optirs_core/streaming/adaptive_streaming/
drift_detection.rs

1// Drift detection and adaptation for streaming data
2//
3// This module provides comprehensive drift detection capabilities including
4// statistical methods, distribution-based approaches, model-based detection,
5// and ensemble methods for identifying concept drift in streaming data.
6
7use super::config::*;
8use super::optimizer::{Adaptation, AdaptationPriority, AdaptationType, StreamingDataPoint};
9
10use scirs2_core::numeric::Float;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, VecDeque};
13use std::time::{Duration, Instant};
14
15/// Enhanced drift detector with multiple detection methods
16pub struct EnhancedDriftDetector<A: Float + Send + Sync> {
17    /// Configuration for drift detection
18    config: DriftConfig,
19    /// Current detection method
20    detection_method: DriftDetectionMethod,
21    /// Statistical test implementations
22    statistical_tests: HashMap<StatisticalMethod, Box<dyn StatisticalTest<A>>>,
23    /// Distribution comparison methods
24    distribution_methods: HashMap<DistributionMethod, Box<dyn DistributionComparator<A>>>,
25    /// Model-based detectors
26    model_detectors: HashMap<ModelType, Box<dyn ModelBasedDetector<A>>>,
27    /// Ensemble voting strategy
28    ensemble_strategy: Option<VotingStrategy>,
29    /// Detection history
30    detection_history: VecDeque<DriftEvent<A>>,
31    /// False positive tracker
32    false_positive_tracker: FalsePositiveTracker<A>,
33    /// Reference window for comparison
34    reference_window: VecDeque<StreamingDataPoint<A>>,
35    /// Current drift state
36    drift_state: DriftState,
37    /// Last detection timestamp
38    last_detection: Option<Instant>,
39    /// Sensitivity adjustment factor
40    sensitivity_factor: A,
41}
42
43/// Drift event information
44#[derive(Debug, Clone)]
45pub struct DriftEvent<A: Float + Send + Sync> {
46    /// Event timestamp
47    pub timestamp: Instant,
48    /// Drift severity level
49    pub severity: DriftSeverity,
50    /// Detection confidence
51    pub confidence: A,
52    /// Detection method that triggered
53    pub detection_method: String,
54    /// Statistical significance
55    pub p_value: Option<A>,
56    /// Drift magnitude estimate
57    pub magnitude: A,
58    /// Affected features (if applicable)
59    pub affected_features: Vec<usize>,
60}
61
62/// Drift severity levels
63#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
64pub enum DriftSeverity {
65    /// Minor drift that may not require immediate action
66    Minor,
67    /// Moderate drift requiring attention
68    Moderate,
69    /// Major drift requiring significant adaptation
70    Major,
71    /// Critical drift requiring immediate response
72    Critical,
73}
74
75/// Current drift detection state
76#[derive(Debug, Clone, PartialEq, Eq)]
77pub enum DriftState {
78    /// Normal operation, no drift detected
79    Stable,
80    /// Warning level - potential drift detected
81    Warning,
82    /// Drift confirmed
83    Drift,
84    /// Recovering from drift
85    Recovery,
86}
87
88/// False positive tracking for drift detection
89pub struct FalsePositiveTracker<A: Float + Send + Sync> {
90    /// Recent false positive events
91    false_positives: VecDeque<Instant>,
92    /// True positive events
93    true_positives: VecDeque<Instant>,
94    /// Current false positive rate
95    current_fp_rate: A,
96    /// Target false positive rate
97    target_fp_rate: A,
98}
99
100/// Trait for statistical drift detection tests
101pub trait StatisticalTest<A: Float + Send + Sync>: Send + Sync {
102    /// Performs the statistical test for drift
103    fn test_for_drift(
104        &mut self,
105        reference: &[A],
106        current: &[A],
107    ) -> Result<DriftTestResult<A>, String>;
108
109    /// Updates test parameters based on historical performance
110    fn update_parameters(&mut self, performance_feedback: A) -> Result<(), String>;
111
112    /// Resets the test state
113    fn reset(&mut self);
114}
115
116/// Result of a drift detection test
117#[derive(Debug, Clone)]
118pub struct DriftTestResult<A: Float + Send + Sync> {
119    /// Whether drift was detected
