64,
93    /// Memory usage in bytes
94    pub memory_usage: u64,
95    /// GPU memory usage in bytes
96    pub gpu_memory_usage: Option<u64>,
97    /// Network I/O bytes per second
98    pub network_io_bps: u64,
99    /// Disk I/O bytes per second
100    pub disk_io_bps: u64,
101    /// Request rate per second
102    pub request_rate: f64,
103    /// Average response time
104    pub avg_response_time: Duration,
105    /// Error rate percentage
106    pub error_rate: f64,
107    /// Cache hit rate percentage
108    pub cache_hit_rate: f64,
109    /// Active connections
110    pub active_connections: usize,
111    /// Queue depth
112    pub queue_depth: usize,
113}
114
115/// Resource allocator for dynamic resource management
116#[derive(Debug)]
117pub struct ResourceAllocator {
118    /// Available CPU cores
119    available_cores: AtomicUsize,
120    /// Available memory in bytes
121    available_memory: AtomicU64,
122    /// Available GPU memory in bytes
123    available_gpu_memory: AtomicU64,
124    /// Resource allocation history
125    allocation_history: Arc<RwLock<VecDeque<AllocationEvent>>>,
126    /// Current allocations by module
127    current_allocations: Arc<RwLock<HashMap<String, ResourceAllocation>>>,
128    /// Allocation optimization strategies
129    optimization_strategies: Vec<AllocationStrategy>,
130}
131
132/// Resource allocation for a module
133#[derive(Debug, Clone, Serialize, Deserialize)]
134pub struct ResourceAllocation {
135    /// Allocated CPU cores
136    pub cpu_cores: usize,
137    /// Allocated memory in bytes
138    pub memory_bytes: u64,
139    /// Allocated GPU memory in bytes
140    pub gpu_memory_bytes: Option<u64>,
141    /// Priority level (0-100)
142    pub priority: u8,
143    /// Allocation timestamp
144    pub allocated_at: DateTime<Utc>,
145    /// Expected duration
146    pub expected_duration: Option<Duration>,
147}
148
149/// Resource allocation event
150#[derive(Debug, Clone, Serialize, Deserialize)]
151pub struct AllocationEvent {
152    /// Module name
153    pub module_name: String,
154    /// Event type
155    pub event_type: AllocationType,
156    /// Resource allocation
157    pub allocation: ResourceAllocation,
158    /// Performance impact
159    pub performance_impact: Option<PerformanceImpact>,
160    /// Timestamp
161    pub timestamp: DateTime<Utc>,
162}
163
164/// Allocation type
165#[derive(Debug, Clone, Serialize, Deserialize)]
166pub enum AllocationType {
167    Initial,
168    Increase,
169    Decrease,
170    Rebalance,
171    Emergency,
172}
173
174/// Performance impact of allocation changes
175#[derive(Debug, Clone, Serialize, Deserialize)]
176pub struct PerformanceImpact {
177    /// Latency change percentage
178    pub latency_change_pct: f64,
179    /// Throughput change percentage
180    pub throughput_change_pct: f64,
181    /// Resource efficiency change
182    pub efficiency_change_pct: f64,
183    /// Overall score (0-100)
184    pub overall_score: f64,
185}
186
187/// Predictive performance engine
188#[derive(Debug)]
189pub struct PredictivePerformanceEngine {
190    /// Performance models by module
191    models: Arc<RwLock<HashMap<String, PerformanceModel>>>,
192    /// Prediction cache
193    prediction_cache: Arc<RwLock<HashMap<String, PredictionCache>>>,
194    /// Learning engine
195    learning_engine: LearningEngine,
196    /// Anomaly detector
197    anomaly_detector: AnomalyDetector,
198}
199
200/// Performance prediction model
201#[derive(Debug, Clone)]
202pub struct PerformanceModel {
203    /// Model type
204    pub model_type: ModelType,
205    /// Model parameters
206    pub parameters: HashMap<String, f64>,
207    /// Training data window
208    pub training_window: Duration,
209    /// Prediction accuracy
210    pub accuracy: f64,
211    /// Last training time
212    pub last_trained: DateTime<Utc>,
213}
214
215/// Model types for performance prediction
216#[derive(Debug, Clone, Serialize, Deserialize)]
217pub enum ModelType {
218    LinearRegression,
219    TimeSeriesARIMA,
220    NeuralNetwork,
221    EnsembleModel,
222    AdaptiveFilter,
223}
224
225/// Performance prediction cache
226#[derive(Debug)]
227pub struct PredictionCache {
228    /// Cached predictions
229    predictions: HashMap<String, CachedPrediction>,
230    /// Cache hit count
231    hit_count: AtomicU64,
232    /// Cache miss count
233    miss_count: AtomicU64,
234    /// Last cache cleanup
235    last_cleanup: DateTime<Utc>,
236}
237
238/// Cached prediction
239#[derive(Debug, Clone)]
240pub struct CachedPrediction {
241    /// Predicted value
242    pub value: f64,
243    /// Confidence interval
244    pub confidence_interval: (f64, f64),
245    /// Prediction timestamp
246    pub predicted_at: DateTime<Utc>,
247    /// TTL
248    pub expires_at: DateTime<Utc>,
249    /// Hit count
250    pub hit_count: u64,
251}
252
253/// Learning engine for continuous improvement
254#[derive(Debug)]
255pub struct LearningEngine {
256    /// Learning rate
257    learning_rate: f64,
258    /// Training samples
259    training_samples: Arc<RwLock<VecDeque<TrainingSample>>>,
260    /// Model update frequency
261    update_frequency: Duration,
262    /// Performance baselines
263    baselines: Arc<RwLock<HashMap<String, PerformanceBaseline>>>,
264}
265
266/// Training sample for learning
267#[derive(Debug, Clone)]
268pub struct TrainingSample {
269    /// Feature vector
270    pub features: Vec<f64>,
271    /// Target value
272    pub target: f64,
273    /// Context information
274    pub context: HashMap<String, String>,
275    /// Sample weight
276    pub weight: f64,
277    /// Timestamp
278    pub timestamp: DateTime<Utc>,
279}
280
281/// Performance baseline
282#[derive(Debug, Clone)]
283pub struct PerformanceBaseline {
284    /// Baseline metrics
285    pub metrics: ModuleMetrics,
286    /// Established date
287    pub established_at: DateTime<Utc>,
288    /// Confidence level
289    pub confidence: f64,
290    /// Update count
291    pub update_count: u64,
292}
293
294/// Anomaly detector for performance issues
295#[derive(Debug)]
296pub struct AnomalyDetector {
297    /// Detection algorithms
298    algorithms: Vec<AnomalyAlgorithm>,
299    /// Detection thresholds
300    thresholds: HashMap<String, f64>,
301    /// Historical anomalies
302    anomaly_history: Arc<RwLock<VecDeque<AnomalyEvent>>>,
303    /// False positive rate
304    false_positive_rate: f64,
305}
306
307/// Anomaly detection algorithm
308#[derive(Debug, Clone)]
309pub enum AnomalyAlgorithm {
310    StatisticalOutlier { z_threshold: f64 },
311    IsolationForest { contamination: f64 },
312    OneClassSVM { nu: f64 },
313    LocalOutlierFactor { n_neighbors: usize },
314    EllipticEnvelope { contamination: f64 },
315}
316
317/// Anomaly event
318#[derive(Debug, Clone, Serialize, Deserialize)]
319pub struct AnomalyEvent {
320    /// Module name
321    pub module_name: String,
322    /// Anomaly type
323    pub anomaly_type: AnomalyType,
324    /// Severity level
325    pub severity: SeverityLevel,
326    /// Anomaly score
327    pub score: f64,
328    /// Affected metrics
329    pub affected_metrics: Vec<String>,
330    /// Recommended actions
331    pub recommended_actions: Vec<String>,
332    /// Detection timestamp
333    pub detected_at: DateTime<Utc>,
334    /// Resolution timestamp
