pub struct HashSet<'alloc, T>(/* private fields */);Expand description
A hash set without Drop, that uses FxHasher to hash keys, and stores data in arena allocator.
Just a thin wrapper around hashbrown::HashSet, which disables the Drop implementation.
All APIs are the same, except create a HashSet with
either new_in or with_capacity_in.
§No Drops
Objects allocated into Oxc memory arenas are never Dropped. Memory is released in bulk
when the allocator is dropped, without dropping the individual objects in the arena.
Therefore, it would produce a memory leak if you allocated Drop types into the arena
which own memory allocations outside the arena.
Static checks make this impossible to do. HashSet::new_in and all other methods which create
a HashSet will refuse to compile if the key is a Drop type.
Implementations§
Source§impl<'alloc, T> HashSet<'alloc, T>
 
impl<'alloc, T> HashSet<'alloc, T>
Sourcepub fn new_in(allocator: &'alloc Allocator) -> Self
 
pub fn new_in(allocator: &'alloc Allocator) -> Self
Creates an empty HashSet. It will be allocated with the given allocator.
The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.
Sourcepub fn with_capacity_in(capacity: usize, allocator: &'alloc Allocator) -> Self
 
pub fn with_capacity_in(capacity: usize, allocator: &'alloc Allocator) -> Self
Creates an empty HashSet with the specified capacity. It will be allocated with the given allocator.
The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.
Sourcepub fn from_iter_in<I: IntoIterator<Item = T>>(
    iter: I,
    allocator: &'alloc Allocator,
) -> Self
 
pub fn from_iter_in<I: IntoIterator<Item = T>>( iter: I, allocator: &'alloc Allocator, ) -> Self
Create a new HashSet whose elements are taken from an iterator and allocated in the given allocator.
This is behaviorially identical to FromIterator::from_iter.
Sourcepub fn allocator(&self) -> &'alloc Bump
 
pub fn allocator(&self) -> &'alloc Bump
Calling this method produces a compile-time panic.
This method would be unsound, because HashSet is Sync, and the underlying allocator
(bumpalo::Bump) is not Sync.
This method exists only to block access as much as possible to the underlying
hashbrown::HashSet::allocator method. That method can still be accessed via explicit Deref
(hash_set.deref().allocator()), but that’s unsound.
We’ll prevent access to it completely and remove this method as soon as we can.
Methods from Deref<Target = HashSet<T, FxBuildHasher, &'alloc Bump>>§
Sourcepub fn capacity(&self) -> usize
 
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
§Examples
use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
 
pub fn iter(&self) -> Iter<'_, T> ⓘ
An iterator visiting all elements in arbitrary order.
The iterator element type is &'a T.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");
// Will print in an arbitrary order.
for x in set.iter() {
    println!("{}", x);
}Sourcepub fn len(&self) -> usize
 
pub fn len(&self) -> usize
Returns the number of elements in the set.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);Sourcepub fn is_empty(&self) -> bool
 
pub fn is_empty(&self) -> bool
Returns true if the set contains no elements.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());Sourcepub fn drain(&mut self) -> Drain<'_, T, A> ⓘ
 
pub fn drain(&mut self) -> Drain<'_, T, A> ⓘ
Clears the set, returning all elements in an iterator.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert!(!set.is_empty());
// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
    println!("{}", i);
}
assert!(set.is_empty());Sourcepub fn retain<F>(&mut self, f: F)
 
pub fn retain<F>(&mut self, f: F)
Retains only the elements specified by the predicate.
In other words, remove all elements e such that f(&e) returns false.
§Examples
use hashbrown::HashSet;
let xs = [1,2,3,4,5,6];
let mut set: HashSet<i32> = xs.into_iter().collect();
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);Sourcepub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A> ⓘ
 
pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, T, F, A> ⓘ
Drains elements which are true under the given predicate, and returns an iterator over the removed items.
In other words, move all elements e such that f(&e) returns true out
into another iterator.
If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating
or the iteration short-circuits, then the remaining elements will be retained.
Use retain() with a negated predicate if you do not need the returned iterator.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = (0..8).collect();
let drained: HashSet<i32> = set.extract_if(|v| v % 2 == 0).collect();
let mut evens = drained.into_iter().collect::<Vec<_>>();
let mut odds = set.into_iter().collect::<Vec<_>>();
evens.sort();
odds.sort();
assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);Sourcepub fn clear(&mut self)
 
pub fn clear(&mut self)
Clears the set, removing all values.
§Examples
use hashbrown::HashSet;
let mut v = HashSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());Sourcepub fn hasher(&self) -> &S
 
pub fn hasher(&self) -> &S
Returns a reference to the set’s BuildHasher.
§Examples
use hashbrown::HashSet;
use hashbrown::DefaultHashBuilder;
let hasher = DefaultHashBuilder::default();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &DefaultHashBuilder = set.hasher();Sourcepub fn reserve(&mut self, additional: usize)
 