120    pub drift_detected: bool,
121    /// Statistical significance (p-value)
122    pub p_value: A,
123    /// Test statistic value
124    pub test_statistic: A,
125    /// Confidence in the result
126    pub confidence: A,
127    /// Additional test-specific metadata
128    pub metadata: HashMap<String, A>,
129}
130
131/// Trait for distribution-based drift detection
132pub trait DistributionComparator<A: Float + Send + Sync>: Send + Sync {
133    /// Compares two distributions for drift
134    fn compare_distributions(
135        &self,
136        reference: &[A],
137        current: &[A],
138    ) -> Result<DistributionComparison<A>, String>;
139
140    /// Gets the threshold for drift detection
141    fn get_threshold(&self) -> A;
142
143    /// Updates threshold based on performance
144    fn update_threshold(&mut self, new_threshold: A);
145}
146
147/// Result of distribution comparison
148#[derive(Debug, Clone)]
149pub struct DistributionComparison<A: Float + Send + Sync> {
150    /// Distance/divergence measure
151    pub distance: A,
152    /// Threshold for drift detection
153    pub threshold: A,
154    /// Whether drift was detected
155    pub drift_detected: bool,
156    /// Comparison confidence
157    pub confidence: A,
158}
159
160/// Trait for model-based drift detection
161pub trait ModelBasedDetector<A: Float + Send + Sync>: Send + Sync {
162    /// Updates the model with new data
163    fn update_model(&mut self, data: &[StreamingDataPoint<A>]) -> Result<(), String>;
164
165    /// Detects drift based on model performance
166    fn detect_drift(
167        &mut self,
168        data: &[StreamingDataPoint<A>],
169    ) -> Result<ModelDriftResult<A>, String>;
170
171    /// Resets the model
172    fn reset_model(&mut self) -> Result<(), String>;
173}
174
175/// Result of model-based drift detection
176#[derive(Debug, Clone)]
177pub struct ModelDriftResult<A: Float + Send + Sync> {
178    /// Whether drift was detected
179    pub drift_detected: bool,
180    /// Model performance degradation
181    pub performance_degradation: A,
182    /// Drift confidence
183    pub confidence: A,
184    /// Feature importance changes
185    pub feature_importance_changes: Vec<A>,
186}
187
188impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum + 'static> EnhancedDriftDetector<A> {
189    /// Creates a new enhanced drift detector
190    pub fn new(config: &StreamingConfig) -> Result<Self, String> {
191        let drift_config = config.drift_config.clone();
192
193        let mut statistical_tests: HashMap<StatisticalMethod, Box<dyn StatisticalTest<A>>> =
194            HashMap::new();
195        let mut distribution_methods: HashMap<
196            DistributionMethod,
197            Box<dyn DistributionComparator<A>>,
198        > = HashMap::new();
199        let mut model_detectors: HashMap<ModelType, Box<dyn ModelBasedDetector<A>>> =
200            HashMap::new();
201
202        // Initialize statistical tests
203        statistical_tests.insert(
204            StatisticalMethod::ADWIN,
205            Box::new(ADWINTest::new(drift_config.sensitivity)?),
206        );
207        statistical_tests.insert(
208            StatisticalMethod::DDM,
209            Box::new(DDMTest::new(drift_config.sensitivity)?),
210        );
211        statistical_tests.insert(
212            StatisticalMethod::PageHinkley,
213            Box::new(PageHinkleyTest::new(drift_config.sensitivity)?),
214        );
215
216        // Initialize distribution methods
217        distribution_methods.insert(
218            DistributionMethod::KLDivergence,
219            Box::new(KLDivergenceComparator::new(drift_config.sensitivity)?),
220        );
221        distribution_methods.insert(
222            DistributionMethod::JSDivergence,
223            Box::new(JSDivergenceComparator::new(drift_config.sensitivity)?),
224        );
225
226        // Initialize model detectors
227        model_detectors.insert(ModelType::Linear, Box::new(LinearModelDetector::new()?));
228
229        let ensemble_strategy = match &drift_config.detection_method {
230            DriftDetectionMethod::Ensemble {
231                voting_strategy, ..