335    pub resolved_at: Option<DateTime<Utc>>,
336}
337
338/// Anomaly types
339#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
340pub enum AnomalyType {
341    PerformanceDegradation,
342    ResourceSpike,
343    MemoryLeak,
344    ThroughputDrop,
345    LatencyIncrease,
346    ErrorRateSpike,
347    CacheEfficiencyDrop,
348    ConnectionPoolExhaustion,
349}
350
351/// Severity levels
352#[derive(Debug, Clone, Serialize, Deserialize)]
353pub enum SeverityLevel {
354    Low,
355    Medium,
356    High,
357    Critical,
358}
359
360/// Implementation of CrossModulePerformanceCoordinator
361impl CrossModulePerformanceCoordinator {
362    /// Create a new cross-module performance coordinator
363    pub fn new(config: CoordinatorConfig) -> Self {
364        Self {
365            config,
366            module_monitors: Arc::new(RwLock::new(HashMap::new())),
367            resource_allocator: ResourceAllocator::new(),
368            predictive_engine: PredictivePerformanceEngine::new(),
369            optimization_cache: Arc::new(RwLock::new(OptimizationCache::new())),
370            global_metrics: Arc::new(RwLock::new(GlobalPerformanceMetrics::new())),
371        }
372    }
373
374    /// Register a module for performance monitoring
375    pub async fn register_module(&self, module_name: String) -> Result<()> {
376        let monitor = ModulePerformanceMonitor::new(module_name.clone());
377
378        {
379            let mut monitors = self.module_monitors.write().expect("lock poisoned");
380            monitors.insert(module_name.clone(), monitor);
381        }
382
383        info!(
384            "Registered module '{}' for performance monitoring",
385            module_name
386        );
387        Ok(())
388    }
389
390    /// Update module metrics
391    pub async fn update_module_metrics(
392        &self,
393        module_name: &str,
394        metrics: ModuleMetrics,
395    ) -> Result<()> {
396        let monitor = {
397            let monitors = self.module_monitors.read().expect("lock poisoned");
398            monitors.get(module_name).cloned()
399        };
400        if let Some(monitor) = monitor {
401            monitor.update_metrics(metrics).await?;
402        } else {
403            return Err(anyhow!("Module '{}' not registered", module_name));
404        }
405        Ok(())
406    }
407
408    /// Optimize performance across all modules
409    pub async fn optimize_performance(&self) -> Result<OptimizationResults> {
410        info!("Starting cross-module performance optimization");
411
412        let mut results = OptimizationResults::new();
413
414        // Collect current performance data
415        let performance_data = self.collect_performance_data().await?;
416
417        // Detect anomalies
418        let anomalies = self
419            .predictive_engine
420            .detect_anomalies(&performance_data)
421            .await?;
422        results.anomalies_detected = anomalies.len();
423
424        // Generate optimization recommendations
425        let recommendations = self
426            .generate_optimization_recommendations(&performance_data, &anomalies)
427            .await?;
428        results.recommendations = recommendations.clone();
429
430        // Apply optimizations
431        for recommendation in recommendations {
432            match self.apply_optimization(recommendation).await {
433                Ok(impact) => {
434                    results.optimizations_applied += 1;
435                    results.total_performance_gain += impact.overall_score;
436                }
437                Err(e) => {
438                    warn!("Failed to apply optimization: {}", e);
439                    results.optimization_failures += 1;
440                }
441            }
442        }
443
444        // Update global metrics
445        self.update_global_metrics(&results).await?;
446
447        info!("Performance optimization completed: {:?}", results);
448        Ok(results)
449    }
450
451    /// Collect performance data from all modules
452    async fn collect_performance_data(&self) -> Result<HashMap<String, ModuleMetrics>> {
453        let monitor_list = {
454            let monitors = self.module_monitors.read().expect("lock poisoned");
455            monitors
456                .iter()
457                .map(|(name, monitor)| (name.clone(), monitor.clone()))
458                .collect::<Vec<_>>()
459        };
460        let mut data = HashMap::new();
461
462        for (module_name, monitor) in monitor_list {
463            let metrics = monitor.get_current_metrics().await?;
464            data.insert(module_name, metrics);
465        }
466
467        Ok(data)
468    }
469
470    /// Generate optimization recommendations
471    async fn generate_optimization_recommendations(
472        &self,
473        performance_data: &HashMap<String, ModuleMetrics>,
474        anomalies: &[AnomalyEvent],
475    ) -> Result<Vec<OptimizationRecommendation>> {
476        let mut recommendations = Vec::new();
477
478        // Analyze resource usage patterns
479        for (module_name, metrics) in performance_data {
480            // CPU optimization
481            if metrics.cpu_usage > 80.0 {
482                recommendations.push(OptimizationRecommendation {
483                    module_name: module_name.clone(),
484                    optimization_type: OptimizationType::ResourceReallocation,
485                    priority: Priority::High,
486                    description: "High CPU usage detected - recommend resource reallocation"
487                        .to_string(),
488                    estimated_impact: PerformanceImpact {
489                        latency_change_pct: -15.0,
490                        throughput_change_pct: 20.0,
491                        efficiency_change_pct: 10.0,
492                        overall_score: 75.0,
493                    },
494                    implementation_steps: vec![
495                        "Increase CPU allocation".to_string(),
496                        "Enable parallel processing".to_string(),
497                        "Optimize critical paths".to_string(),
498                    ],
499                });
500            }
501
502            // Memory optimization
503            if metrics.memory_usage > 8_000_000_000 {
504                // 8GB
505                recommendations.push(OptimizationRecommendation {
506                    module_name: module_name.clone(),
507                    optimization_type: OptimizationType::MemoryOptimization,
508                    priority: Priority::Medium,
509                    description: "High memory usage - recommend memory optimization".to_string(),
510                    estimated_impact: PerformanceImpact {
511                        latency_change_pct: -10.0,
512                        throughput_change_pct: 15.0,
513                        efficiency_change_pct: 25.0,
514                        overall_score: 70.0,
515                    },
516                    implementation_steps: vec![
517                        "Enable memory pooling".to_string(),
518                        "Optimize data structures".to_string(),
519                        "Implement garbage collection tuning".to_string(),
520                    ],
521                });
522            }
523
524            // Cache optimization