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional more elements to be inserted
in the HashSet. The collection may reserve more space to avoid
frequent reallocations.
§Panics
Panics if the new capacity exceeds isize::MAX bytes and abort the program
in case of allocation error. Use try_reserve instead
if you want to handle memory allocation failure.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);Sourcepub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
 
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>
Tries to reserve capacity for at least additional more elements to be inserted
in the given HashSet<K,V>. The collection may reserve more space to avoid
frequent reallocations.
§Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");Sourcepub fn shrink_to_fit(&mut self)
 
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);Sourcepub fn shrink_to(&mut self, min_capacity: usize)
 
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Panics if the current capacity is smaller than the supplied minimum capacity.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);Sourcepub fn difference<'a>(
    &'a self,
    other: &'a HashSet<T, S, A>,
) -> Difference<'a, T, S, A> ⓘ
 
pub fn difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Difference<'a, T, S, A> ⓘ
Visits the values representing the difference,
i.e., the values that are in self but not in other.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());Sourcepub fn symmetric_difference<'a>(
    &'a self,
    other: &'a HashSet<T, S, A>,
) -> SymmetricDifference<'a, T, S, A> ⓘ
 
pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> SymmetricDifference<'a, T, S, A> ⓘ
Visits the values representing the symmetric difference,
i.e., the values that are in self or in other but not in both.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());Sourcepub fn intersection<'a>(
    &'a self,
    other: &'a HashSet<T, S, A>,
) -> Intersection<'a, T, S, A> ⓘ
 
pub fn intersection<'a>( &'a self, other: &'a HashSet<T, S, A>, ) -> Intersection<'a, T, S, A> ⓘ
Visits the values representing the intersection,
i.e., the values that are both in self and other.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
    println!("{}", x);
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());Sourcepub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A> ⓘ
 
pub fn union<'a>(&'a self, other: &'a HashSet<T, S, A>) -> Union<'a, T, S, A> ⓘ
Visits the values representing the union,
i.e., all the values in self or other, without duplicates.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let b: HashSet<_> = [4, 2, 3, 4].into_iter().collect();
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
    println!("{}", x);
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());Sourcepub fn contains<Q>(&self, value: &Q) -> bool
 
pub fn contains<Q>(&self, value: &Q) -> bool
Returns true if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);Sourcepub fn get<Q>(&self, value: &Q) -> Option<&T>
 
pub fn get<Q>(&self, value: &Q) -> Option<&T>
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);Sourcepub fn get_or_insert(&mut self, value: T) -> &T
 
pub fn get_or_insert(&mut self, value: T) -> &T
Inserts the given value into the set if it is not present, then
returns a reference to the value in the set.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was insertedSourcepub fn get_or_insert_with<Q, F>(&mut self, value: &Q, f: F) -> &T
 
pub fn get_or_insert_with<Q, F>(&mut self, value: &Q, f: F) -> &T
Inserts a value computed from f into the set if the given value is
not present, then returns a reference to the value in the set.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<String> = ["cat", "dog", "horse"]
    .iter().map(|&pet| pet.to_owned()).collect();
assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
    let value = set.get_or_insert_with(pet, str::to_owned);
    assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was insertedThe following example will panic because the new value doesn’t match.
let mut set = hashbrown::HashSet::new();
set.get_or_insert_with("rust", |_| String::new());Sourcepub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
 
