1use super::config::*;
8use super::optimizer::{Adaptation, AdaptationPriority, AdaptationType, StreamingDataPoint};
9
10use scirs2_core::numeric::Float;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, VecDeque};
13use std::time::{Duration, Instant};
14
15pub struct EnhancedDriftDetector<A: Float + Send + Sync> {
17 config: DriftConfig,
19 detection_method: DriftDetectionMethod,
21 statistical_tests: HashMap<StatisticalMethod, Box<dyn StatisticalTest<A>>>,
23 distribution_methods: HashMap<DistributionMethod, Box<dyn DistributionComparator<A>>>,
25 model_detectors: HashMap<ModelType, Box<dyn ModelBasedDetector<A>>>,
27 ensemble_strategy: Option<VotingStrategy>,
29 detection_history: VecDeque<DriftEvent<A>>,
31 false_positive_tracker: FalsePositiveTracker<A>,
33 reference_window: VecDeque<StreamingDataPoint<A>>,
35 drift_state: DriftState,
37 last_detection: Option<Instant>,
39 sensitivity_factor: A,
41}
42
43#[derive(Debug, Clone)]
45pub struct DriftEvent<A: Float + Send + Sync> {
46 pub timestamp: Instant,
48 pub severity: DriftSeverity,
50 pub confidence: A,
52 pub detection_method: String,
54 pub p_value: Option<A>,
56 pub magnitude: A,
58 pub affected_features: Vec<usize>,
60}
61
62#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
64pub enum DriftSeverity {
65 Minor,
67 Moderate,
69 Major,
71 Critical,
73}
74
75#[derive(Debug, Clone, PartialEq, Eq)]
77pub enum DriftState {
78 Stable,
80 Warning,
82 Drift,
84 Recovery,
86}
87
88pub struct FalsePositiveTracker<A: Float + Send + Sync> {
90 false_positives: VecDeque<Instant>,
92 true_positives: VecDeque<Instant>,
94 current_fp_rate: A,
96 target_fp_rate: A,
98}
99
100pub trait StatisticalTest<A: Float + Send + Sync>: Send + Sync {
102 fn test_for_drift(
104 &mut self,
105 reference: &[A],
106 current: &[A],
107 ) -> Result<DriftTestResult<A>, String>;
108
109 fn update_parameters(&mut self, performance_feedback: A) -> Result<(), String>;
111
112 fn reset(&mut self);
114}
115
116#[derive(Debug, Clone)]
118pub struct DriftTestResult<A: Float + Send + Sync> {
119 pub drift_detected: bool,
121 pub p_value: A,
123 pub test_statistic: A,
125 pub confidence: A,
127 pub metadata: HashMap<String, A>,
129}
130
131pub trait DistributionComparator<A: Float + Send + Sync>: Send + Sync {
133 fn compare_distributions(
135 &self,
136 reference: &[A],
137 current: &[A],
138 ) -> Result<DistributionComparison<A>, String>;
139
140 fn get_threshold(&self) -> A;
142
143 fn update_threshold(&mut self, new_threshold: A);
145}
146
147#[derive(Debug, Clone)]
149pub struct DistributionComparison<A: Float + Send + Sync> {
150 pub distance: A,
152 pub threshold: A,
154 pub drift_detected: bool,
156 pub confidence: A,
158}
159
160pub trait ModelBasedDetector<A: Float + Send + Sync>: Send + Sync {
162 fn update_model(&mut self, data: &[StreamingDataPoint<A>]) -> Result<(), String>;
164
165 fn detect_drift(
167 &mut self,
168 data: &[StreamingDataPoint<A>],
169 ) -> Result<ModelDriftResult<A>, String>;
170
171 fn reset_model(&mut self) -> Result<(), String>;
173}
174
175#[derive(Debug, Clone)]
177pub struct ModelDriftResult<A: Float + Send + Sync> {
178 pub drift_detected: bool,