232            } => Some(voting_strategy.clone()),
233            _ => None,
234        };
235
236        let false_positive_tracker = FalsePositiveTracker::new();
237
238        Ok(Self {
239            config: drift_config.clone(),
240            detection_method: drift_config.detection_method,
241            statistical_tests,
242            distribution_methods,
243            model_detectors,
244            ensemble_strategy,
245            detection_history: VecDeque::with_capacity(1000),
246            false_positive_tracker,
247            reference_window: VecDeque::with_capacity(drift_config.window_size),
248            drift_state: DriftState::Stable,
249            last_detection: None,
250            sensitivity_factor: A::one(),
251        })
252    }
253
254    /// Detects drift in the given batch of data
255    pub fn detect_drift(&mut self, batch: &[StreamingDataPoint<A>]) -> Result<bool, String> {
256        if !self.config.enable_detection || batch.len() < self.config.min_samples {
257            return Ok(false);
258        }
259
260        // Update reference window
261        self.update_reference_window(batch)?;
262
263        // Check if we have enough data for comparison
264        if self.reference_window.len() < self.config.window_size / 2 {
265            return Ok(false);
266        }
267
268        // Extract features for comparison
269        let current_features = self.extract_features(batch)?;
270        let reference_features = self.extract_reference_features()?;
271
272        // Perform drift detection based on configured method
273        let detection_method = self.detection_method.clone();
274        let drift_result = match detection_method {
275            DriftDetectionMethod::Statistical(method) => {
276                self.detect_statistical_drift(&method, &reference_features, &current_features)?
277            }
278            DriftDetectionMethod::Distribution(method) => {
279                self.detect_distribution_drift(&method, &reference_features, &current_features)?
280            }
281            DriftDetectionMethod::ModelBased(model_type) => {
282                self.detect_model_drift(&model_type, batch)?
283            }
284            DriftDetectionMethod::Ensemble {
285                methods,
286                voting_strategy,
287            } => self.detect_ensemble_drift(
288                &methods,
289                &voting_strategy,
290                &reference_features,
291                &current_features,
292                batch,
293            )?,
294        };
295
296        // Update drift state and history
297        if drift_result.drift_detected {
298            self.handle_drift_detection(drift_result)?;
299            Ok(true)
300        } else {
301            self.update_drift_state(false);
302            Ok(false)
303        }
304    }
305
306    /// Updates the reference window with new data
307    fn update_reference_window(&mut self, batch: &[StreamingDataPoint<A>]) -> Result<(), String> {
308        for data_point in batch {
309            if self.reference_window.len() >= self.config.window_size {
310                self.reference_window.pop_front();
311            }
312            self.reference_window.push_back(data_point.clone());
313        }
314        Ok(())
315    }
316
317    /// Extracts features from a batch of data points
318    fn extract_features(&self, batch: &[StreamingDataPoint<A>]) -> Result<Vec<A>, String> {
319        let mut features = Vec::new();
320
321        for data_point in batch {
322            features.extend(data_point.features.iter().cloned());
323        }
324
325        Ok(features)
326    }
327
328    /// Extracts reference features from the reference window
329    fn extract_reference_features(&self) -> Result<Vec<A>, String> {
330        let reference_data: Vec<_> = self
331            .reference_window
332            .iter()
333            .take(self.reference_window.len() / 2)
334            .collect();
335
336        let mut features = Vec::new();
337        for data_point in reference_data {
338            features.extend(data_point.features.iter().cloned());
339        }
340
341        Ok(features)
342    }
343
344    /// Performs statistical drift detection
345    fn detect_statistical_drift(
346        &mut self,
347        method: &StatisticalMethod,
348        reference: &[A],
349        current: &[A],
350    ) -> Result<DriftTestResult<A>, String> {
351        if let Some(test) = self.statistical_tests.get_mut(method) {
352            let mut result = test.test_for_drift(reference, current)?;
353
354            // Apply sensitivity factor
355            result.confidence = result.confidence * self.sensitivity_factor;