pub fn entry(&mut self, value: T) -> Entry<'_, T, S, A>
Gets the given value’s corresponding entry in the set for in-place manipulation.
§Examples
use hashbrown::HashSet;
use hashbrown::hash_set::Entry::*;
let mut singles = HashSet::new();
let mut dupes = HashSet::new();
for ch in "a short treatise on fungi".chars() {
    if let Vacant(dupe_entry) = dupes.entry(ch) {
        // We haven't already seen a duplicate, so
        // check if we've at least seen it once.
        match singles.entry(ch) {
            Vacant(single_entry) => {
                // We found a new character for the first time.
                single_entry.insert();
            }
            Occupied(single_entry) => {
                // We've already seen this once, "move" it to dupes.
                single_entry.remove();
                dupe_entry.insert();
            }
        }
    }
}
assert!(!singles.contains(&'t') && dupes.contains(&'t'));
assert!(singles.contains(&'u') && !dupes.contains(&'u'));
assert!(!singles.contains(&'v') && !dupes.contains(&'v'));Sourcepub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
 
pub fn is_disjoint(&self, other: &HashSet<T, S, A>) -> bool
Returns true if self has no elements in common with other.
This is equivalent to checking for an empty intersection.
§Examples
use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].into_iter().collect();
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);Sourcepub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
 
pub fn is_subset(&self, other: &HashSet<T, S, A>) -> bool
Returns true if the set is a subset of another,
i.e., other contains at least all the values in self.
§Examples
use hashbrown::HashSet;
let sup: HashSet<_> = [1, 2, 3].into_iter().collect();
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);Sourcepub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
 
pub fn is_superset(&self, other: &HashSet<T, S, A>) -> bool
Returns true if the set is a superset of another,
i.e., self contains at least all the values in other.
§Examples
use hashbrown::HashSet;
let sub: HashSet<_> = [1, 2].into_iter().collect();
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);Sourcepub fn insert(&mut self, value: T) -> bool
 
pub fn insert(&mut self, value: T) -> bool
Adds a value to the set.
If the set did not have this value present, true is returned.
If the set did have this value present, false is returned.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);Sourcepub unsafe fn insert_unique_unchecked(&mut self, value: T) -> &T
 
pub unsafe fn insert_unique_unchecked(&mut self, value: T) -> &T
Insert a value the set without checking if the value already exists in the set.
This operation is faster than regular insert, because it does not perform lookup before insertion.
This operation is useful during initial population of the set. For example, when constructing a set from another set, we know that values are unique.
§Safety
This operation is safe if a value does not exist in the set.
However, if a value exists in the set already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the set may panic, loop forever or return arbitrary result.
That said, this operation (and following operations) are guaranteed to not violate memory safety.
However this operation is still unsafe because the resulting HashSet
may be passed to unsafe code which does expect the set to behave
correctly, and would cause unsoundness as a result.
Sourcepub fn replace(&mut self, value: T) -> Option<T>
 
pub fn replace(&mut self, value: T) -> Option<T>
Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert(Vec::<i32>::new());
assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);Sourcepub fn remove<Q>(&mut self, value: &Q) -> bool
 
pub fn remove<Q>(&mut self, value: &Q) -> bool
Removes a value from the set. Returns whether the value was present in the set.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);Sourcepub fn take<Q>(&mut self, value: &Q) -> Option<T>
 
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
Removes and returns the value in the set, if any, that is equal to the given one.
The value may be any borrowed form of the set’s value type, but
Hash and Eq on the borrowed form must match those for
the value type.
§Examples
use hashbrown::HashSet;
let mut set: HashSet<_> = [1, 2, 3].into_iter().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);Sourcepub fn allocation_size(&self) -> usize
 
pub fn allocation_size(&self) -> usize
Returns the total amount of memory allocated internally by the hash set, in bytes.
The returned number is informational only. It is intended to be primarily used for memory profiling.
Trait Implementations§
Source§impl<'alloc, T> From<HashMap<'alloc, T, ()>> for HashSet<'alloc, T>
Convert HashMap<T, ()> to HashSet<T>.
 
impl<'alloc, T> From<HashMap<'alloc, T, ()>> for HashSet<'alloc, T>
Convert HashMap<T, ()> to HashSet<T>.
This conversion is zero cost, as HashSet<T> is just a wrapper around HashMap<T, ()>.
Source§impl<'alloc, 'i, T> IntoIterator for &'i HashSet<'alloc, T>
 
impl<'alloc, 'i, T> IntoIterator for &'i HashSet<'alloc, T>
Source§impl<'alloc, T> IntoIterator for HashSet<'alloc, T>
 
impl<'alloc, T> IntoIterator for HashSet<'alloc, T>
impl<T> Eq for HashSet<'_, T>
impl<T: Sync> Sync for HashSet<'_, T>
SAFETY: Same as HashMap. See HashMap’s doc comment for details.