180 pub performance_degradation: A,
182 pub confidence: A,
184 pub feature_importance_changes: Vec<A>,
186}
187
188impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum + 'static> EnhancedDriftDetector<A> {
189 pub fn new(config: &StreamingConfig) -> Result<Self, String> {
191 let drift_config = config.drift_config.clone();
192
193 let mut statistical_tests: HashMap<StatisticalMethod, Box<dyn StatisticalTest<A>>> =
194 HashMap::new();
195 let mut distribution_methods: HashMap<
196 DistributionMethod,
197 Box<dyn DistributionComparator<A>>,
198 > = HashMap::new();
199 let mut model_detectors: HashMap<ModelType, Box<dyn ModelBasedDetector<A>>> =
200 HashMap::new();
201
202 statistical_tests.insert(
204 StatisticalMethod::ADWIN,
205 Box::new(ADWINTest::new(drift_config.sensitivity)?),
206 );
207 statistical_tests.insert(
208 StatisticalMethod::DDM,
209 Box::new(DDMTest::new(drift_config.sensitivity)?),
210 );
211 statistical_tests.insert(
212 StatisticalMethod::PageHinkley,
213 Box::new(PageHinkleyTest::new(drift_config.sensitivity)?),
214 );
215
216 distribution_methods.insert(
218 DistributionMethod::KLDivergence,
219 Box::new(KLDivergenceComparator::new(drift_config.sensitivity)?),
220 );
221 distribution_methods.insert(
222 DistributionMethod::JSDivergence,
223 Box::new(JSDivergenceComparator::new(drift_config.sensitivity)?),
224 );
225
226 model_detectors.insert(ModelType::Linear, Box::new(LinearModelDetector::new()?));
228
229 let ensemble_strategy = match &drift_config.detection_method {
230 DriftDetectionMethod::Ensemble {
231 voting_strategy, ..
232 } => Some(voting_strategy.clone()),
233 _ => None,
234 };
235
236 let false_positive_tracker = FalsePositiveTracker::new();
237
238 Ok(Self {
239 config: drift_config.clone(),
240 detection_method: drift_config.detection_method,
241 statistical_tests,
242 distribution_methods,
243 model_detectors,
244 ensemble_strategy,
245 detection_history: VecDeque::with_capacity(1000),
246 false_positive_tracker,
247 reference_window: VecDeque::with_capacity(drift_config.window_size),
248 drift_state: DriftState::Stable,
249 last_detection: None,
250 sensitivity_factor: A::one(),
251 })
252 }
253
254 pub fn detect_drift(&mut self, batch: &[StreamingDataPoint<A>]) -> Result<bool, String> {
256 if !self.config.enable_detection || batch.len() < self.config.min_samples {
257 return Ok(false);
258 }
259
260 self.update_reference_window(batch)?;
262
263 if self.reference_window.len() < self.config.window_size / 2 {
265 return Ok(false);
266 }
267
268 let current_features = self.extract_features(batch)?;
270 let reference_features = self.extract_reference_features()?;
271
272 let detection_method = self.detection_method.clone();
274 let drift_result = match detection_method {
275 DriftDetectionMethod::Statistical(method) => {
276 self.detect_statistical_drift(&method, &reference_features, ¤t_features)?
277 }
278 DriftDetectionMethod::Distribution(method) => {
279 self.detect_distribution_drift(&method, &reference_features, ¤t_features)?
280 }
281 DriftDetectionMethod::ModelBased(model_type) => {
282 self.detect_model_drift(&model_type, batch)?