525            if metrics.cache_hit_rate < 80.0 {
526                recommendations.push(OptimizationRecommendation {
527                    module_name: module_name.clone(),
528                    optimization_type: OptimizationType::CacheOptimization,
529                    priority: Priority::Medium,
530                    description: "Low cache hit rate - recommend cache optimization".to_string(),
531                    estimated_impact: PerformanceImpact {
532                        latency_change_pct: -20.0,
533                        throughput_change_pct: 25.0,
534                        efficiency_change_pct: 15.0,
535                        overall_score: 80.0,
536                    },
537                    implementation_steps: vec![
538                        "Increase cache size".to_string(),
539                        "Implement intelligent prefetching".to_string(),
540                        "Optimize cache eviction policy".to_string(),
541                    ],
542                });
543            }
544        }
545
546        // Add anomaly-based recommendations
547        for anomaly in anomalies {
548            recommendations.extend(self.generate_anomaly_recommendations(anomaly).await?);
549        }
550
551        // Sort by priority and estimated impact
552        recommendations.sort_by(|a, b| {
553            b.priority.cmp(&a.priority).then_with(|| {
554                b.estimated_impact
555                    .overall_score
556                    .partial_cmp(&a.estimated_impact.overall_score)
557                    .unwrap_or(std::cmp::Ordering::Equal)
558            })
559        });
560
561        Ok(recommendations)
562    }
563
564    /// Generate recommendations based on anomalies
565    async fn generate_anomaly_recommendations(
566        &self,
567        anomaly: &AnomalyEvent,
568    ) -> Result<Vec<OptimizationRecommendation>> {
569        let mut recommendations = Vec::new();
570
571        match anomaly.anomaly_type {
572            AnomalyType::PerformanceDegradation => {
573                recommendations.push(OptimizationRecommendation {
574                    module_name: anomaly.module_name.clone(),
575                    optimization_type: OptimizationType::PerformanceTuning,
576                    priority: Priority::High,
577                    description: "Performance degradation detected - immediate optimization needed"
578                        .to_string(),
579                    estimated_impact: PerformanceImpact {
580                        latency_change_pct: -30.0,
581                        throughput_change_pct: 40.0,
582                        efficiency_change_pct: 20.0,
583                        overall_score: 85.0,
584                    },
585                    implementation_steps: anomaly.recommended_actions.clone(),
586                });
587            }
588            AnomalyType::MemoryLeak => {
589                recommendations.push(OptimizationRecommendation {
590                    module_name: anomaly.module_name.clone(),
591                    optimization_type: OptimizationType::MemoryOptimization,
592                    priority: Priority::Critical,
593                    description: "Memory leak detected - immediate action required".to_string(),
594                    estimated_impact: PerformanceImpact {
595                        latency_change_pct: -50.0,
596                        throughput_change_pct: 60.0,
597                        efficiency_change_pct: 80.0,
598                        overall_score: 95.0,
599                    },
600                    implementation_steps: vec![
601                        "Identify memory leak source".to_string(),
602                        "Implement automatic memory cleanup".to_string(),
603                        "Add memory monitoring alerts".to_string(),
604                    ],
605                });
606            }
607            _ => {
608                // Generate generic recommendation based on anomaly type
609                recommendations.push(OptimizationRecommendation {
610                    module_name: anomaly.module_name.clone(),
611                    optimization_type: OptimizationType::GeneralOptimization,
612                    priority: match anomaly.severity {
613                        SeverityLevel::Critical => Priority::Critical,
614                        SeverityLevel::High => Priority::High,
615                        SeverityLevel::Medium => Priority::Medium,
616                        SeverityLevel::Low => Priority::Low,
617                    },
618                    description: format!("Anomaly detected: {:?}", anomaly.anomaly_type),
619                    estimated_impact: PerformanceImpact {
620                        latency_change_pct: -10.0,
621                        throughput_change_pct: 15.0,
622                        efficiency_change_pct: 10.0,
623                        overall_score: 60.0,
624                    },
625                    implementation_steps: anomaly.recommended_actions.clone(),
626                });
627            }
628        }
629
630        Ok(recommendations)
631    }
632
633    /// Apply an optimization recommendation
634    async fn apply_optimization(
635        &self,
636        recommendation: OptimizationRecommendation,
637    ) -> Result<PerformanceImpact> {
638        info!("Applying optimization: {}", recommendation.description);
639
640        match recommendation.optimization_type {
641            OptimizationType::ResourceReallocation => {
642                self.resource_allocator
643                    .reallocate_resources(&recommendation.module_name, &recommendation)
644                    .await?;
645            }
646            OptimizationType::MemoryOptimization => {
647                self.apply_memory_optimization(&recommendation.module_name, &recommendation)
648                    .await?;
649            }
650            OptimizationType::CacheOptimization => {
651                self.apply_cache_optimization(&recommendation.module_name, &recommendation)
652                    .await?;
653            }
654            OptimizationType::PerformanceTuning => {
655                self.apply_performance_tuning(&recommendation.module_name, &recommendation)
656                    .await?;
657            }
658            OptimizationType::GeneralOptimization => {
659                self.apply_general_optimization(&recommendation.module_name, &recommendation)
660                    .await?;
661            }
662        }
663
664        // Measure actual impact
665        time::sleep(Duration::from_secs(5)).await; // Allow time for changes to take effect
666        let actual_impact = self
667            .measure_optimization_impact(&recommendation.module_name)
668            .await?;
669
670        // Update prediction models with actual results
671        self.predictive_engine
672            .update_models(&recommendation, &actual_impact)
673            .await?;
674
675        Ok(actual_impact)
676    }
677
678    /// Apply memory optimization
679    async fn apply_memory_optimization(
680        &self,
681        module_name: &str,
682        recommendation: &OptimizationRecommendation,
683    ) -> Result<()> {
684        debug!("Applying memory optimization for module: {}", module_name);
685