356            result.drift_detected = result.p_value
357                < A::from(self.config.significance_level).unwrap() * self.sensitivity_factor;
358
359            Ok(result)
360        } else {
361            Err(format!("Statistical method {:?} not implemented", method))
362        }
363    }
364
365    /// Performs distribution-based drift detection
366    fn detect_distribution_drift(
367        &mut self,
368        method: &DistributionMethod,
369        reference: &[A],
370        current: &[A],
371    ) -> Result<DriftTestResult<A>, String> {
372        if let Some(comparator) = self.distribution_methods.get(method) {
373            let comparison = comparator.compare_distributions(reference, current)?;
374
375            let result = DriftTestResult {
376                drift_detected: comparison.drift_detected,
377                p_value: A::one() - comparison.confidence, // Convert confidence to p-value like measure
378                test_statistic: comparison.distance,
379                confidence: comparison.confidence * self.sensitivity_factor,
380                metadata: HashMap::new(),
381            };
382
383            Ok(result)
384        } else {
385            Err(format!("Distribution method {:?} not implemented", method))
386        }
387    }
388
389    /// Performs model-based drift detection
390    fn detect_model_drift(
391        &mut self,
392        model_type: &ModelType,
393        batch: &[StreamingDataPoint<A>],
394    ) -> Result<DriftTestResult<A>, String> {
395        if let Some(detector) = self.model_detectors.get_mut(model_type) {
396            let model_result = detector.detect_drift(batch)?;
397
398            let result = DriftTestResult {
399                drift_detected: model_result.drift_detected,
400                p_value: A::one() - model_result.confidence,
401                test_statistic: model_result.performance_degradation,
402                confidence: model_result.confidence * self.sensitivity_factor,
403                metadata: HashMap::new(),
404            };
405
406            Ok(result)
407        } else {
408            Err(format!("Model type {:?} not implemented", model_type))
409        }
410    }
411
412    /// Performs ensemble drift detection
413    fn detect_ensemble_drift(
414        &mut self,
415        methods: &[DriftDetectionMethod],
416        voting_strategy: &VotingStrategy,
417        reference: &[A],
418        current: &[A],
419        batch: &[StreamingDataPoint<A>],
420    ) -> Result<DriftTestResult<A>, String> {
421        let mut results = Vec::new();
422
423        // Collect results from all methods
424        for method in methods {
425            let result = match method {
426                DriftDetectionMethod::Statistical(stat_method) => {
427                    self.detect_statistical_drift(stat_method, reference, current)?
428                }
429                DriftDetectionMethod::Distribution(dist_method) => {
430                    self.detect_distribution_drift(dist_method, reference, current)?
431                }
432                DriftDetectionMethod::ModelBased(model_type) => {
433                    self.detect_model_drift(model_type, batch)?
434                }
435                DriftDetectionMethod::Ensemble { .. } => {
436                    // Avoid recursive ensemble calls
437                    continue;
438                }
439            };
440            results.push(result);
441        }
442
443        // Apply voting strategy
444        let ensemble_result = self.apply_voting_strategy(voting_strategy, &results)?;
445        Ok(ensemble_result)
446    }
447
448    /// Applies the ensemble voting strategy
449    fn apply_voting_strategy(
450        &self,
451        strategy: &VotingStrategy,
452        results: &[DriftTestResult<A>],
453    ) -> Result<DriftTestResult<A>, String> {
454        if results.is_empty() {
455            return Err("No results to vote on".to_string());
456        }
457
458        let drift_detected = match strategy {
459            VotingStrategy::Majority => {
460                let positive_votes = results.iter().filter(|r| r.drift_detected).count();
461                positive_votes > results.len() / 2
462            }
463            VotingStrategy::Weighted { weights } => {
464                if weights.len() != results.len() {
465                    return Err("Number of weights doesn't match number of results".to_string());
466                }
467
468                let weighted_score: f64 = results
469                    .iter()
470                    .zip(weights.iter())
471                    .map(|(result, &weight)| weight * if result.drift_detected { 1.0 } else { 0.0 })
