pub struct NormalBayesClassifier { /* private fields */ }
Expand description
Implementations§
Source§impl NormalBayesClassifier
impl NormalBayesClassifier
Sourcepub fn create() -> Result<Ptr<NormalBayesClassifier>>
pub fn create() -> Result<Ptr<NormalBayesClassifier>>
Creates empty model Use StatModel::train to train the model after creation.
Sourcepub fn load(
filepath: &str,
node_name: &str,
) -> Result<Ptr<NormalBayesClassifier>>
pub fn load( filepath: &str, node_name: &str, ) -> Result<Ptr<NormalBayesClassifier>>
Loads and creates a serialized NormalBayesClassifier from a file
Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized NormalBayesClassifier
- nodeName: name of node containing the classifier
§C++ default parameters
- node_name: String()
Sourcepub fn load_def(filepath: &str) -> Result<Ptr<NormalBayesClassifier>>
pub fn load_def(filepath: &str) -> Result<Ptr<NormalBayesClassifier>>
Loads and creates a serialized NormalBayesClassifier from a file
Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized NormalBayesClassifier
- nodeName: name of node containing the classifier
§Note
This alternative version of NormalBayesClassifier::load function uses the following default values for its arguments:
- node_name: String()
Trait Implementations§
Source§impl AlgorithmTraitConst for NormalBayesClassifier
impl AlgorithmTraitConst for NormalBayesClassifier
fn as_raw_Algorithm(&self) -> *const c_void
Source§fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
Source§fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
Source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
Source§fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
§Note
Source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Source§impl Boxed for NormalBayesClassifier
impl Boxed for NormalBayesClassifier
Source§unsafe fn from_raw(
ptr: <NormalBayesClassifier as OpenCVFromExtern>::ExternReceive,
) -> Self
unsafe fn from_raw( ptr: <NormalBayesClassifier as OpenCVFromExtern>::ExternReceive, ) -> Self
Source§fn into_raw(
self,
) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSendMut
fn into_raw( self, ) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSendMut
Source§fn as_raw(
&self,
) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSend
fn as_raw( &self, ) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSend
Source§fn as_raw_mut(
&mut self,
) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSendMut
fn as_raw_mut( &mut self, ) -> <NormalBayesClassifier as OpenCVTypeExternContainer>::ExternSendMut
Source§impl Debug for NormalBayesClassifier
impl Debug for NormalBayesClassifier
Source§impl Drop for NormalBayesClassifier
impl Drop for NormalBayesClassifier
Source§impl From<NormalBayesClassifier> for Algorithm
impl From<NormalBayesClassifier> for Algorithm
Source§fn from(s: NormalBayesClassifier) -> Self
fn from(s: NormalBayesClassifier) -> Self
Source§impl From<NormalBayesClassifier> for StatModel
impl From<NormalBayesClassifier> for StatModel
Source§fn from(s: NormalBayesClassifier) -> Self
fn from(s: NormalBayesClassifier) -> Self
Source§impl NormalBayesClassifierTrait for NormalBayesClassifier
impl NormalBayesClassifierTrait for NormalBayesClassifier
fn as_raw_mut_NormalBayesClassifier(&mut self) -> *mut c_void
Source§impl NormalBayesClassifierTraitConst for NormalBayesClassifier
impl NormalBayesClassifierTraitConst for NormalBayesClassifier
fn as_raw_NormalBayesClassifier(&self) -> *const c_void
Source§fn predict_prob(
&self,
inputs: &impl ToInputArray,
outputs: &mut impl ToOutputArray,
output_probs: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict_prob( &self, inputs: &impl ToInputArray, outputs: &mut impl ToOutputArray, output_probs: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Source§fn predict_prob_def(
&self,
inputs: &impl ToInputArray,
outputs: &mut impl ToOutputArray,
output_probs: &mut impl ToOutputArray,
) -> Result<f32>
fn predict_prob_def( &self, inputs: &impl ToInputArray, outputs: &mut impl ToOutputArray, output_probs: &mut impl ToOutputArray, ) -> Result<f32>
Source§impl StatModelTrait for NormalBayesClassifier
impl StatModelTrait for NormalBayesClassifier
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
Source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Source§fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Source§impl StatModelTraitConst for NormalBayesClassifier
impl StatModelTraitConst for NormalBayesClassifier
fn as_raw_StatModel(&self) -> *const c_void
Source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
fn empty(&self) -> Result<bool>
Source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray,
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray, ) -> Result<f32>
Source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
Source§impl TryFrom<StatModel> for NormalBayesClassifier
impl TryFrom<StatModel> for NormalBayesClassifier
impl Send for NormalBayesClassifier
Auto Trait Implementations§
impl Freeze for NormalBayesClassifier
impl RefUnwindSafe for NormalBayesClassifier
impl !Sync for NormalBayesClassifier
impl Unpin for NormalBayesClassifier
impl UnwindSafe for NormalBayesClassifier
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
Source§unsafe fn modify_inplace<Res>(
&mut self,
f: impl FnOnce(&Mat, &mut Mat) -> Res,
) -> Res
unsafe fn modify_inplace<Res>( &mut self, f: impl FnOnce(&Mat, &mut Mat) -> Res, ) -> Res
Mat
or another similar object. By passing
a mutable reference to the Mat
to this function your closure will get called with the read reference and a write references
to the same Mat
. This is unsafe in a general case as it leads to having non-exclusive mutable access to the internal data,
but it can be useful for some performance sensitive operations. One example of an OpenCV function that allows such in-place
modification is imgproc::threshold
. Read more