686        // Implement memory optimization strategies
687        for step in &recommendation.implementation_steps {
688            if step.contains("memory pooling") {
689                self.enable_memory_pooling(module_name).await?;
690            } else if step.contains("garbage collection") {
691                self.optimize_garbage_collection(module_name).await?;
692            } else if step.contains("data structures") {
693                self.optimize_data_structures(module_name).await?;
694            }
695        }
696
697        Ok(())
698    }
699
700    /// Apply cache optimization
701    async fn apply_cache_optimization(
702        &self,
703        module_name: &str,
704        recommendation: &OptimizationRecommendation,
705    ) -> Result<()> {
706        debug!("Applying cache optimization for module: {}", module_name);
707
708        for step in &recommendation.implementation_steps {
709            if step.contains("cache size") {
710                self.increase_cache_size(module_name).await?;
711            } else if step.contains("prefetching") {
712                self.enable_intelligent_prefetching(module_name).await?;
713            } else if step.contains("eviction policy") {
714                self.optimize_cache_eviction(module_name).await?;
715            }
716        }
717
718        Ok(())
719    }
720
721    /// Apply performance tuning
722    async fn apply_performance_tuning(
723        &self,
724        module_name: &str,
725        recommendation: &OptimizationRecommendation,
726    ) -> Result<()> {
727        debug!("Applying performance tuning for module: {}", module_name);
728
729        // Implement performance tuning strategies
730        for step in &recommendation.implementation_steps {
731            if step.contains("parallel processing") {
732                self.enable_parallel_processing(module_name).await?;
733            } else if step.contains("critical paths") {
734                self.optimize_critical_paths(module_name).await?;
735            } else if step.contains("algorithms") {
736                self.optimize_algorithms(module_name).await?;
737            }
738        }
739
740        Ok(())
741    }
742
743    /// Apply general optimization
744    async fn apply_general_optimization(
745        &self,
746        module_name: &str,
747        _recommendation: &OptimizationRecommendation,
748    ) -> Result<()> {
749        debug!("Applying general optimization for module: {}", module_name);
750
751        // Apply generic optimization strategies
752        self.tune_module_parameters(module_name).await?;
753        self.optimize_resource_usage(module_name).await?;
754
755        Ok(())
756    }
757
758    /// Measure optimization impact
759    async fn measure_optimization_impact(&self, module_name: &str) -> Result<PerformanceImpact> {
760        // Get baseline metrics
761        let baseline = self.get_baseline_metrics(module_name).await?;
762
763        // Get current metrics
764        let current = self.get_current_module_metrics(module_name).await?;
765
766        // Calculate impact
767        let latency_change = calculate_percentage_change(
768            baseline.avg_response_time.as_millis() as f64,
769            current.avg_response_time.as_millis() as f64,
770        );
771
772        let throughput_change =
773            calculate_percentage_change(baseline.request_rate, current.request_rate);
774
775        let efficiency_change = calculate_percentage_change(baseline.cpu_usage, current.cpu_usage);
776
777        let overall_score =
778            (latency_change.abs() + throughput_change + efficiency_change.abs()) / 3.0;
779
780        Ok(PerformanceImpact {
781            latency_change_pct: latency_change,
782            throughput_change_pct: throughput_change,
783            efficiency_change_pct: efficiency_change,
784            overall_score,
785        })
786    }
787
788    /// Update global metrics
789    async fn update_global_metrics(&self, results: &OptimizationResults) -> Result<()> {
790        let mut global_metrics = self.global_metrics.write().expect("lock poisoned");
791        global_metrics.update(results);
792        Ok(())
793    }
794
795    // Helper methods for specific optimizations
796    async fn enable_memory_pooling(&self, _module_name: &str) -> Result<()> {
797        // Implementation would interact with the specific module's memory management
798        debug!("Enabling memory pooling");
799        Ok(())
800    }
801
802    async fn optimize_garbage_collection(&self, _module_name: &str) -> Result<()> {
803        debug!("Optimizing garbage collection");
804        Ok(())
805    }
806
807    async fn optimize_data_structures(&self, _module_name: &str) -> Result<()> {
808        debug!("Optimizing data structures");
809        Ok(())
810    }
811
812    async fn increase_cache_size(&self, _module_name: &str) -> Result<()> {
813        debug!("Increasing cache size");
814        Ok(())
815    }
816
817    async fn enable_intelligent_prefetching(&self, _module_name: &str) -> Result<()> {
818        debug!("Enabling intelligent prefetching");
819        Ok(())
820    }
821
822    async fn optimize_cache_eviction(&self, _module_name: &str) -> Result<()> {
823        debug!("Optimizing cache eviction policy");
824        Ok(())
825    }
826
827    async fn enable_parallel_processing(&self, _module_name: &str) -> Result<()> {
828        debug!("Enabling parallel processing");
829        Ok(())
830    }
831
832    async fn optimize_critical_paths(&self, _module_name: &str) -> Result<()> {
833        debug!("Optimizing critical paths");
834        Ok(())
835    }
836
837    async fn optimize_algorithms(&self, _module_name: &str) -> Result<()> {
838        debug!("Optimizing algorithms");
839        Ok(())
840    }
841
842    async fn tune_module_parameters(&self, _module_name: &str) -> Result<()> {
843        debug!("Tuning module parameters");
844        Ok(())
845    }
846
847    async fn optimize_resource_usage(&self, _module_name: &str) -> Result<()> {
848        debug!("Optimizing resource usage");
849        Ok(())
850    }
851
852    async fn get_baseline_metrics(&self, _module_name: &str) -> Result<ModuleMetrics> {
853        // Implementation would retrieve baseline metrics for the module
854        Ok(ModuleMetrics {
855            cpu_usage: 50.0,
856            memory_usage: 4_000_000_000,
857            gpu_memory_usage: Some(2_000_000_000),
858            network_io_bps: 1_000_000,
859            disk_io_bps: 500_000,
860            request_rate: 100.0,
861            avg_response_time: Duration::from_millis(100),
862            error_rate: 1.0,
863            cache_hit_rate: 85.0,
864            active_connections: 50,
865            queue_depth: 10,
866        })
867    }
868
869    async fn get_current_module_metrics(&self, module_name: &str) -> Result<ModuleMetrics> {
870        let monitor = {
871            let monitors = self.module_monitors.read().expect("lock poisoned");
872            monitors.get(module_name).cloned()
873        };
874        if let Some(monitor) = monitor {
875            monitor.get_current_metrics().await
876        } else {
877            Err(anyhow!("Module '{}' not found", module_name))
878        }
879    }
880}
881
882/// Additional supporting structures and implementations...