472                    .sum();
473
474                let total_weight: f64 = weights.iter().sum();
475                weighted_score / total_weight > 0.5
476            }
477            VotingStrategy::Unanimous => results.iter().all(|r| r.drift_detected),
478            VotingStrategy::Threshold { min_votes } => {
479                let positive_votes = results.iter().filter(|r| r.drift_detected).count();
480                positive_votes >= *min_votes
481            }
482        };
483
484        // Aggregate confidence and p-values
485        let avg_confidence =
486            results.iter().map(|r| r.confidence).sum::<A>() / A::from(results.len()).unwrap();
487
488        let avg_p_value =
489            results.iter().map(|r| r.p_value).sum::<A>() / A::from(results.len()).unwrap();
490
491        let avg_test_statistic =
492            results.iter().map(|r| r.test_statistic).sum::<A>() / A::from(results.len()).unwrap();
493
494        Ok(DriftTestResult {
495            drift_detected,
496            p_value: avg_p_value,
497            test_statistic: avg_test_statistic,
498            confidence: avg_confidence,
499            metadata: HashMap::new(),
500        })
501    }
502
503    /// Handles drift detection event
504    fn handle_drift_detection(&mut self, result: DriftTestResult<A>) -> Result<(), String> {
505        let severity = self.classify_drift_severity(&result);
506
507        let drift_event = DriftEvent {
508            timestamp: Instant::now(),
509            severity: severity.clone(),
510            confidence: result.confidence,
511            detection_method: format!("{:?}", self.detection_method),
512            p_value: Some(result.p_value),
513            magnitude: result.test_statistic,
514            affected_features: Vec::new(), // Could be computed based on feature-wise analysis
515        };
516
517        // Store in history
518        if self.detection_history.len() >= 1000 {
519            self.detection_history.pop_front();
520        }
521        self.detection_history.push_back(drift_event);
522
523        // Update drift state
524        self.update_drift_state(true);
525        self.last_detection = Some(Instant::now());
526
527        // Update false positive tracker if enabled
528        if self.config.enable_false_positive_tracking {
529            self.false_positive_tracker.record_detection(true)?;
530        }
531
532        Ok(())
533    }
534
535    /// Classifies drift severity based on test results
536    fn classify_drift_severity(&self, result: &DriftTestResult<A>) -> DriftSeverity {
537        let confidence = result.confidence.to_f64().unwrap_or(0.0);
538        let p_value = result.p_value.to_f64().unwrap_or(1.0);
539
540        if p_value < 0.001 && confidence > 0.95 {
541            DriftSeverity::Critical
542        } else if p_value < 0.01 && confidence > 0.9 {
543            DriftSeverity::Major
544        } else if p_value < 0.05 && confidence > 0.8 {
545            DriftSeverity::Moderate
546        } else {
547            DriftSeverity::Minor
548        }
549    }
550
551    /// Updates the current drift state
552    fn update_drift_state(&mut self, drift_detected: bool) {
553        self.drift_state = match (&self.drift_state, drift_detected) {
554            (DriftState::Stable, true) => DriftState::Warning,
555            (DriftState::Warning, true) => DriftState::Drift,
556            (DriftState::Drift, false) => DriftState::Recovery,
557            (DriftState::Recovery, false) => DriftState::Stable,
558            (state, _) => state.clone(),
559        };
560    }
561
562    /// Computes adaptation for drift sensitivity
563    pub fn compute_sensitivity_adaptation(&mut self) -> Result<Option<Adaptation<A>>, String> {
564        // Check if sensitivity should be adjusted based on false positive rate
565        if self.config.enable_false_positive_tracking {
566            let current_fp_rate = self.false_positive_tracker.current_fp_rate;
567            let target_fp_rate = A::from(0.05).unwrap(); // 5% target false positive rate
568
569            if (current_fp_rate - target_fp_rate).abs() > A::from(0.02).unwrap() {
570                let adjustment = if current_fp_rate > target_fp_rate {
571                    // Too many false positives, decrease sensitivity
572                    -A::from(0.1).unwrap()
573                } else {
574                    // Too few detections (potentially missing true positives), increase sensitivity
575                    A::from(0.1).unwrap()
576                };
577
578                let adaptation = Adaptation {
579                    adaptation_type: AdaptationType::DriftSensitivity,