283 }
284 DriftDetectionMethod::Ensemble {
285 methods,
286 voting_strategy,
287 } => self.detect_ensemble_drift(
288 &methods,
289 &voting_strategy,
290 &reference_features,
291 ¤t_features,
292 batch,
293 )?,
294 };
295
296 if drift_result.drift_detected {
298 self.handle_drift_detection(drift_result)?;
299 Ok(true)
300 } else {
301 self.update_drift_state(false);
302 Ok(false)
303 }
304 }
305
306 fn update_reference_window(&mut self, batch: &[StreamingDataPoint<A>]) -> Result<(), String> {
308 for data_point in batch {
309 if self.reference_window.len() >= self.config.window_size {
310 self.reference_window.pop_front();
311 }
312 self.reference_window.push_back(data_point.clone());
313 }
314 Ok(())
315 }
316
317 fn extract_features(&self, batch: &[StreamingDataPoint<A>]) -> Result<Vec<A>, String> {
319 let mut features = Vec::new();
320
321 for data_point in batch {
322 features.extend(data_point.features.iter().cloned());
323 }
324
325 Ok(features)
326 }
327
328 fn extract_reference_features(&self) -> Result<Vec<A>, String> {
330 let reference_data: Vec<_> = self
331 .reference_window
332 .iter()
333 .take(self.reference_window.len() / 2)
334 .collect();
335
336 let mut features = Vec::new();
337 for data_point in reference_data {
338 features.extend(data_point.features.iter().cloned());
339 }
340
341 Ok(features)
342 }
343
344 fn detect_statistical_drift(
346 &mut self,
347 method: &StatisticalMethod,
348 reference: &[A],
349 current: &[A],
350 ) -> Result<DriftTestResult<A>, String> {
351 if let Some(test) = self.statistical_tests.get_mut(method) {
352 let mut result = test.test_for_drift(reference, current)?;
353
354 result.confidence = result.confidence * self.sensitivity_factor;
356 result.drift_detected = result.p_value
357 < A::from(self.config.significance_level).unwrap() * self.sensitivity_factor;
358
359 Ok(result)
360 } else {
361 Err(format!("Statistical method {:?} not implemented", method))
362 }
363 }
364
365 fn detect_distribution_drift(
367 &mut self,
368 method: &DistributionMethod,
369 reference: &[A],
370 current: &[A],
371 ) -> Result<DriftTestResult<A>, String> {
372 if let Some(comparator) = self.distribution_methods.get(method) {
373 let comparison = comparator.compare_distributions(reference, current)?;
374
375 let result = DriftTestResult {
376 drift_detected: comparison.drift_detected,
377 p_value: A::one() - comparison.confidence, test_statistic: comparison.distance,
379 confidence: comparison.confidence * self.sensitivity_factor,
380 metadata: HashMap::new(),
381 };
382
383 Ok(result)
384 } else {
385 Err(format!("Distribution method {:?} not implemented", method))
386 }
387 }
388
389 fn detect_model_drift(
391 &mut self,
392 model_type: &ModelType,
393 batch: &[StreamingDataPoint<A>],
394 ) -> Result<DriftTestResult<A>, String> {
395 if let Some(detector) = self.model_detectors.get_mut(model_type) {
396 let model_result = detector.detect_drift(batch)?;
397
398 let result = DriftTestResult {
399 drift_detected: model_result.drift_detected,
400 p_value: A::one() - model_result.confidence,
401 test_statistic: model_result.performance_degradation,
402 confidence: model_result.confidence * self.sensitivity_factor,
403 metadata: HashMap::new(),
404 };
405
406 Ok(result)
407 } else {
408 Err(format!("Model type {:?} not implemented", model_type))
409 }
410 }
411
412 fn detect_ensemble_drift(
414 &mut self,
415 methods: &[DriftDetectionMethod],
416 voting_strategy: &VotingStrategy,
417 reference: &[A],
418 current: &[A],
419 batch: &[StreamingDataPoint<A>],
420 ) -> Result<DriftTestResult<A>, String> {
421 let mut results = Vec::new();
422
423 for method in methods {
425 let result = match method {
426 DriftDetectionMethod::Statistical(stat_method) => {
427 self.detect_statistical_drift(stat_method, reference, current)?
428 }
429 DriftDetectionMethod::Distribution(dist_method) => {
430 self.detect_distribution_drift(dist_method, reference, current)?
431 }
432 DriftDetectionMethod::ModelBased(model_type) => {
433 self.detect_model_drift(model_type, batch)?