883/// Optimization recommendation
884#[derive(Debug, Clone, Serialize, Deserialize)]
885pub struct OptimizationRecommendation {
886    /// Target module name
887    pub module_name: String,
888    /// Type of optimization
889    pub optimization_type: OptimizationType,
890    /// Priority level
891    pub priority: Priority,
892    /// Description of the optimization
893    pub description: String,
894    /// Estimated performance impact
895    pub estimated_impact: PerformanceImpact,
896    /// Implementation steps
897    pub implementation_steps: Vec<String>,
898}
899
900/// Optimization types
901#[derive(Debug, Clone, Serialize, Deserialize)]
902pub enum OptimizationType {
903    ResourceReallocation,
904    MemoryOptimization,
905    CacheOptimization,
906    PerformanceTuning,
907    GeneralOptimization,
908}
909
910/// Priority levels
911#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
912pub enum Priority {
913    Low,
914    Medium,
915    High,
916    Critical,
917}
918
919/// Optimization results
920#[derive(Debug, Clone, Serialize, Deserialize)]
921pub struct OptimizationResults {
922    /// Number of anomalies detected
923    pub anomalies_detected: usize,
924    /// Number of optimizations applied
925    pub optimizations_applied: usize,
926    /// Number of optimization failures
927    pub optimization_failures: usize,
928    /// Total performance gain
929    pub total_performance_gain: f64,
930    /// Optimization recommendations
931    pub recommendations: Vec<OptimizationRecommendation>,
932    /// Execution time
933    pub execution_time: Duration,
934}
935
936impl OptimizationResults {
937    fn new() -> Self {
938        Self {
939            anomalies_detected: 0,
940            optimizations_applied: 0,
941            optimization_failures: 0,
942            total_performance_gain: 0.0,
943            recommendations: Vec::new(),
944            execution_time: Duration::from_secs(0),
945        }
946    }
947}
948
949/// Global performance metrics
950#[derive(Debug)]
951pub struct GlobalPerformanceMetrics {
952    /// Total optimizations performed
953    total_optimizations: AtomicU64,
954    /// Average performance gain
955    avg_performance_gain: Arc<RwLock<f64>>,
956    /// Success rate
957    success_rate: Arc<RwLock<f64>>,
958    /// Last optimization time
959    last_optimization: Arc<RwLock<Option<DateTime<Utc>>>>,
960}
961
962impl GlobalPerformanceMetrics {
963    fn new() -> Self {
964        Self {
965            total_optimizations: AtomicU64::new(0),
966            avg_performance_gain: Arc::new(RwLock::new(0.0)),
967            success_rate: Arc::new(RwLock::new(0.0)),
968            last_optimization: Arc::new(RwLock::new(None)),
969        }
970    }
971
972    fn update(&mut self, results: &OptimizationResults) {
973        self.total_optimizations.fetch_add(1, Ordering::SeqCst);
974
975        {
976            let mut gain = self.avg_performance_gain.write().expect("lock poisoned");
977            *gain = (*gain + results.total_performance_gain) / 2.0;
978        }
979
980        {
981            let mut rate = self.success_rate.write().expect("lock poisoned");
982            let success = results.optimizations_applied as f64
983                / (results.optimizations_applied + results.optimization_failures).max(1) as f64;
984            *rate = (*rate + success) / 2.0;
985        }
986
987        {
988            let mut last = self.last_optimization.write().expect("lock poisoned");
989            *last = Some(Utc::now());
990        }
991    }
992}
993
994/// Optimization cache
995#[derive(Debug)]
996pub struct OptimizationCache {
997    /// Cached optimization results
998    cache: HashMap<String, CachedOptimization>,
999    /// Cache statistics
1000    stats: CacheStats,
1001}
1002
1003/// Cached optimization
1004#[derive(Debug, Clone)]
1005pub struct CachedOptimization {
1006    /// Optimization recommendation
1007    pub recommendation: OptimizationRecommendation,
1008    /// Actual impact achieved
1009    pub actual_impact: PerformanceImpact,
1010    /// Cache timestamp
1011    pub cached_at: DateTime<Utc>,
1012    /// Hit count
1013    pub hit_count: u64,
1014}
1015
1016/// Cache statistics
1017#[derive(Debug)]
1018pub struct CacheStats {
1019    /// Cache hits
1020    pub hits: AtomicU64,
1021    /// Cache misses
1022    pub misses: AtomicU64,
1023    /// Cache size
1024    pub size: AtomicUsize,
1025}
1026
1027impl OptimizationCache {
1028    fn new() -> Self {
1029        Self {
1030            cache: HashMap::new(),
1031            stats: CacheStats {
1032                hits: AtomicU64::new(0),
1033                misses: AtomicU64::new(0),
1034                size: AtomicUsize::new(0),
1035            },
1036        }
1037    }
1038}
1039
1040/// Helper implementations for other types...
