pub struct BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,{ /* private fields */ }Expand description
You can use these methods:
exactsparsekiss_love
Implementations§
source§impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
sourcepub fn exact(
self,
y: &[f64]
) -> Result<ExactEllipticalProcessParams<K, T>, DistributionError>
pub fn exact(
self,
y: &[f64]
) -> Result<ExactEllipticalProcessParams<K, T>, DistributionError>
Elliptical Process without approximation for scalability.
- Pre-computation time: O(n^3)
- Pre-computation storage: O(n^2)
- Prediction time: O(n^2)
source§impl<K, T> BaseEllipticalProcessParams<Convolutional<K>, T>where
K: PositiveDefiniteKernel<Vec<f64>>,
T: RandomVariable + Convolutable,
impl<K, T> BaseEllipticalProcessParams<Convolutional<K>, T>where
K: PositiveDefiniteKernel<Vec<f64>>,
T: RandomVariable + Convolutable,
sourcepub fn kiss_love(
self,
y: &[f64]
) -> Result<KissLoveEllipticalProcessParams<K, T>, DistributionError>
pub fn kiss_love(
self,
y: &[f64]
) -> Result<KissLoveEllipticalProcessParams<K, T>, DistributionError>
Lanczos Variance Estimate Kernel Interpolation for Scalable Structured Gaussian Process
- Pre-computation time: O(k(n + m log m))
- Pre-computation storage: O(km)
- Prediction time: O(k) with k = 100
source§impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
sourcepub fn sparse(
self,
y: &[f64],
u: Vec<T>
) -> Result<SparseEllipticalProcessParams<K, T>, DistributionError>
pub fn sparse(
self,
y: &[f64],
u: Vec<T>
) -> Result<SparseEllipticalProcessParams<K, T>, DistributionError>
Elliptical Process with approximation called the Fully Independent Training Conditional (FITC) for scalability.
- Pre-computation time: O(nm^2)
- Pre-computation storage: O(m^2)
- Prediction time: O(m^2)
source§impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
Trait Implementations§
source§impl<K, T> Clone for BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T> + Clone,
T: RandomVariable + Clone,
impl<K, T> Clone for BaseEllipticalProcessParams<K, T>where
K: PositiveDefiniteKernel<T> + Clone,
T: RandomVariable + Clone,
source§fn clone(&self) -> BaseEllipticalProcessParams<K, T>
fn clone(&self) -> BaseEllipticalProcessParams<K, T>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read more