Struct orx_concurrent_vec::Recursive
source · pub struct Recursive;
Expand description
Equivalent to Doubling
strategy except for the following:
- enables zero-cost (no-ops)
append
operation:- we can append standard vectors, vectors of vectors, split vectors, etc., any data that implements
IntoFragments
trait, - by simply accepting it as a whole fragment,
- according to benchmarks documented in the crate definition:
SplitVec<_, Recursive>
is infinitely faster than other growth strategies or standard vector :)- since its time complexity is independent of size of the data to be appended.
- we can append standard vectors, vectors of vectors, split vectors, etc., any data that implements
- at the expense of providing slower random-access performance:
- random access time complexity of
Doubling
strategy is constant time; - that of
Recursive
strategy is linear in the number of fragments; - according to benchmarks documented in the crate definition:
SplitVec<_, Doubling>
or standard vector are around 4 to 7 times faster thanSplitVec<_, Recursive>
,- and 1.5 times faster when the elements get very large (16 x
u64
).
- random access time complexity of
Note that other operations such as serial access are equivalent to Doubling
strategy.
§Examples
use orx_split_vec::*;
// SplitVec<usize, Recursive>
let mut vec = SplitVec::with_recursive_growth();
vec.push('a');
assert_eq!(vec, &['a']);
vec.append(vec!['b', 'c']);
assert_eq!(vec, &['a', 'b', 'c']);
vec.append(vec![vec!['d'], vec!['e', 'f']]);
assert_eq!(vec, &['a', 'b', 'c', 'd', 'e', 'f']);
let other_split_vec: SplitVec<_> = vec!['g', 'h'].into();
vec.append(other_split_vec);
assert_eq!(vec, &['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']);
Trait Implementations§
source§impl Growth for Recursive
impl Growth for Recursive
source§fn new_fragment_capacity<T>(&self, fragments: &[Fragment<T>]) -> usize
fn new_fragment_capacity<T>(&self, fragments: &[Fragment<T>]) -> usize
Given that the split vector contains the given
fragments
,
returns the capacity of the next fragment.source§fn maximum_concurrent_capacity<T>(
&self,
fragments: &[Fragment<T>],
fragments_capacity: usize
) -> usize
fn maximum_concurrent_capacity<T>( &self, fragments: &[Fragment<T>], fragments_capacity: usize ) -> usize
Returns the maximum number of elements that can safely be stored in a concurrent program. Read more
source§fn required_fragments_len<T>(
&self,
fragments: &[Fragment<T>],
maximum_capacity: usize
) -> Result<usize, String>
fn required_fragments_len<T>( &self, fragments: &[Fragment<T>], maximum_capacity: usize ) -> Result<usize, String>
Returns the number of fragments with this growth strategy in order to be able to reach a capacity of
maximum_capacity
of elements.
Returns the error if it the growth strategy does not allow the required number of fragments. Read moresource§fn get_fragment_and_inner_indices<T>(
&self,
_vec_len: usize,
fragments: &[Fragment<T>],
element_index: usize
) -> Option<(usize, usize)>
fn get_fragment_and_inner_indices<T>( &self, _vec_len: usize, fragments: &[Fragment<T>], element_index: usize ) -> Option<(usize, usize)>
O(fragments.len()) Returns the location of the element with the given
element_index
on the split vector as a tuple of (fragment-index, index-within-fragment). Read moresource§impl PartialEq for Recursive
impl PartialEq for Recursive
impl StructuralPartialEq for Recursive
Auto Trait Implementations§
impl Freeze for Recursive
impl RefUnwindSafe for Recursive
impl Send for Recursive
impl Sync for Recursive
impl Unpin for Recursive
impl UnwindSafe for Recursive
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more