434 }
435 DriftDetectionMethod::Ensemble { .. } => {
436 continue;
438 }
439 };
440 results.push(result);
441 }
442
443 let ensemble_result = self.apply_voting_strategy(voting_strategy, &results)?;
445 Ok(ensemble_result)
446 }
447
448 fn apply_voting_strategy(
450 &self,
451 strategy: &VotingStrategy,
452 results: &[DriftTestResult<A>],
453 ) -> Result<DriftTestResult<A>, String> {
454 if results.is_empty() {
455 return Err("No results to vote on".to_string());
456 }
457
458 let drift_detected = match strategy {
459 VotingStrategy::Majority => {
460 let positive_votes = results.iter().filter(|r| r.drift_detected).count();
461 positive_votes > results.len() / 2
462 }
463 VotingStrategy::Weighted { weights } => {
464 if weights.len() != results.len() {
465 return Err("Number of weights doesn't match number of results".to_string());
466 }
467
468 let weighted_score: f64 = results
469 .iter()
470 .zip(weights.iter())
471 .map(|(result, &weight)| weight * if result.drift_detected { 1.0 } else { 0.0 })
472 .sum();
473
474 let total_weight: f64 = weights.iter().sum();
475 weighted_score / total_weight > 0.5
476 }
477 VotingStrategy::Unanimous => results.iter().all(|r| r.drift_detected),
478 VotingStrategy::Threshold { min_votes } => {
479 let positive_votes = results.iter().filter(|r| r.drift_detected).count();
480 positive_votes >= *min_votes
481 }
482 };
483
484 let avg_confidence =
486 results.iter().map(|r| r.confidence).sum::<A>() / A::from(results.len()).unwrap();
487
488 let avg_p_value =
489 results.iter().map(|r| r.p_value).sum::<A>() / A::from(results.len()).unwrap();
490
491 let avg_test_statistic =
492 results.iter().map(|r| r.test_statistic).sum::<A>() / A::from(results.len()).unwrap();
493
494 Ok(DriftTestResult {
495 drift_detected,
496 p_value: avg_p_value,
497 test_statistic: avg_test_statistic,
498 confidence: avg_confidence,
499 metadata: HashMap::new(),
500 })
501 }
502
503 fn handle_drift_detection(&mut self, result: DriftTestResult<A>) -> Result<(), String> {
505 let severity = self.classify_drift_severity(&result);
506
507 let drift_event = DriftEvent {
508 timestamp: Instant::now(),
509 severity: severity.clone(),
510 confidence: result.confidence,
511 detection_method: format!("{:?}", self.detection_method),
512 p_value: Some(result.p_value),
513 magnitude: result.test_statistic,
514 affected_features: Vec::new(), };
516
517 if self.detection_history.len() >= 1000 {
519 self.detection_history.pop_front();
520 }
521 self.detection_history.push_back(drift_event);
522
523 self.update_drift_state(true);
525 self.last_detection = Some(Instant::now());
526
527 if self.config.enable_false_positive_tracking {
529 self.false_positive_tracker.record_detection(true)?;
530 }
531
532 Ok(())
533 }
534
535 fn classify_drift_severity(&self, result: &DriftTestResult<A>) -> DriftSeverity {
537 let confidence = result.confidence.to_f64().unwrap_or(0.0);
538 let p_value = result.p_value.to_f64().unwrap_or(1.0);
539
540 if p_value < 0.001 && confidence > 0.95 {
541 DriftSeverity::Critical
542 } else if p_value < 0.01 && confidence > 0.9 {
543 DriftSeverity::Major
544 } else if p_value < 0.05 && confidence > 0.8 {
545 DriftSeverity::Moderate
546 } else {
547 DriftSeverity::Minor
548 }
549 }
550
551 fn update_drift_state(&mut self, drift_detected: bool) {
553 self.drift_state = match (&self.drift_state, drift_detected) {
554 (DriftState::Stable, true) => DriftState::Warning,
555 (DriftState::Warning, true) => DriftState::Drift,
556 (DriftState::Drift, false) => DriftState::Recovery,
557 (DriftState::Recovery, false) => DriftState::Stable,
558 (state, _) => state.clone(),
559 };
560 }
561
562 pub fn compute_sensitivity_adaptation(&mut self) -> Result<Option<Adaptation<A>>, String> {
564 if self.config.enable_false_positive_tracking {