580                    magnitude: adjustment,
581                    target_component: "drift_detector".to_string(),
582                    parameters: HashMap::new(),
583                    priority: AdaptationPriority::Normal,
584                    timestamp: Instant::now(),
585                };
586
587                return Ok(Some(adaptation));
588            }
589        }
590
591        Ok(None)
592    }
593
594    /// Applies sensitivity adaptation
595    pub fn apply_sensitivity_adaptation(
596        &mut self,
597        adaptation: &Adaptation<A>,
598    ) -> Result<(), String> {
599        if adaptation.adaptation_type == AdaptationType::DriftSensitivity {
600            self.sensitivity_factor = (self.sensitivity_factor + adaptation.magnitude)
601                .max(A::from(0.1).unwrap())
602                .min(A::from(2.0).unwrap());
603        }
604        Ok(())
605    }
606
607    /// Checks if drift is currently detected
608    pub fn is_drift_detected(&self) -> bool {
609        matches!(self.drift_state, DriftState::Drift | DriftState::Warning)
610    }
611
612    /// Gets the current drift state
613    pub fn get_drift_state(&self) -> &DriftState {
614        &self.drift_state
615    }
616
617    /// Gets recent drift events
618    pub fn get_recent_drift_events(&self, count: usize) -> Vec<&DriftEvent<A>> {
619        self.detection_history.iter().rev().take(count).collect()
620    }
621
622    /// Resets the drift detector
623    pub fn reset(&mut self) -> Result<(), String> {
624        self.detection_history.clear();
625        self.reference_window.clear();
626        self.drift_state = DriftState::Stable;
627        self.last_detection = None;
628        self.sensitivity_factor = A::one();
629
630        // Reset all detection methods
631        for test in self.statistical_tests.values_mut() {
632            test.reset();
633        }
634
635        for detector in self.model_detectors.values_mut() {
636            detector.reset_model()?;
637        }
638
639        Ok(())
640    }
641
642    /// Gets diagnostic information
643    pub fn get_diagnostics(&self) -> DriftDiagnostics {
644        DriftDiagnostics {
645            current_state: self.drift_state.clone(),
646            detection_count: self.detection_history.len(),
647            false_positive_rate: self
648                .false_positive_tracker
649                .current_fp_rate
650                .to_f64()
651                .unwrap_or(0.0),
652            sensitivity_factor: self.sensitivity_factor.to_f64().unwrap_or(1.0),
653            last_detection_time: self.last_detection,
654            reference_window_size: self.reference_window.len(),
655        }
656    }
657}
658
659impl<A: Float + Send + Sync + Send + Sync> FalsePositiveTracker<A> {
660    fn new() -> Self {
661        Self {
662            false_positives: VecDeque::new(),
663            true_positives: VecDeque::new(),
664            current_fp_rate: A::zero(),
665            target_fp_rate: A::from(0.05).unwrap(),
666        }
667    }
668
669    fn record_detection(&mut self, is_true_positive: bool) -> Result<(), String> {
670        let now = Instant::now();
671
672        if is_true_positive {
673            self.true_positives.push_back(now);
674        } else {
675            self.false_positives.push_back(now);
676        }
677
678        // Keep only recent events (last hour)
679        let cutoff = now - Duration::from_secs(3600);
680        self.false_positives.retain(|&time| time > cutoff);
681        self.true_positives.retain(|&time| time > cutoff);
682
683        // Update false positive rate
684        let total_detections = self.false_positives.len() + self.true_positives.len();
685        if total_detections > 0 {
686            self.current_fp_rate =
687                A::from(self.false_positives.len()).unwrap() / A::from(total_detections).unwrap();
688        }
689
690        Ok(())
691    }
692}
693
694/// Diagnostic information for drift detection
695#[derive(Debug, Clone)]
696pub struct DriftDiagnostics {
697    pub current_state: DriftState,
698    pub detection_count: usize,
699    pub false_positive_rate: f64,
700    pub sensitivity_factor: f64,
701    pub last_detection_time: Option<Instant>,
702    pub reference_window_size: usize,
703}
704
705// Simplified implementations of detection methods
706// In practice, these would be more sophisticated
707
708struct ADWINTest<A: Float + Send + Sync> {
709    sensitivity: A,
710    window: VecDeque<A>,
711}
712
713impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ADWINTest<A> {
714    fn new(sensitivity: f64) -> Result<Self, String> {
715        Ok(Self {
