Implementations
Cholesky decomposition
for tridiagonal matrix
T = L * D * L^T
Cholesky decomposition
for tridiagonal matrix
T = L * D * L^T
Eigen decomposition
return (lambda, pt)
Eigen decomposition
return (lambda, pt)
d: Diagonal elements. The length must bedimension.e: First both superdiagonal and subdiagonal elements. The length must bedimension - 1.
Diagonal elements.
First both superdiagonal and subdiagonal elements/
Trait Implementations
Returns the “default value” for a type. Read more
impl<T: PartialEq> PartialEq<SymmetricTridiagonalMatrix<T>> for SymmetricTridiagonalMatrix<T> where
T: Number,
impl<T: PartialEq> PartialEq<SymmetricTridiagonalMatrix<T>> for SymmetricTridiagonalMatrix<T> where
T: Number,
This method tests for self and other values to be equal, and is used
by ==. Read more
This method tests for !=.
Auto Trait Implementations
impl<T> RefUnwindSafe for SymmetricTridiagonalMatrix<T> where
T: RefUnwindSafe,
impl<T> Send for SymmetricTridiagonalMatrix<T>
impl<T> Sync for SymmetricTridiagonalMatrix<T>
impl<T> Unpin for SymmetricTridiagonalMatrix<T> where
T: Unpin,
impl<T> UnwindSafe for SymmetricTridiagonalMatrix<T> where
T: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more