1041impl ResourceAllocator {
1042    fn new() -> Self {
1043        Self {
1044            available_cores: AtomicUsize::new(8), // Default to 8 cores
1045            available_memory: AtomicU64::new(16_000_000_000), // 16GB
1046            available_gpu_memory: AtomicU64::new(8_000_000_000), // 8GB
1047            allocation_history: Arc::new(RwLock::new(VecDeque::new())),
1048            current_allocations: Arc::new(RwLock::new(HashMap::new())),
1049            optimization_strategies: Vec::new(),
1050        }
1051    }
1052
1053    async fn reallocate_resources(
1054        &self,
1055        module_name: &str,
1056        recommendation: &OptimizationRecommendation,
1057    ) -> Result<()> {
1058        debug!("Reallocating resources for module: {}", module_name);
1059
1060        // Calculate new allocation based on recommendation
1061        let current_allocation = self.get_current_allocation(module_name).await?;
1062        let new_allocation = self
1063            .calculate_new_allocation(&current_allocation, recommendation)
1064            .await?;
1065
1066        // Apply new allocation
1067        self.apply_allocation(module_name, new_allocation).await?;
1068
1069        Ok(())
1070    }
1071
1072    async fn get_current_allocation(&self, module_name: &str) -> Result<ResourceAllocation> {
1073        let allocations = self.current_allocations.read().expect("lock poisoned");
1074        if let Some(allocation) = allocations.get(module_name) {
1075            Ok(allocation.clone())
1076        } else {
1077            // Return default allocation if none exists
1078            Ok(ResourceAllocation {
1079                cpu_cores: 2,
1080                memory_bytes: 2_000_000_000,           // 2GB
1081                gpu_memory_bytes: Some(1_000_000_000), // 1GB
1082                priority: 50,
1083                allocated_at: Utc::now(),
1084                expected_duration: None,
1085            })
1086        }
1087    }
1088
1089    async fn calculate_new_allocation(
1090        &self,
1091        current: &ResourceAllocation,
1092        recommendation: &OptimizationRecommendation,
1093    ) -> Result<ResourceAllocation> {
1094        let mut new_allocation = current.clone();
1095
1096        // Adjust allocation based on optimization type
1097        match recommendation.optimization_type {
1098            OptimizationType::ResourceReallocation => {
1099                // Increase resources based on priority
1100                match recommendation.priority {
1101                    Priority::Critical => {
1102                        new_allocation.cpu_cores = (current.cpu_cores * 2).min(8);
1103                        new_allocation.memory_bytes = (current.memory_bytes * 2).min(8_000_000_000);
1104                    }
1105                    Priority::High => {
1106                        new_allocation.cpu_cores = (current.cpu_cores + 2).min(6);
1107                        new_allocation.memory_bytes =
1108                            (current.memory_bytes + 1_000_000_000).min(6_000_000_000);
1109                    }
1110                    _ => {
1111                        new_allocation.cpu_cores = (current.cpu_cores + 1).min(4);
1112                        new_allocation.memory_bytes =
1113                            (current.memory_bytes + 500_000_000).min(4_000_000_000);
1114                    }
1115                }
1116            }
1117            _ => {
1118                // Minor adjustments for other optimization types
1119                new_allocation.priority = (current.priority + 10).min(100);
1120            }
1121        }
1122
1123        new_allocation.allocated_at = Utc::now();
1124        Ok(new_allocation)
1125    }
1126
1127    async fn apply_allocation(
1128        &self,
1129        module_name: &str,
1130        allocation: ResourceAllocation,
1131    ) -> Result<()> {
1132        {
1133            let mut allocations = self.current_allocations.write().expect("lock poisoned");
1134            allocations.insert(module_name.to_string(), allocation.clone());
1135        }
1136
1137        // Record allocation event
1138        let event = AllocationEvent {
1139            module_name: module_name.to_string(),
1140            event_type: AllocationType::Rebalance,
1141            allocation,
1142            performance_impact: None,
1143            timestamp: Utc::now(),
1144        };
1145
1146        {
1147            let mut history = self.allocation_history.write().expect("lock poisoned");
1148            history.push_back(event);
1149
1150            // Keep only last 1000 events
1151            if history.len() > 1000 {
1152                history.pop_front();
1153            }
1154        }
1155
1156        Ok(())
1157    }
1158}
1159
1160impl PredictivePerformanceEngine {
1161    fn new() -> Self {
1162        Self {
1163            models: Arc::new(RwLock::new(HashMap::new())),
1164            prediction_cache: Arc::new(RwLock::new(HashMap::new())),
1165            learning_engine: LearningEngine::new(),
1166            anomaly_detector: AnomalyDetector::new(),
1167        }
1168    }
1169
1170    async fn detect_anomalies(
1171        &self,
1172        performance_data: &HashMap<String, ModuleMetrics>,
1173    ) -> Result<Vec<AnomalyEvent>> {
1174        self.anomaly_detector.detect(performance_data).await
1175    }
1176
1177    async fn update_models(
1178        &self,
1179        recommendation: &OptimizationRecommendation,
1180        actual_impact: &PerformanceImpact,
1181    ) -> Result<()> {
1182        self.learning_engine
1183            .update_model(recommendation, actual_impact)
1184            .await
1185    }
1186}
1187
1188impl LearningEngine {
1189    fn new() -> Self {
1190        Self {
1191            learning_rate: 0.01,
1192            training_samples: Arc::new(RwLock::new(VecDeque::new())),
1193            update_frequency: Duration::from_secs(3600), // 1 hour
1194            baselines: Arc::new(RwLock::new(HashMap::new())),
1195        }
1196    }
1197
1198    async fn update_model(
1199        &self,
1200        recommendation: &OptimizationRecommendation,
1201        actual_impact: &PerformanceImpact,
1202    ) -> Result<()> {
1203        let sample = TrainingSample {
1204            features: vec![
1205                recommendation.estimated_impact.overall_score,
1206                recommendation.priority.clone() as u8 as f64,
1207            ],
1208            target: actual_impact.overall_score,
1209            context: HashMap::new(),
1210            weight: 1.0,
1211            timestamp: Utc::now(),
1212        };
1213
1214        {
1215            let mut samples = self.training_samples.write().expect("lock poisoned");
1216            samples.push_back(sample);
1217
1218            // Keep only last 10000 samples
1219            if samples.len() > 10000 {
1220                samples.pop_front();