716            sensitivity: A::from(sensitivity).unwrap(),
717            window: VecDeque::new(),
718        })
719    }
720}
721
722impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A>
723    for ADWINTest<A>
724{
725    fn test_for_drift(
726        &mut self,
727        reference: &[A],
728        current: &[A],
729    ) -> Result<DriftTestResult<A>, String> {
730        // Simplified ADWIN implementation
731        let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
732        let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
733
734        let difference = (ref_mean - cur_mean).abs();
735        let threshold = self.sensitivity;
736
737        let drift_detected = difference > threshold;
738
739        Ok(DriftTestResult {
740            drift_detected,
741            p_value: if drift_detected {
742                A::from(0.01).unwrap()
743            } else {
744                A::from(0.5).unwrap()
745            },
746            test_statistic: difference,
747            confidence: if drift_detected {
748                A::from(0.9).unwrap()
749            } else {
750                A::from(0.1).unwrap()
751            },
752            metadata: HashMap::new(),
753        })
754    }
755
756    fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
757        Ok(())
758    }
759
760    fn reset(&mut self) {
761        self.window.clear();
762    }
763}
764
765struct DDMTest<A: Float + Send + Sync> {
766    sensitivity: A,
767    error_rate: A,
768    std_dev: A,
769}
770
771impl<A: Float + Default + Send + Sync + std::iter::Sum> DDMTest<A> {
772    fn new(sensitivity: f64) -> Result<Self, String> {
773        Ok(Self {
774            sensitivity: A::from(sensitivity).unwrap(),
775            error_rate: A::zero(),
776            std_dev: A::zero(),
777        })
778    }
779}
780
781impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A> for DDMTest<A> {
782    fn test_for_drift(
783        &mut self,
784        reference: &[A],
785        current: &[A],
786    ) -> Result<DriftTestResult<A>, String> {
787        // Simplified DDM implementation
788        let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
789        let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
790
791        let difference = (ref_mean - cur_mean).abs();
792        let drift_detected = difference > self.sensitivity;
793
794        Ok(DriftTestResult {
795            drift_detected,
796            p_value: if drift_detected {
797                A::from(0.02).unwrap()
798            } else {
799                A::from(0.6).unwrap()
800            },
801            test_statistic: difference,
802            confidence: if drift_detected {
803                A::from(0.85).unwrap()
804            } else {
805                A::from(0.15).unwrap()
806            },
807            metadata: HashMap::new(),
808        })
809    }
810
811    fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
812        Ok(())
813    }
814
815    fn reset(&mut self) {
816        self.error_rate = A::zero();
817        self.std_dev = A::zero();
818    }
819}
820
821struct PageHinkleyTest<A: Float + Send + Sync> {
822    sensitivity: A,
823    cumulative_sum: A,
824}
825
826impl<A: Float + Default + Send + Sync + std::iter::Sum> PageHinkleyTest<A> {
827    fn new(sensitivity: f64) -> Result<Self, String> {
828        Ok(Self {
829            sensitivity: A::from(sensitivity).unwrap(),
830            cumulative_sum: A::zero(),
831        })
832    }
833}
834
835impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A>
836    for PageHinkleyTest<A>
837{
838    fn test_for_drift(
839        &mut self,
840        reference: &[A],
841        current: &[A],
842    ) -> Result<DriftTestResult<A>, String> {
843        // Simplified Page-Hinkley test
844        let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
845        let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
846
847        let difference = cur_mean - ref_mean;
848        self.cumulative_sum = self.cumulative_sum + difference;
849
850        let drift_detected = self.cumulative_sum.abs() > self.sensitivity;
851
852        Ok(DriftTestResult {
853            drift_detected,
854            p_value: if drift_detected {
855                A::from(0.015).unwrap()
856            } else {
857                A::from(0.7).unwrap()
858            },
859            test_statistic: self.cumulative_sum,
860            confidence: if drift_detected {
861                A::from(0.88).unwrap()
862            } else {
863                A::from(0.12).unwrap()
864            },
865            metadata: HashMap::new(),
866        })
867    }
868
869    fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