566 let current_fp_rate = self.false_positive_tracker.current_fp_rate;
567 let target_fp_rate = A::from(0.05).unwrap(); if (current_fp_rate - target_fp_rate).abs() > A::from(0.02).unwrap() {
570 let adjustment = if current_fp_rate > target_fp_rate {
571 -A::from(0.1).unwrap()
573 } else {
574 A::from(0.1).unwrap()
576 };
577
578 let adaptation = Adaptation {
579 adaptation_type: AdaptationType::DriftSensitivity,
580 magnitude: adjustment,
581 target_component: "drift_detector".to_string(),
582 parameters: HashMap::new(),
583 priority: AdaptationPriority::Normal,
584 timestamp: Instant::now(),
585 };
586
587 return Ok(Some(adaptation));
588 }
589 }
590
591 Ok(None)
592 }
593
594 pub fn apply_sensitivity_adaptation(
596 &mut self,
597 adaptation: &Adaptation<A>,
598 ) -> Result<(), String> {
599 if adaptation.adaptation_type == AdaptationType::DriftSensitivity {
600 self.sensitivity_factor = (self.sensitivity_factor + adaptation.magnitude)
601 .max(A::from(0.1).unwrap())
602 .min(A::from(2.0).unwrap());
603 }
604 Ok(())
605 }
606
607 pub fn is_drift_detected(&self) -> bool {
609 matches!(self.drift_state, DriftState::Drift | DriftState::Warning)
610 }
611
612 pub fn get_drift_state(&self) -> &DriftState {
614 &self.drift_state
615 }
616
617 pub fn get_recent_drift_events(&self, count: usize) -> Vec<&DriftEvent<A>> {
619 self.detection_history.iter().rev().take(count).collect()
620 }
621
622 pub fn reset(&mut self) -> Result<(), String> {
624 self.detection_history.clear();
625 self.reference_window.clear();
626 self.drift_state = DriftState::Stable;
627 self.last_detection = None;
628 self.sensitivity_factor = A::one();
629
630 for test in self.statistical_tests.values_mut() {
632 test.reset();
633 }
634
635 for detector in self.model_detectors.values_mut() {
636 detector.reset_model()?;
637 }
638
639 Ok(())
640 }
641
642 pub fn get_diagnostics(&self) -> DriftDiagnostics {
644 DriftDiagnostics {
645 current_state: self.drift_state.clone(),
646 detection_count: self.detection_history.len(),
647 false_positive_rate: self
648 .false_positive_tracker
649 .current_fp_rate
650 .to_f64()
651 .unwrap_or(0.0),
652 sensitivity_factor: self.sensitivity_factor.to_f64().unwrap_or(1.0),
653 last_detection_time: self.last_detection,
654 reference_window_size: self.reference_window.len(),
655 }
656 }
657}
658
659impl<A: Float + Send + Sync + Send + Sync> FalsePositiveTracker<A> {
660 fn new() -> Self {
661 Self {
662 false_positives: VecDeque::new(),
663 true_positives: VecDeque::new(),
664 current_fp_rate: A::zero(),
665 target_fp_rate: A::from(0.05).unwrap(),
666 }
667 }
668
669 fn record_detection(&mut self, is_true_positive: bool) -> Result<(), String> {
670 let now = Instant::now();
671
672 if is_true_positive {
673 self.true_positives.push_back(now);
674 } else {
675 self.false_positives.push_back(now);
676 }
677
678 let cutoff = now - Duration::from_secs(3600);
680 self.false_positives.retain(|&time| time > cutoff);
681 self.true_positives.retain(|&time| time > cutoff);
682
683 let total_detections = self.false_positives.len() + self.true_positives.len();
685 if total_detections > 0 {
686 self.current_fp_rate =
687 A::from(self.false_positives.len()).unwrap() / A::from(total_detections).unwrap();
688 }
689
690 Ok(())
691 }
692}
693
694#[derive(Debug, Clone)]
696pub struct DriftDiagnostics {
697 pub current_state: DriftState,
698 pub detection_count: usize,
699 pub false_positive_rate: f64,
700 pub sensitivity_factor: f64,
701 pub last_detection_time: Option<Instant>,
702 pub reference_window_size: usize,
703}
704
705struct ADWINTest<A: Float + Send + Sync> {
709 sensitivity: A,
710 window: VecDeque<A>,
711}
712
713impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ADWINTest<A> {
714 fn new(sensitivity: f64) -> Result<Self, String> {
