pub struct StochasticDepth<A: Float> { /* private fields */ }Expand description
Stochastic Depth regularization
Implements stochastic depth by randomly skipping layers during training. During inference, all layers are used with a scaling factor.
§Example
use scirs2_core::ndarray::array;
use optirs_core::regularizers::StochasticDepth;
let stochastic_depth = StochasticDepth::new(0.2, 10, 50);
let features = array![[1.0, 2.0], [3.0, 4.0]];
// Apply stochastic depth for layer 5 during training
let output = stochastic_depth.apply_layer(5, &features, true);Implementations§
Source§impl<A: Float + Debug + ScalarOperand + FromPrimitive + Send + Sync> StochasticDepth<A>
impl<A: Float + Debug + ScalarOperand + FromPrimitive + Send + Sync> StochasticDepth<A>
Sourcepub fn new(drop_prob: A, layer_idx: usize, numlayers: usize) -> Self
pub fn new(drop_prob: A, layer_idx: usize, numlayers: usize) -> Self
Create a new stochastic depth regularization
§Arguments
drop_prob- The base probability of dropping a layerlayer_idx- The index of the current layernum_layers- The total number of layers in the network
Sourcepub fn set_rng_state(&mut self, state: u64)
pub fn set_rng_state(&mut self, state: u64)
Set the RNG state for deterministic behavior
Sourcepub fn apply_layer<D>(
&self,
layer_idx: usize,
features: &Array<A, D>,
training: bool,
) -> Array<A, D>where
D: Dimension,
pub fn apply_layer<D>(
&self,
layer_idx: usize,
features: &Array<A, D>,
training: bool,
) -> Array<A, D>where
D: Dimension,
Apply stochastic depth to a layer
§Arguments
layer_idx- Index of the layerfeatures- Input featurestraining- Whether in training mode
§Returns
The output features, which are either:
- The identity (input) if the layer is dropped during training
- The input scaled by the survival probability during inference
- The input if not dropped during training
Trait Implementations§
Source§impl<A: Clone + Float> Clone for StochasticDepth<A>
impl<A: Clone + Float> Clone for StochasticDepth<A>
Source§fn clone(&self) -> StochasticDepth<A>
fn clone(&self) -> StochasticDepth<A>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<A: Float + Debug + ScalarOperand + FromPrimitive, D: Dimension + Send + Sync> Regularizer<A, D> for StochasticDepth<A>
impl<A: Float + Debug + ScalarOperand + FromPrimitive, D: Dimension + Send + Sync> Regularizer<A, D> for StochasticDepth<A>
Auto Trait Implementations§
impl<A> Freeze for StochasticDepth<A>where
A: Freeze,
impl<A> RefUnwindSafe for StochasticDepth<A>where
A: RefUnwindSafe,
impl<A> Send for StochasticDepth<A>where
A: Send,
impl<A> Sync for StochasticDepth<A>where
A: Sync,
impl<A> Unpin for StochasticDepth<A>where
A: Unpin,
impl<A> UnwindSafe for StochasticDepth<A>where
A: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.