pub struct LAMB<A: Float + ScalarOperand + Debug> { /* private fields */ }Expand description
LAMB (Layer-wise Adaptive Moments) optimizer
LAMB is designed for large batch optimization. It extends AdamW with layer-wise adaptive learning rates, making it particularly effective for training large models with high batch sizes.
Formula: m_t = beta1 * m_{t-1} + (1 - beta1) * g_t v_t = beta2 * v_{t-1} + (1 - beta2) * g_t^2 m_hat_t = m_t / (1 - beta1^t) v_hat_t = v_t / (1 - beta2^t) r1 = ||theta_t|| g’ = m_hat_t / (sqrt(v_hat_t) + epsilon) + lambda * theta_t r2 = ||g’|| ratio = r1/r2 if r1 > 0 and r2 > 0, else 1.0 theta_t = theta_{t-1} - lr * ratio * g’
§Examples
use scirs2_core::ndarray::Array1;
use optirs_core::optimizers::{LAMB, Optimizer};
// Initialize parameters and gradients
let params = Array1::zeros(5);
let gradients = Array1::from_vec(vec![0.1, 0.2, -0.3, 0.0, 0.5]);
// Create a LAMB optimizer with default hyperparameters
let mut optimizer = LAMB::new(0.001);
// Update parameters
let new_params = optimizer.step(¶ms, &gradients).unwrap();Implementations§
Source§impl<A: Float + ScalarOperand + Debug + Send + Sync> LAMB<A>
impl<A: Float + ScalarOperand + Debug + Send + Sync> LAMB<A>
Sourcepub fn new(learning_rate: A) -> Self
pub fn new(learning_rate: A) -> Self
Creates a new LAMB optimizer with the given learning rate and default settings
§Arguments
learning_rate- The learning rate for parameter updates
Sourcepub fn new_with_config(
learning_rate: A,
beta1: A,
beta2: A,
epsilon: A,
weight_decay: A,
bias_correction: bool,
) -> Self
pub fn new_with_config( learning_rate: A, beta1: A, beta2: A, epsilon: A, weight_decay: A, bias_correction: bool, ) -> Self
Creates a new LAMB optimizer with the full configuration
§Arguments
learning_rate- The learning rate for parameter updatesbeta1- Exponential decay rate for the first moment estimates (default: 0.9)beta2- Exponential decay rate for the second moment estimates (default: 0.999)epsilon- Small constant for numerical stability (default: 1e-6)weight_decay- Weight decay factor for L2 regularization (default: 0.0)bias_correction- Whether to use bias correction (default: true)
Sourcepub fn set_epsilon(&mut self, epsilon: A) -> &mut Self
pub fn set_epsilon(&mut self, epsilon: A) -> &mut Self
Sets the epsilon parameter
Sourcepub fn get_epsilon(&self) -> A
pub fn get_epsilon(&self) -> A
Gets the epsilon parameter
Sourcepub fn set_weight_decay(&mut self, weight_decay: A) -> &mut Self
pub fn set_weight_decay(&mut self, weight_decay: A) -> &mut Self
Sets the weight decay parameter
Sourcepub fn get_weight_decay(&self) -> A
pub fn get_weight_decay(&self) -> A
Gets the weight decay parameter
Sourcepub fn learning_rate(&self) -> A
pub fn learning_rate(&self) -> A
Gets the current learning rate
Trait Implementations§
Source§impl<A, D> Optimizer<A, D> for LAMB<A>
impl<A, D> Optimizer<A, D> for LAMB<A>
Source§fn step(
&mut self,
params: &Array<A, D>,
gradients: &Array<A, D>,
) -> Result<Array<A, D>>
fn step( &mut self, params: &Array<A, D>, gradients: &Array<A, D>, ) -> Result<Array<A, D>>
Source§fn get_learning_rate(&self) -> A
fn get_learning_rate(&self) -> A
Source§fn set_learning_rate(&mut self, learning_rate: A)
fn set_learning_rate(&mut self, learning_rate: A)
Auto Trait Implementations§
impl<A> Freeze for LAMB<A>where
A: Freeze,
impl<A> RefUnwindSafe for LAMB<A>where
A: RefUnwindSafe,
impl<A> Send for LAMB<A>where
A: Send,
impl<A> Sync for LAMB<A>where
A: Sync,
impl<A> Unpin for LAMB<A>where
A: Unpin,
impl<A> UnwindSafe for LAMB<A>where
A: UnwindSafe + RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.