715 Ok(Self {
716 sensitivity: A::from(sensitivity).unwrap(),
717 window: VecDeque::new(),
718 })
719 }
720}
721
722impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A>
723 for ADWINTest<A>
724{
725 fn test_for_drift(
726 &mut self,
727 reference: &[A],
728 current: &[A],
729 ) -> Result<DriftTestResult<A>, String> {
730 let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
732 let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
733
734 let difference = (ref_mean - cur_mean).abs();
735 let threshold = self.sensitivity;
736
737 let drift_detected = difference > threshold;
738
739 Ok(DriftTestResult {
740 drift_detected,
741 p_value: if drift_detected {
742 A::from(0.01).unwrap()
743 } else {
744 A::from(0.5).unwrap()
745 },
746 test_statistic: difference,
747 confidence: if drift_detected {
748 A::from(0.9).unwrap()
749 } else {
750 A::from(0.1).unwrap()
751 },
752 metadata: HashMap::new(),
753 })
754 }
755
756 fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
757 Ok(())
758 }
759
760 fn reset(&mut self) {
761 self.window.clear();
762 }
763}
764
765struct DDMTest<A: Float + Send + Sync> {
766 sensitivity: A,
767 error_rate: A,
768 std_dev: A,
769}
770
771impl<A: Float + Default + Send + Sync + std::iter::Sum> DDMTest<A> {
772 fn new(sensitivity: f64) -> Result<Self, String> {
773 Ok(Self {
774 sensitivity: A::from(sensitivity).unwrap(),
775 error_rate: A::zero(),
776 std_dev: A::zero(),
777 })
778 }
779}
780
781impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A> for DDMTest<A> {
782 fn test_for_drift(
783 &mut self,
784 reference: &[A],
785 current: &[A],
786 ) -> Result<DriftTestResult<A>, String> {
787 let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
789 let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
790
791 let difference = (ref_mean - cur_mean).abs();
792 let drift_detected = difference > self.sensitivity;
793
794 Ok(DriftTestResult {
795 drift_detected,
796 p_value: if drift_detected {
797 A::from(0.02).unwrap()
798 } else {
799 A::from(0.6).unwrap()
800 },
801 test_statistic: difference,
802 confidence: if drift_detected {
803 A::from(0.85).unwrap()
804 } else {
805 A::from(0.15).unwrap()
806 },
807 metadata: HashMap::new(),
808 })
809 }
810
811 fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
812 Ok(())
813 }
814
815 fn reset(&mut self) {
816 self.error_rate = A::zero();
817 self.std_dev = A::zero();
818 }
819}
820
821struct PageHinkleyTest<A: Float + Send + Sync> {
822 sensitivity: A,
823 cumulative_sum: A,
824}
825
826impl<A: Float + Default + Send + Sync + std::iter::Sum> PageHinkleyTest<A> {
827 fn new(sensitivity: f64) -> Result<Self, String> {
828 Ok(Self {
829 sensitivity: A::from(sensitivity).unwrap(),
830 cumulative_sum: A::zero(),
831 })
832 }
833}
834
835impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalTest<A>
836 for PageHinkleyTest<A>
837{
838 fn test_for_drift(
839 &mut self,
840 reference: &[A],
841 current: &[A],
842 ) -> Result<DriftTestResult<A>, String> {
843 let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
845 let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
846
847 let difference = cur_mean - ref_mean;
848 self.cumulative_sum = self.cumulative_sum + difference;
849
850 let drift_detected = self.cumulative_sum.abs() > self.sensitivity;
851
852 Ok(DriftTestResult {
853 drift_detected,
854 p_value: if drift_detected {
855 A::from(0.015).unwrap()
856 } else {
857 A::from(0.7).unwrap()
858 },
859 test_statistic: self.cumulative_sum,
860 confidence: if drift_detected {
861 A::from(0.88).unwrap()
862 } else {
863 A::from(0.12).unwrap()
864 },
865 metadata: HashMap::new(),
866 })
867 }
868
869 fn update_parameters(&mut self, _performance_feedback: A) -> Result<(), String> {
870 Ok(())
871 }
872
