pub struct RTrees { /* private fields */ }
Expand description
Implementations§
Source§impl RTrees
impl RTrees
Sourcepub fn create() -> Result<Ptr<RTrees>>
pub fn create() -> Result<Ptr<RTrees>>
Creates the empty model. Use StatModel::train to train the model, StatModel::train to create and train the model, Algorithm::load to load the pre-trained model.
Sourcepub fn load(filepath: &str, node_name: &str) -> Result<Ptr<RTrees>>
pub fn load(filepath: &str, node_name: &str) -> Result<Ptr<RTrees>>
Loads and creates a serialized RTree from a file
Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized RTree
- nodeName: name of node containing the classifier
§C++ default parameters
- node_name: String()
Sourcepub fn load_def(filepath: &str) -> Result<Ptr<RTrees>>
pub fn load_def(filepath: &str) -> Result<Ptr<RTrees>>
Loads and creates a serialized RTree from a file
Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized RTree
- nodeName: name of node containing the classifier
§Note
This alternative version of RTrees::load function uses the following default values for its arguments:
- node_name: String()
Trait Implementations§
Source§impl AlgorithmTrait for RTrees
impl AlgorithmTrait for RTrees
Source§impl AlgorithmTraitConst for RTrees
impl AlgorithmTraitConst for RTrees
fn as_raw_Algorithm(&self) -> *const c_void
Source§fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
Source§fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
Source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
Source§fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
§Note
Source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Source§impl Boxed for RTrees
impl Boxed for RTrees
Source§unsafe fn from_raw(ptr: <RTrees as OpenCVFromExtern>::ExternReceive) -> Self
unsafe fn from_raw(ptr: <RTrees as OpenCVFromExtern>::ExternReceive) -> Self
Source§fn into_raw(self) -> <RTrees as OpenCVTypeExternContainer>::ExternSendMut
fn into_raw(self) -> <RTrees as OpenCVTypeExternContainer>::ExternSendMut
Source§fn as_raw(&self) -> <RTrees as OpenCVTypeExternContainer>::ExternSend
fn as_raw(&self) -> <RTrees as OpenCVTypeExternContainer>::ExternSend
Source§fn as_raw_mut(&mut self) -> <RTrees as OpenCVTypeExternContainer>::ExternSendMut
fn as_raw_mut(&mut self) -> <RTrees as OpenCVTypeExternContainer>::ExternSendMut
Source§impl DTreesTrait for RTrees
impl DTreesTrait for RTrees
fn as_raw_mut_DTrees(&mut self) -> *mut c_void
Source§fn set_max_categories(&mut self, val: i32) -> Result<()>
fn set_max_categories(&mut self, val: i32) -> Result<()>
Source§fn set_max_depth(&mut self, val: i32) -> Result<()>
fn set_max_depth(&mut self, val: i32) -> Result<()>
Source§fn set_min_sample_count(&mut self, val: i32) -> Result<()>
fn set_min_sample_count(&mut self, val: i32) -> Result<()>
Source§fn set_cv_folds(&mut self, val: i32) -> Result<()>
fn set_cv_folds(&mut self, val: i32) -> Result<()>
Source§fn set_use_surrogates(&mut self, val: bool) -> Result<()>
fn set_use_surrogates(&mut self, val: bool) -> Result<()>
Source§fn set_use1_se_rule(&mut self, val: bool) -> Result<()>
fn set_use1_se_rule(&mut self, val: bool) -> Result<()>
Source§fn set_truncate_pruned_tree(&mut self, val: bool) -> Result<()>
fn set_truncate_pruned_tree(&mut self, val: bool) -> Result<()>
Source§fn set_regression_accuracy(&mut self, val: f32) -> Result<()>
fn set_regression_accuracy(&mut self, val: f32) -> Result<()>
Source§fn set_priors(&mut self, val: &impl MatTraitConst) -> Result<()>
fn set_priors(&mut self, val: &impl MatTraitConst) -> Result<()>
Source§impl DTreesTraitConst for RTrees
impl DTreesTraitConst for RTrees
