Struct otter_api_tests::imports::regex::bytes::CaptureLocations [−]
pub struct CaptureLocations(_);
Expand description
CaptureLocations is a low level representation of the raw offsets of each submatch.
You can think of this as a lower level
Captures, where this type does not support
named capturing groups directly and it does not borrow the text that these
offsets were matched on.
Primarily, this type is useful when using the lower level Regex APIs
such as read_captures, which permits amortizing the allocation in which
capture match locations are stored.
In order to build a value of this type, you’ll need to call the
capture_locations method on the Regex being used to execute the search.
The value returned can then be reused in subsequent searches.
Implementations
impl CaptureLocations
impl CaptureLocationsReturns the start and end positions of the Nth capture group. Returns
None if i is not a valid capture group or if the capture group did
not match anything. The positions returned are always byte indices
with respect to the original string matched.
Trait Implementations
impl Clone for CaptureLocations
impl Clone for CaptureLocationspub fn clone(&self) -> CaptureLocations
pub fn clone(&self) -> CaptureLocationsReturns a copy of the value. Read more
Performs copy-assignment from source. Read more
Auto Trait Implementations
impl RefUnwindSafe for CaptureLocationsimpl Send for CaptureLocationsimpl Sync for CaptureLocationsimpl Unpin for CaptureLocationsimpl UnwindSafe for CaptureLocationsBlanket Implementations
Mutably borrows from an owned value. Read more
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s. Read more
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s. Read more
impl<A> DynCastExt for A
impl<A> DynCastExt for Apub fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
T: ?Sized,
A: DynCastExtHelper<T>,
pub fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
T: ?Sized,
A: DynCastExtHelper<T>, Use this to cast from one trait object type to another. Read more
pub fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
T: ?Sized,
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>,
pub fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
T: ?Sized,
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>, Use this to upcast a trait to one of its supertraits. Read more
pub fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
T: ?Sized,
A: DynCastExtAdvHelper<F, T>,
F: ?Sized,
pub fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
T: ?Sized,
A: DynCastExtAdvHelper<F, T>,
F: ?Sized, pub fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>,
pub fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>, Use this to cast from one trait object type to another. With this method the type parameter is a config type that uniquely specifies which cast should be preformed. Read more
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;Instruments this type with the provided Span, returning an
Instrumented wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;pub fn vzip(self) -> V