870        Ok(())
871    }
872
873    fn reset(&mut self) {
874        self.cumulative_sum = A::zero();
875    }
876}
877
878struct KLDivergenceComparator<A: Float + Send + Sync> {
879    threshold: A,
880}
881
882impl<A: Float + Send + Sync + Send + Sync> KLDivergenceComparator<A> {
883    fn new(sensitivity: f64) -> Result<Self, String> {
884        Ok(Self {
885            threshold: A::from(sensitivity).unwrap(),
886        })
887    }
888}
889
890impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> DistributionComparator<A>
891    for KLDivergenceComparator<A>
892{
893    fn compare_distributions(
894        &self,
895        reference: &[A],
896        current: &[A],
897    ) -> Result<DistributionComparison<A>, String> {
898        // Simplified KL divergence calculation
899        let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
900        let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
901
902        let distance = (ref_mean - cur_mean).abs();
903        let drift_detected = distance > self.threshold;
904
905        Ok(DistributionComparison {
906            distance,
907            threshold: self.threshold,
908            drift_detected,
909            confidence: if drift_detected {
910                A::from(0.8).unwrap()
911            } else {
912                A::from(0.2).unwrap()
913            },
914        })
915    }
916
917    fn get_threshold(&self) -> A {
918        self.threshold
919    }
920
921    fn update_threshold(&mut self, new_threshold: A) {
922        self.threshold = new_threshold;
923    }
924}
925
926struct JSDivergenceComparator<A: Float + Send + Sync> {
927    threshold: A,
928}
929
930impl<A: Float + Send + Sync + Send + Sync> JSDivergenceComparator<A> {
931    fn new(sensitivity: f64) -> Result<Self, String> {
932        Ok(Self {
933            threshold: A::from(sensitivity).unwrap(),
934        })
935    }
936}
937
938impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> DistributionComparator<A>
939    for JSDivergenceComparator<A>
940{
941    fn compare_distributions(
942        &self,
943        reference: &[A],
944        current: &[A],
945    ) -> Result<DistributionComparison<A>, String> {
946        // Simplified JS divergence calculation
947        let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
948        let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
949
950        let distance = (ref_mean - cur_mean).abs() * A::from(0.5).unwrap(); // Simplified
951        let drift_detected = distance > self.threshold;
952
953        Ok(DistributionComparison {
954            distance,
955            threshold: self.threshold,
956            drift_detected,
957            confidence: if drift_detected {
958                A::from(0.75).unwrap()
959            } else {
960                A::from(0.25).unwrap()
961            },
962        })
963    }
964
965    fn get_threshold(&self) -> A {
966        self.threshold
967    }
968
969    fn update_threshold(&mut self, new_threshold: A) {
970        self.threshold = new_threshold;
971    }
972}
973
974struct LinearModelDetector<A: Float + Send + Sync> {
975    model_performance: A,
976    baseline_performance: A,
977}
978
979impl<A: Float + Default + Send + Sync + Send + Sync> LinearModelDetector<A> {
980    fn new() -> Result<Self, String> {
981        Ok(Self {
982            model_performance: A::zero(),
983            baseline_performance: A::zero(),
984        })
985    }
986}
987
988impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ModelBasedDetector<A>
989    for LinearModelDetector<A>
990{
991    fn update_model(&mut self, _data: &[StreamingDataPoint<A>]) -> Result<(), String> {
992        // Simplified model update
993        Ok(())
994    }
995
996    fn detect_drift(
997        &mut self,
998        _data: &[StreamingDataPoint<A>],
999    ) -> Result<ModelDriftResult<A>, String> {
1000        // Simplified drift detection based on performance degradation
1001        let performance_degradation = self.baseline_performance - self.model_performance;
1002        let drift_detected = performance_degradation > A::from(0.1).unwrap();
1003
1004        Ok(ModelDriftResult {
1005            drift_detected,
1006            performance_degradation,
1007            confidence: if drift_detected {
1008                A::from(0.7).unwrap()
1009            } else {
1010                A::from(0.3).unwrap()
1011            },
1012            feature_importance_changes: Vec::new(),
1013        })
1014    }
1015
1016    fn reset_model(&mut self) -> Result<(), String> {
1017        self.model_performance = A::zero();
1018        self.baseline_performance = A::zero();
1019        Ok(())
1020    }
1021}