fn as_raw_DTrees(&self) -> *const c_void
Source§fn get_max_categories(&self) -> Result<i32>
fn get_max_categories(&self) -> Result<i32>
Source§fn get_max_depth(&self) -> Result<i32>
fn get_max_depth(&self) -> Result<i32>
Source§fn get_min_sample_count(&self) -> Result<i32>
fn get_min_sample_count(&self) -> Result<i32>
Source§fn get_cv_folds(&self) -> Result<i32>
fn get_cv_folds(&self) -> Result<i32>
Source§fn get_use_surrogates(&self) -> Result<bool>
fn get_use_surrogates(&self) -> Result<bool>
Source§fn get_use1_se_rule(&self) -> Result<bool>
fn get_use1_se_rule(&self) -> Result<bool>
Source§fn get_truncate_pruned_tree(&self) -> Result<bool>
fn get_truncate_pruned_tree(&self) -> Result<bool>
Source§fn get_regression_accuracy(&self) -> Result<f32>
fn get_regression_accuracy(&self) -> Result<f32>
Source§fn get_priors(&self) -> Result<Mat>
fn get_priors(&self) -> Result<Mat>
Source§fn get_splits(&self) -> Result<Vector<DTrees_Split>>
fn get_splits(&self) -> Result<Vector<DTrees_Split>>
Source§impl RTreesTrait for RTrees
impl RTreesTrait for RTrees
fn as_raw_mut_RTrees(&mut self) -> *mut c_void
Source§fn set_calculate_var_importance(&mut self, val: bool) -> Result<()>
fn set_calculate_var_importance(&mut self, val: bool) -> Result<()>
Source§fn set_active_var_count(&mut self, val: i32) -> Result<()>
fn set_active_var_count(&mut self, val: i32) -> Result<()>
Source§fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Source§impl RTreesTraitConst for RTrees
impl RTreesTraitConst for RTrees
fn as_raw_RTrees(&self) -> *const c_void
Source§fn get_calculate_var_importance(&self) -> Result<bool>
fn get_calculate_var_importance(&self) -> Result<bool>
Source§fn get_active_var_count(&self) -> Result<i32>
fn get_active_var_count(&self) -> Result<i32>
Source§fn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
Source§fn get_var_importance(&self) -> Result<Mat>
fn get_var_importance(&self) -> Result<Mat>
Source§fn get_votes(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<()>
fn get_votes( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<()>
fn get_oob_error(&self) -> Result<f64>
Source§impl StatModelTrait for RTrees
impl StatModelTrait for RTrees
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
Source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Source§fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Source§impl StatModelTraitConst for RTrees
impl StatModelTraitConst for RTrees
fn as_raw_StatModel(&self) -> *const c_void
Source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
fn empty(&self) -> Result<bool>
Source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray,
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray, ) -> Result<f32>
Source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
impl Send for RTrees
Auto Trait Implementations§
impl Freeze for RTrees
impl RefUnwindSafe for RTrees
impl !Sync for RTrees
impl Unpin for RTrees
impl UnwindSafe for RTrees
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
Source§unsafe fn modify_inplace<Res>(
&mut self,
f: impl FnOnce(&Mat, &mut Mat) -> Res,
) -> Res
unsafe fn modify_inplace<Res>( &mut self, f: impl FnOnce(&Mat, &mut Mat) -> Res, ) -> Res
Mat
or another similar object. By passing
a mutable reference to the Mat
to this function your closure will get called with the read reference and a write references
to the same Mat
. This is unsafe in a general case as it leads to having non-exclusive mutable access to the internal data,
but it can be useful for some performance sensitive operations. One example of an OpenCV function that allows such in-place
modification is imgproc::threshold
. Read more