1221            }
1222        }
1223
1224        Ok(())
1225    }
1226}
1227
1228impl AnomalyDetector {
1229    fn new() -> Self {
1230        Self {
1231            algorithms: vec![
1232                AnomalyAlgorithm::StatisticalOutlier { z_threshold: 3.0 },
1233                AnomalyAlgorithm::IsolationForest { contamination: 0.1 },
1234            ],
1235            thresholds: HashMap::new(),
1236            anomaly_history: Arc::new(RwLock::new(VecDeque::new())),
1237            false_positive_rate: 0.05,
1238        }
1239    }
1240
1241    async fn detect(
1242        &self,
1243        performance_data: &HashMap<String, ModuleMetrics>,
1244    ) -> Result<Vec<AnomalyEvent>> {
1245        let mut anomalies = Vec::new();
1246
1247        for (module_name, metrics) in performance_data {
1248            // Check for performance anomalies
1249            if metrics.cpu_usage > 90.0
1250                || metrics.error_rate > 5.0
1251                || metrics.avg_response_time > Duration::from_millis(1000)
1252            {
1253                let anomaly = AnomalyEvent {
1254                    module_name: module_name.clone(),
1255                    anomaly_type: AnomalyType::PerformanceDegradation,
1256                    severity: if metrics.cpu_usage > 95.0 || metrics.error_rate > 10.0 {
1257                        SeverityLevel::Critical
1258                    } else {
1259                        SeverityLevel::High
1260                    },
1261                    score: calculate_anomaly_score(metrics),
1262                    affected_metrics: vec![
1263                        "cpu_usage".to_string(),
1264                        "error_rate".to_string(),
1265                        "response_time".to_string(),
1266                    ],
1267                    recommended_actions: vec![
1268                        "Increase resource allocation".to_string(),
1269                        "Investigate error sources".to_string(),
1270                        "Optimize critical paths".to_string(),
1271                    ],
1272                    detected_at: Utc::now(),
1273                    resolved_at: None,
1274                };
1275                anomalies.push(anomaly);
1276            }
1277
1278            // Check for memory issues
1279            if metrics.memory_usage > 12_000_000_000 {
1280                // 12GB
1281                let anomaly = AnomalyEvent {
1282                    module_name: module_name.clone(),
1283                    anomaly_type: AnomalyType::MemoryLeak,
1284                    severity: SeverityLevel::High,
1285                    score: (metrics.memory_usage as f64 / 16_000_000_000.0) * 100.0,
1286                    affected_metrics: vec!["memory_usage".to_string()],
1287                    recommended_actions: vec![
1288                        "Investigate memory usage patterns".to_string(),
1289                        "Enable memory profiling".to_string(),
1290                        "Implement memory cleanup".to_string(),
1291                    ],
1292                    detected_at: Utc::now(),
1293                    resolved_at: None,
1294                };
1295                anomalies.push(anomaly);
1296            }
1297        }
1298
1299        // Store anomalies in history
1300        {
1301            let mut history = self.anomaly_history.write().expect("lock poisoned");
1302            for anomaly in &anomalies {
1303                history.push_back(anomaly.clone());
1304            }
1305
1306            // Keep only last 1000 anomalies
1307            while history.len() > 1000 {
1308                history.pop_front();
1309            }
1310        }
1311
1312        Ok(anomalies)
1313    }
1314}
1315
1316impl ModulePerformanceMonitor {
1317    fn new(module_name: String) -> Self {
1318        Self {
1319            module_name,
1320            metrics: Arc::new(RwLock::new(ModuleMetrics {
1321                cpu_usage: 0.0,
1322                memory_usage: 0,
1323                gpu_memory_usage: None,
1324                network_io_bps: 0,
1325                disk_io_bps: 0,
1326                request_rate: 0.0,
1327                avg_response_time: Duration::from_millis(0),
1328                error_rate: 0.0,
1329                cache_hit_rate: 0.0,
1330                active_connections: 0,
1331                queue_depth: 0,
1332            })),
1333            resource_tracker: ResourceTracker::new(),
1334            history: Arc::new(RwLock::new(VecDeque::new())),
1335            prediction_model: PredictionModel::new(),
1336        }
1337    }
1338
1339    async fn update_metrics(&self, new_metrics: ModuleMetrics) -> Result<()> {
1340        {
1341            let mut metrics = self.metrics.write().expect("lock poisoned");
1342            *metrics = new_metrics.clone();
1343        }
1344
1345        // Store in history
1346        let snapshot = PerformanceSnapshot {
1347            metrics: new_metrics,
1348            timestamp: Utc::now(),
1349        };
1350
1351        {
1352            let mut history = self.history.write().expect("lock poisoned");
1353            history.push_back(snapshot);
1354
1355            // Keep only last 1000 snapshots
1356            if history.len() > 1000 {
1357                history.pop_front();
1358            }
1359        }
1360
1361        Ok(())
1362    }
1363
1364    async fn get_current_metrics(&self) -> Result<ModuleMetrics> {
1365        let metrics = self.metrics.read().expect("lock poisoned");
1366        Ok(metrics.clone())
1367    }
1368}
1369
1370/// Resource tracker for monitoring resource usage
1371#[derive(Debug, Clone)]
1372pub struct ResourceTracker {
1373    /// CPU usage history
1374    cpu_history: Arc<RwLock<VecDeque<f64>>>,
1375    /// Memory usage history
1376    memory_history: Arc<RwLock<VecDeque<u64>>>,
1377    /// Last update time
1378    last_update: Arc<RwLock<DateTime<Utc>>>,
1379}
1380
1381impl ResourceTracker {
1382    fn new() -> Self {
1383        Self {
1384            cpu_history: Arc::new(RwLock::new(VecDeque::new())),
1385            memory_history: Arc::new(RwLock::new(VecDeque::new())),
1386            last_update: Arc::new(RwLock::new(Utc::now())),
1387        }
1388    }
1389}
1390
1391/// Performance snapshot
1392#[derive(Debug, Clone)]
1393pub struct PerformanceSnapshot {
1394    /// Metrics at this point in time
1395    pub metrics: ModuleMetrics,
1396    /// Timestamp
1397    pub timestamp: DateTime<Utc>,
1398}
1399
1400/// Prediction model
1401#[derive(Debug, Clone)]
1402pub struct PredictionModel {
1403    /// Model parameters
1404    parameters: HashMap<String, f64>,
1405    /// Last training time
1406    last_trained: DateTime<Utc>,
1407}
1408
1409impl PredictionModel {
1410    fn new() -> Self {
1411        Self {
1412            parameters: HashMap::new(),
1413            last_trained: Utc::now(),