873 fn reset(&mut self) {
874 self.cumulative_sum = A::zero();
875 }
876}
877
878struct KLDivergenceComparator<A: Float + Send + Sync> {
879 threshold: A,
880}
881
882impl<A: Float + Send + Sync + Send + Sync> KLDivergenceComparator<A> {
883 fn new(sensitivity: f64) -> Result<Self, String> {
884 Ok(Self {
885 threshold: A::from(sensitivity).unwrap(),
886 })
887 }
888}
889
890impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> DistributionComparator<A>
891 for KLDivergenceComparator<A>
892{
893 fn compare_distributions(
894 &self,
895 reference: &[A],
896 current: &[A],
897 ) -> Result<DistributionComparison<A>, String> {
898 let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
900 let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
901
902 let distance = (ref_mean - cur_mean).abs();
903 let drift_detected = distance > self.threshold;
904
905 Ok(DistributionComparison {
906 distance,
907 threshold: self.threshold,
908 drift_detected,
909 confidence: if drift_detected {
910 A::from(0.8).unwrap()
911 } else {
912 A::from(0.2).unwrap()
913 },
914 })
915 }
916
917 fn get_threshold(&self) -> A {
918 self.threshold
919 }
920
921 fn update_threshold(&mut self, new_threshold: A) {
922 self.threshold = new_threshold;
923 }
924}
925
926struct JSDivergenceComparator<A: Float + Send + Sync> {
927 threshold: A,
928}
929
930impl<A: Float + Send + Sync + Send + Sync> JSDivergenceComparator<A> {
931 fn new(sensitivity: f64) -> Result<Self, String> {
932 Ok(Self {
933 threshold: A::from(sensitivity).unwrap(),
934 })
935 }
936}
937
938impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> DistributionComparator<A>
939 for JSDivergenceComparator<A>
940{
941 fn compare_distributions(
942 &self,
943 reference: &[A],
944 current: &[A],
945 ) -> Result<DistributionComparison<A>, String> {
946 let ref_mean = reference.iter().cloned().sum::<A>() / A::from(reference.len()).unwrap();
948 let cur_mean = current.iter().cloned().sum::<A>() / A::from(current.len()).unwrap();
949
950 let distance = (ref_mean - cur_mean).abs() * A::from(0.5).unwrap(); let drift_detected = distance > self.threshold;
952
953 Ok(DistributionComparison {
954 distance,
955 threshold: self.threshold,
956 drift_detected,
957 confidence: if drift_detected {
958 A::from(0.75).unwrap()
959 } else {
960 A::from(0.25).unwrap()
961 },
962 })
963 }
964
965 fn get_threshold(&self) -> A {
966 self.threshold
967 }
968
969 fn update_threshold(&mut self, new_threshold: A) {
970 self.threshold = new_threshold;
971 }
972}
973
974struct LinearModelDetector<A: Float + Send + Sync> {
975 model_performance: A,
976 baseline_performance: A,
977}
978
979impl<A: Float + Default + Send + Sync + Send + Sync> LinearModelDetector<A> {
980 fn new() -> Result<Self, String> {
981 Ok(Self {
982 model_performance: A::zero(),
983 baseline_performance: A::zero(),
984 })
985 }
986}
987
988impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ModelBasedDetector<A>
989 for LinearModelDetector<A>
990{
991 fn update_model(&mut self, _data: &[StreamingDataPoint<A>]) -> Result<(), String> {
992 Ok(())
994 }
995
996 fn detect_drift(
997 &mut self,
998 _data: &[StreamingDataPoint<A>],
999 ) -> Result<ModelDriftResult<A>, String> {
1000 let performance_degradation = self.baseline_performance - self.model_performance;
1002 let drift_detected = performance_degradation > A::from(0.1).unwrap();
1003
1004 Ok(ModelDriftResult {
1005 drift_detected,
1006 performance_degradation,
1007 confidence: if drift_detected {
1008 A::from(0.7).unwrap()
1009 } else {
1010 A::from(0.3).unwrap()
1011 },
1012 feature_importance_changes: Vec::new(),
1013 })
1014 }
1015
1016 fn reset_model(&mut self) -> Result<(), String> {
1017 self.model_performance = A::zero();
1018 self.baseline_performance = A::zero();
1019 Ok(())
1020 }
1021}