Struct opensrdk_probability::nonparametric::elliptical_process::BaseEllipticalProcessParams
source · [−]pub struct BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable, { /* private fields */ }Expand description
You can use these methods:
exactsparsekiss_love
Implementations
sourceimpl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
sourcepub fn exact(
self,
y: &[f64]
) -> Result<ExactEllipticalProcessParams<K, T>, DistributionError>
pub fn exact(
self,
y: &[f64]
) -> Result<ExactEllipticalProcessParams<K, T>, DistributionError>
Elliptical Process without approximation for scalability.
- Pre-computation time: O(n^3)
- Pre-computation storage: O(n^2)
- Prediction time: O(n^2)
sourceimpl<K, T> BaseEllipticalProcessParams<Convolutional<K>, T> where
K: PositiveDefiniteKernel<Vec<f64>>,
T: RandomVariable + Convolutable,
impl<K, T> BaseEllipticalProcessParams<Convolutional<K>, T> where
K: PositiveDefiniteKernel<Vec<f64>>,
T: RandomVariable + Convolutable,
sourcepub fn kiss_love(
self,
y: &[f64]
) -> Result<KissLoveEllipticalProcessParams<K, T>, DistributionError>
pub fn kiss_love(
self,
y: &[f64]
) -> Result<KissLoveEllipticalProcessParams<K, T>, DistributionError>
Lanczos Variance Estimate Kernel Interpolation for Scalable Structured Gaussian Process
- Pre-computation time: O(k(n + m log m))
- Pre-computation storage: O(km)
- Prediction time: O(k) with k = 100
sourceimpl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
sourcepub fn sparse(
self,
y: &[f64],
u: Vec<T>
) -> Result<SparseEllipticalProcessParams<K, T>, DistributionError>
pub fn sparse(
self,
y: &[f64],
u: Vec<T>
) -> Result<SparseEllipticalProcessParams<K, T>, DistributionError>
Elliptical Process with approximation called the Fully Independent Training Conditional (FITC) for scalability.
- Pre-computation time: O(nm^2)
- Pre-computation storage: O(m^2)
- Prediction time: O(m^2)
sourceimpl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K, T> BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
Trait Implementations
sourceimpl<K: Clone, T: Clone> Clone for BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K: Clone, T: Clone> Clone for BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
sourcefn clone(&self) -> BaseEllipticalProcessParams<K, T>
fn clone(&self) -> BaseEllipticalProcessParams<K, T>
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source. Read more
sourceimpl<K: Debug, T: Debug> Debug for BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
impl<K: Debug, T: Debug> Debug for BaseEllipticalProcessParams<K, T> where
K: PositiveDefiniteKernel<T>,
T: RandomVariable,
Auto Trait Implementations
impl<K, T> RefUnwindSafe for BaseEllipticalProcessParams<K, T> where
K: RefUnwindSafe,
T: RefUnwindSafe,
impl<K, T> Send for BaseEllipticalProcessParams<K, T>
impl<K, T> Sync for BaseEllipticalProcessParams<K, T>
impl<K, T> Unpin for BaseEllipticalProcessParams<K, T> where
K: Unpin,
T: Unpin,
impl<K, T> UnwindSafe for BaseEllipticalProcessParams<K, T> where
K: UnwindSafe,
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Pointable for T
impl<T> Pointable for T
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
fn clone_into(&self, target: &mut T)
🔬 This is a nightly-only experimental API. (
toowned_clone_into)Uses borrowed data to replace owned data, usually by cloning. Read more