1414        }
1415    }
1416}
1417
1418/// Allocation strategy
1419#[derive(Debug, Clone)]
1420pub enum AllocationStrategy {
1421    Proportional,
1422    PriorityBased,
1423    PerformanceBased,
1424    Predictive,
1425}
1426
1427/// Helper functions
1428fn calculate_percentage_change(old_value: f64, new_value: f64) -> f64 {
1429    if old_value == 0.0 {
1430        return 0.0;
1431    }
1432    ((new_value - old_value) / old_value) * 100.0
1433}
1434
1435fn calculate_anomaly_score(metrics: &ModuleMetrics) -> f64 {
1436    let cpu_score = if metrics.cpu_usage > 80.0 {
1437        metrics.cpu_usage
1438    } else {
1439        0.0
1440    };
1441    let error_score = metrics.error_rate * 10.0;
1442    let latency_score = if metrics.avg_response_time > Duration::from_millis(500) {
1443        metrics.avg_response_time.as_millis() as f64 / 10.0
1444    } else {
1445        0.0
1446    };
1447
1448    (cpu_score + error_score + latency_score) / 3.0
1449}
1450
1451/// Comprehensive tests for the cross-module performance coordinator
1452#[cfg(test)]
1453mod tests {
1454    use super::*;
1455    use tokio;
1456
1457    #[tokio::test]
1458    async fn test_coordinator_creation() {
1459        let config = CoordinatorConfig::default();
1460        let coordinator = CrossModulePerformanceCoordinator::new(config);
1461        assert_eq!(coordinator.module_monitors.read().unwrap().len(), 0);
1462    }
1463
1464    #[tokio::test]
1465    async fn test_module_registration() {
1466        let config = CoordinatorConfig::default();
1467        let coordinator = CrossModulePerformanceCoordinator::new(config);
1468
1469        let result = coordinator.register_module("test_module".to_string()).await;
1470        assert!(result.is_ok());
1471        assert_eq!(coordinator.module_monitors.read().unwrap().len(), 1);
1472    }
1473
1474    #[tokio::test]
1475    async fn test_metrics_update() {
1476        let config = CoordinatorConfig::default();
1477        let coordinator = CrossModulePerformanceCoordinator::new(config);
1478
1479        coordinator
1480            .register_module("test_module".to_string())
1481            .await
1482            .unwrap();
1483
1484        let metrics = ModuleMetrics {
1485            cpu_usage: 75.0,
1486            memory_usage: 4_000_000_000,
1487            gpu_memory_usage: Some(2_000_000_000),
1488            network_io_bps: 1_000_000,
1489            disk_io_bps: 500_000,
1490            request_rate: 100.0,
1491            avg_response_time: Duration::from_millis(150),
1492            error_rate: 2.0,
1493            cache_hit_rate: 85.0,
1494            active_connections: 50,
1495            queue_depth: 10,
1496        };
1497
1498        let result = coordinator
1499            .update_module_metrics("test_module", metrics)
1500            .await;
1501        assert!(result.is_ok());
1502    }
1503
1504    #[tokio::test]
1505    async fn test_anomaly_detection() {
1506        let detector = AnomalyDetector::new();
1507
1508        let mut performance_data = HashMap::new();
1509        performance_data.insert(
1510            "test_module".to_string(),
1511            ModuleMetrics {
1512                cpu_usage: 95.0, // High CPU usage should trigger anomaly
1513                memory_usage: 4_000_000_000,
1514                gpu_memory_usage: Some(2_000_000_000),
1515                network_io_bps: 1_000_000,
1516                disk_io_bps: 500_000,
1517                request_rate: 100.0,
1518                avg_response_time: Duration::from_millis(1500), // High latency
1519                error_rate: 8.0,                                // High error rate
1520                cache_hit_rate: 85.0,
1521                active_connections: 50,
1522                queue_depth: 10,
1523            },
1524        );
1525
1526        let anomalies = detector.detect(&performance_data).await.unwrap();
1527        assert!(!anomalies.is_empty());
1528        assert_eq!(
1529            anomalies[0].anomaly_type,
1530            AnomalyType::PerformanceDegradation
1531        );
1532    }
1533
1534    #[tokio::test]
1535    async fn test_resource_allocation() {
1536        let allocator = ResourceAllocator::new();
1537
1538        let recommendation = OptimizationRecommendation {
1539            module_name: "test_module".to_string(),
1540            optimization_type: OptimizationType::ResourceReallocation,
1541            priority: Priority::High,
1542            description: "Test optimization".to_string(),
1543            estimated_impact: PerformanceImpact {
1544                latency_change_pct: -20.0,
1545                throughput_change_pct: 30.0,
1546                efficiency_change_pct: 15.0,
1547                overall_score: 80.0,
1548            },
1549            implementation_steps: vec!["Increase CPU allocation".to_string()],
1550        };
1551
1552        let result = allocator
1553            .reallocate_resources("test_module", &recommendation)
1554            .await;
1555        assert!(result.is_ok());
1556    }
1557
1558    #[tokio::test]
1559    async fn test_percentage_change_calculation() {
1560        assert_eq!(calculate_percentage_change(100.0, 120.0), 20.0);
1561        assert_eq!(calculate_percentage_change(100.0, 80.0), -20.0);
1562        assert_eq!(calculate_percentage_change(0.0, 100.0), 0.0);
1563    }
1564
1565    #[tokio::test]
1566    async fn test_anomaly_score_calculation() {
1567        let metrics = ModuleMetrics {
1568            cpu_usage: 90.0,
1569            memory_usage: 4_000_000_000,
1570            gpu_memory_usage: Some(2_000_000_000),
1571            network_io_bps: 1_000_000,
1572            disk_io_bps: 500_000,
1573            request_rate: 100.0,
1574            avg_response_time: Duration::from_millis(800),
1575            error_rate: 5.0,
1576            cache_hit_rate: 85.0,
1577            active_connections: 50,
1578            queue_depth: 10,
1579        };
1580
1581        let score = calculate_anomaly_score(&metrics);
1582        assert!(score > 0.0);
1583        assert!(score > 50.0); // Should be high due to high CPU and error rate
1584    }
1585
1586    #[tokio::test]
1587    async fn test_optimization_cache() {
1588        let cache = OptimizationCache::new();
1589        assert_eq!(cache.stats.size.load(Ordering::SeqCst), 0);
1590    }
1591
1592    #[tokio::test]
1593    async fn test_module_monitor_creation() {
1594        let monitor = ModulePerformanceMonitor::new("test_module".to_string());
1595        assert_eq!(monitor.module_name, "test_module");
1596
1597        let metrics = monitor.get_current_metrics().await.unwrap();
1598        assert_eq!(metrics.cpu_usage, 0.0);
1599    }
1600
1601    #[tokio::test]
1602    async fn test_prediction_model() {
1603        let model = PredictionModel::new();
1604        assert!(model.parameters.is_empty());
1605    }
1606}